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ABSTRACT
Recent advances in technology have large teams of robots with

limited computation and communication skills work together in

order to achieve a common goal. Their personal actions need to

contribute to the joint effort, however, they also must assure that

they do not harm the efforts of the other members of the team,

e.g., as a result of collisions. We focus on the distributed target

coverage problem, in which the team must cooperate in order to

maximize utility from sensed targets, while avoiding collisions

with other agents. State of the art solutions focus on the distributed

optimization of the coverage task in the team level, while neglecting

to consider collision avoidance, which could have far reaching

consequences on the overall performance. Therefore, we propose

CAMS: a collision-avoiding version of the Max-sum algorithm, for

solving problems includingmobile sensors. In CAMS, a factor-graph

that includes two types of constraints (represented by function-

nodes) is being iteratively generated and solved. The first type

represents the task-related requirements, and the second represents

collision avoidance constraints. We prove that consistent beliefs are

sent by target representing function-nodes during the run of the

algorithm, and identify factor-graph structures on which CAMS is

guaranteed to converge to an optimal (collision-free) solution. We

present an empirical evaluation in extensive simulations, showing

that CAMS produces high quality collision-free coverage also in

large and complex scenarios. We further present evidence from

experiments in a real multi-robot system that CAMS outperforms

the state of the art in terms of convergence time.
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1 INTRODUCTION
Some of the most challenging multi agent applications involve

teams of mobile sensing agents that are required to acquire infor-

mation in a given area. Examples for such applications are networks

of sensors [14, 41], smart homes [24], and rescue teams in disaster

areas [17]. The mobile agents reside on physical aerial or ground

devices, thus they must avoid collisions. Moreover, the dynamic

nature of the environments the agents operate in, as well as their

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
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commonly limited communication, computation and sensing capa-

bilities, require that the decisions made by each agent are fast and

short term. The ability of those local short-term decisions to result

in an overall optimal group strategy is a fundamental challenge for

multi-agent systems, and it is the focus of this paper. Specifically,

we examine the problem of distributed target covering by a team of

limited robots, in which the robots decide which targets to sense

for yielding maximal group utility.

Distributed constraint optimization problems (DCOP) offer a

framework that addresses some of the above challenges. As DCOPs

are limited in representing dynamic events, an extension of the

DCOP framework, DCOP_MST (Mobile Sensor Team), along with

local search algorithms, were proposed by Zivan et al. [41]. A later

study has shown that an incomplete inference algorithm, Max-sum

[2, 7, 9], produces better results when used in an iterative process

for solving DCOP_MST, where iterative instances of the current rep-

resentation of the problem are solved distributively and allow the

agents to select the next joint move [37]. The Max-sum algorithm

has been the subject of intensive study in DCOP solving research,

and has been applied to many realistic applications [8, 22, 24],

among those for solving DCOP_MST, by the Max-sum_MST algo-

rithm [41]. Previous studies that investigated the performance of

Max-sum when solving standard DCOPs (e.g., [5, 40]) reported that

Max-sum (without the addition of function-node splitting) oscil-

lates for thousands of iterations, whether it finally converges or

not. The nature of this phenomenon has remained an open ques-

tion. In contrast, when applied to DCOP_MST, Max-sum converges

instantly [37].

While previous DCOP-based work offer solutions that can be

successfully applied to target covering, they neglect to consider

in their optimization criteria one critical aspect of the problem:

collision avoidance. Since the team members act physically in the

environment, they cannot collide with each other. As seen vastly

in robotics research, and in the research area of Multi-Agent Path

Finding (MAPF), accounting for collisions between physical agents

is extremely challenging, and has far-reaching consequences on the

performance of the system [13, 29]. However, as opposed to MAPF

where the goal is to globally create collision-free paths optimizing

some joint path-length criterion, or collision-avoiding in robotics

research that focus on generating locally safe trajectories, here

we are interested in local decision making for target-covering opti-
mization, where collision-avoidance being an additional important

constraint.

Therefore this paper addresses the two above important chal-

lenges that arise when using incomplete distributed inference algo-

rithms for solving dynamic mobile sensing team problems. The first

is the enigma related to the fast convergence of Max-sum when

applied to DCOP_MST. We prove that the convergence results from
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the special structure of MST problems and that the messages con-

tent sent by the nodes representing the constraints in Max-sum

will be fixed when solving DCOP_MST.

The second challenge that we address is the need to avoid col-

lisions while solving locally optimization problems, modeled as

DCOPs.We propose a collision-avoiding version of Max-sum, called

CAMS. As in standard Max-sum, the problem in CAMS is repre-

sented by a factor-graph, which is a bipartite graph including nodes

representing variables and functions (constraints). In addition to

the standard optimization using Max-sum, CAMS adds a new type

of function-nodes to the factor-graphs, which represent the con-

straints of locations that agents can choose to move to.

We identify structures of factor-graphs on which CAMS is guar-

anteed to converge to the optimal (collision avoiding) solution. We

prove that the added complexity of CAMS with respect to Max-

sum_MST is small. We show empirically in extensive simulations

and using real robotic systems that even for complex cases (e.g., in

dense and dynamic environments), CAMS converges efficiently to

high quality collision-free solutions.

2 RELATEDWORK
The DCOP model has been widely used for representing and solv-

ing coordination problems related to sensor networks [8, 18] and

mobile sensor networks [30, 32, 41]. To the best of our knowledge,

none of these studies addressed the possibility of collisions between
mobile sensors. Nevertheless, an attempt to use the DCOP model

and algorithms in order to avoid collisions of ships was presented in

[11], proposing the distributed stochastic search algorithm (DSSA)

for preventing ships from selecting colliding routes. We compare

this version and our proposed algorithm with a collision avoiding

DSA (CADSA) algorithm in our empirical study.

DCOPs are traditionally associated with problems in discrete

settings [30, 32, 39, 41], including DCOP_MST. Attempts to investi-

gate the modelling and solving of DCOPs in continuous domains

(e.g., [12, 26, 33]), raise challenges concerning, among others, the

type of continuous utility/cost functions and the impact of these

types on the complexity of the problem. While the importance

of generalizing DCOPs to continuous domains is noted, this pa-

per follows the common discrete modeling, associated also with

DCOP_MSTs (which is the baseline for this work).

Different aspects of the Max-sum algorithm have been exam-

ined in the literature, focusing on the algorithm’s convergence

guarantees [23, 39, 40], evaluation in realistic applications [22] and

computational complexity [16, 17]. Our work contributes to this

ongoing effort by extending the applicability of Max-sum to teams

of mobile sensing agents.

While Max-sum has been shown to efficiently solve DCOPs

and has been used to coordinate sensors’ movements, one of its

major drawbacks is the run-time required for function-nodes to

producemessages, which is exponential in the arity of the constraint

that the function-node represents. Multiple attempts to overcome

this drawback were published in the last decade. Some of them,

including the methods proposed by [17, 21], were implemented in

the Max-sum version that was proposed for solving DCOP_MST

in [36]. Others, which were proposed recently, make an immense

reduction of the computational cost in such scenarios [3, 15]. In our

work, we prove that such exponential computation is not required,

and therefore these methods, which are most useful in standard

scenarios, are less relevant.

Creating collision-free paths is the main objective of Multi-Agent

Path Finding (MAPF) [1, 28, 29], which focus on creating paths for

𝑛 agents on their way to their targets while avoiding spatial conflict

between the agents, and optimizing some global criteria, usually

minimizing the total travel distances or minimizing the makespan.

Although MAPF algorithms and CAMS concentrate on collision

avoidance, MAPF’s difference from our problem is twofold: (1) The

main objectives. While we care to optimize target covering as a co-

operative effort accounting for collision avoidance as an additional

constraint, MAPF focus on agents’ paths to targets. (2) The basic

model and means to solve the problem. CAMS solves DCOP_MST,

an inherently-dynamic distributed constrained optimization prob-

lem requiring the agents to have no global knowledge of the world,

and MAPF is a centralized problem, solved most commonly by

centralized search-based methods. Therefore solutions to MAPF

problems cannot be applied in our setting. Note that distributed

MAPF was recently mentioned as one of the open challenges in

MAPF [25]. Although there have been attempts to provide solutions

to this problem (e.g., [20]), those still remain irrelevant for solving

DCOP_MSTs.

Finally, collision avoidance, being one of the fundamental re-

quirements from a robotic system, is vastly explored in multi-robot

systems [13]. The main focus in decentralized collision avoidance

methods is on providing means for locally preventing collisions by

considering the other robots as mobile obstacles, or suggesting local

coordination schemes yielding collision-free paths [6, 27, 31]. In

our case collision avoidance is intertwined with the target covering

task, necessitating the creation of a method that considers both for

yielding an optimal team behavior, which is the essence of CAMS.

3 BACKGROUND
The DCOPmodel is commonly used for representing and solving co-

ordination problems related to sensor networks [8, 18] and mobile

sensor networks [30, 32, 41]. To the best of our knowledge, none of

these studies addressed the possibility of collisions between mobile

sensors. A vast amount of research has been invested in recent

years in modelling and solving multi agent path finding problems

(MAPF) [1, 28]. MAPF considers scenarios where a strong comput-

ing system (mostly centralized) is able to compute paths for all

agents from their start position to their goal states while avoiding

collisions. This is in contrast to scenarios on which we focus in this

study, where the team of sensors is composed of entities with low

computing and sensing abilities, that only compute a small number

of steps ahead. An attempt to use the DCOP model and algorithms

for collision avoidance of ships was presented in [11], where the

distributed stochastic search algorithm (DSSA) was used in order

to prevent ships from selecting colliding routes. Distributed sto-

chastic algorithms (DSA) are synchronous local search algorithms

in which agents hold assignments and make greedy attempts to

improve them, subject to a stochastic replacement decision. A num-

ber of versions of DSA were found to be inferior to Max-sum_MST
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in [36, 37]. Nevertheless, we compare the performance of our pro-

posed algorithm with DSSA and a collision avoiding version of DSA

(CADSA) in our empirical study.

In this section we provide the necessary background on Max-

sum, the DCOP_MST model and Max-sum_MST.
1

3.1 The DCOP_MST Model
DCOP_MST includes agents A = {𝐴1, 𝐴2, . . . , 𝐴𝑛} physically

situated in the environment, which is modeled as a metric space.

Each agent 𝐴𝑖 controls one variable, denoted by 𝑐𝑝𝑖 , that repre-

sents its current position. Time is discretized into an indeterminate

series of time-steps, and the maximum distance 𝐴𝑖 can travel in

a single time step is defined by its mobility range,𝑚𝑟𝑖 . Therefore,

the domain of 𝑐𝑝𝑖 contains all locations within𝑚𝑟𝑖 from it; conse-

quently, once the agent moves, the content of its variable’s domain

changes. A change in the content of some variables’ domains can

induce a constraint change. The agents have limited heterogeneous

sensing ranges, where 𝑠𝑟𝑖 denotes the sensing range of agent 𝐴𝑖 ,

and each agent can only provide information on targets within its

sensing range. Moreover, agents may also differ in the quality of

their sensing abilities, a property termed as their credibility. The
credibility of agent𝐴𝑖 is denoted by 𝑐𝑟𝑒𝑑𝑖 ∈ R+, with higher values

indicating better sensing abilities. Targets T = {𝑇1,𝑇2, . . . ,𝑇𝑚} are
represented implicitly by the environmental requirement function
𝐸𝑅, which maps each point in the environment to a non-negative

real number representing the joint credibility required for that point

to be adequately sensed. Thus, a target 𝑇𝑗 ∈ T is a point 𝑝 with

𝐸𝑅(𝑝) > 0.

Agents which their current position is within sensing range of

target 𝑇𝑗 are said to cover it and the remaining coverage require-
ment 𝑐𝑟 𝑗 , is 𝐸𝑅(𝑇𝑗 ) diminished by the joint credibility of the agents

currently covering the target, with a minimum value of zero. The

coverage of sensors aiming to apply to the environmental require-

ment of a target is not accumulated. Thus, if a target requires the

coverage of more than one sensor, they must simultaneously place

themselves in sensing range from it. Denoting the set of agents

within sensing range of a point 𝑝 by 𝑠𝑟 (𝑝), this is formalized as

𝑐𝑟 (𝑝) = max{0, 𝐸𝑅(𝑝) ⊖ 𝐹 (𝑠𝑟 (𝑝))}, where 𝐹 is the joint credibility

function that combines the credibility of neighboring agents and

⊖ : R × R → R is a binary operator that decreases the environ-

mental requirement by the joint credibility. For simplicity we will

assume that 𝐹 (𝑠𝑟 (𝑝)) =
∑
𝐴𝑖 ∈𝑠𝑟 (𝑝 ) 𝑐𝑟𝑒𝑑𝑖 and that ⊖ is a standard

subtraction [37]. The global goal of the agents is to position them-

selves so to minimize

∑
𝑇𝑗 ∈T 𝑐𝑟 (𝑇𝑗 ). Such a minimization problem

is NP-hard [34].

3.2 Distributed Stochastic Algorithm (DSA)
The distributed stochastic algorithm (DSA) is a simple synchronous

search algorithm for solving DCOPs [38], which was applied to

DCOP_MST, extended to avoid collisions, and which we use as a

benchmark for comparison. In DSA, after an initial step in which

agents select a value assignment for their variable (randomly ac-

cording to [38]), agents perform a sequence of steps until some

1
For lack of space we moved the description of the standard DCOP model, Max-sum

algorithm and additional proofs to the supplementary material, that can be found in

https://u.cs.biu.ac.il/ agmon/CAMS-AAMAS23-Sup.pdf.

termination condition is met. In each step, an agent sends its value

assignment to its neighbors and receives theirs. Versions of DSA

differ in the stochastic method agents use to decide on whether to

replace their value assignments. The algorithm uses a stochastic pa-

rameter 0 < 𝑝 ≤ 1 in order to make this decision. If an agent in DSA

cannot improve its current state (or keep the same cost, depending

on the version used) by replacing its current value assignment, it

does not replace it. Otherwise, it replaces its value assignment with

probability 𝑝 .

3.3 Convergence Properties
Belief propagation (in general and specifically Max-sum) converges

in linear time to an optimal solution when the problem’s corre-

sponding factor-graph is acyclic (i.e., have a tree structured factor-

graph) [19]. For a single-cycle factor-graph, we know that if belief

propagation converges, then it is to an optimal solution [10, 35].

Moreover, when the algorithm does not converge, it periodically

changes its set of assignments. In order to explain this behavior,

Forney et al. [10] show the similarity of the performance of the

algorithm on a cycle to its performance on a chain, whose nodes

are similar to the nodes in the cycle, but whose length is equal to

the number of iterations performed by the algorithm. One can con-

sider a sequence of messages starting at the first node of the chain

and heading towards its other end. Each message carries beliefs

accumulated from utilities added by function-nodes. Each function-

node adds a utility to each belief, which is the constraint value

of a pair of value assignments to its neighboring variable-nodes.

Each such sequence of utility accumulation (route) must at some

point become periodic, and the maximal belief would be generated

by the maximal periodic route. If this periodic route is consistent

(i.e., the set of assignments implied by the utilities contain a single

value assignment for each variable), then the algorithm converges.

Otherwise, it does not.

We denote by a path the sequence of entries in the utility tables

of the function-nodes along the route, which are accumulated in

order to generate a belief.

3.4 Run-Time Complexity Analysis
The overhead in run-time complexity of CAMS (in comparison to

Max-sum_MST) is negligible, since the additional function-nodes

representing unary and binary constraints require at most 2
2
utility

comparisons for each message produced (therefore there was no

need to use recent published methods for reducing the computation

of function-nodes in Max-sum [3, 15]). On the other hand, while tar-

get function-nodes may have more than two neighbors, we proved

in Theorem 5.1 that the calculation is redundant, and thus, there

is no need for these function-nodes to perform exponential com-

putation. The computation performed by a variable-node in each

step of the algorithm is the addition of the vectors received from its

neighbors, for each message it sends. Thus, for an agent performing

the computation of a single variable-node with 𝑘 neighbors, the run-

time complexity in each step of the algorithm is 𝑘2(𝑘 − 1) = 𝑂 (𝑘2).

3.5 Applying Max-sum to DCOP_MST
Max-sum_MST, the Max-sum version applied to DCOP_MST,

implements an iterative process in which in each iteration the
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agents construct a factor-graph based on their current locations, run

the Max-sum algorithm for a number of steps, and move according

to the solution provided by the algorithm. In the next iteration, a

new factor-graph is generated considering the new locations of the

agents [37].

A message sent from function-node 𝐹 representing target𝑇 ∈ T
to a variable-node𝑋 , 𝑅𝐹→𝑋 , includes two utilities, one for locations

from which the sensor covers the target, and one for locations from

which it does not (as in fast Max-sum [17]). A factor-graph in

Max-sum_MST is generated using the function meta reasoning

(FMR) method [37]. It is used when there are more neighbors than

required for covering a target in order to avoid symmetry (i.e.,

prevent a situation in which all neighboring agents decide to cover

some target, or alternatively, all decide not to cover it). Consider an

iteration 𝑖 in which the factor-graph 𝐹𝐺𝑖
was generated based on

the locations of sensors selected in iteration 𝑖 − 1. Denote by 𝑛(𝑇 )𝑖
the set of neighboring sensors of target 𝑇 ∈ T in 𝐹𝐺𝑖

. Denote

by 𝑟 (𝑇 )𝑖 a subset of 𝑛(𝑇 )𝑖 and let 𝑐𝑟𝑒𝑑
𝑟 (𝑇 )𝑖 =

∑
𝐴 𝑗 ∈𝑟 (𝑇 )𝑖 𝑐𝑟𝑒𝑑𝑖 .

The function-node 𝐹 representing target 𝑇 selects the minimal

subset 𝑟 (𝑇 )𝑖 for which 𝐸𝑅(𝑇 ) ≤ 𝑐𝑟𝑒𝑑
𝑟 (𝑇 )𝑖 , and removes the edges

connecting it in the factor-graph to the sensors in 𝑛(𝑇 )𝑖 \ 𝑟 (𝑇 )𝑖 .
We will denote this set (the set of neighbors of𝑇 resulting from the

FMR procedure in iteration 𝑖) by 𝑁 (𝑇 )𝑖 .
FMR is a first step to avoid symmetry, but it is not enough: If

the accumulated credibility of target 𝑇 ’s neighbors 𝑁 (𝑇 )𝑖 is larger
than its environmental requirements 𝐸𝑅(𝑇 ), there is still a need to

break symmetry in order to avoid sending distorted requirements

to its neighbors (either high for all neighbors or low for all of them).

Yedidsion et al. [37] suggested an ordered value propagation (OVP)

approach, in which the neighbors are ordered and the utility for the

last neighbor in the order is reduced. We propose a more balanced

approach in the following section.

4 COLLISION AVOIDING MAX-SUM (CAMS)
Collisions among mobile sensors may result in damaging the sen-

sors, execution delay, or even the inability to perform the coverage

task. Thus, we propose Collision Avoiding Max-sum (CAMS) that

allows the agents to select the deployment that maximizes cover-

age, while avoiding collisions. This is achieved by adding to the

factor-graphs that are generated in each iteration of Max-sum_MST

(before each movement of the agents) function-nodes representing

locations that the agents can move to. Each such function-node can

either represent a location to which only one agent can decide to

move, or locations to which two agents can move.

In more details, in a factor-graph generated in CAMS there are

three types of function-nodes:

1) 𝐹𝑇𝑗 , a function-node representing a target 𝑇𝑗 . The neighbors of

the function are selected using FMR. However, instead of perform-

ing ordered value propagation the targets adjust the utilities sent

to their neighboring agents in a more balanced manner. Let 𝑢𝑐𝑜𝑣
𝑖 𝑗

denote the utility sent to neighbor 𝐴𝑖 by target 𝐹𝑇𝑗 for covering it.

The value of 𝑢𝑐𝑜𝑣
𝑖 𝑗

is defined as follows:

𝑢𝑐𝑜𝑣𝑖 𝑗 =


𝐸𝑅𝐹𝑇𝑗

, if 𝐸𝑅𝐹𝑇𝑗
< 𝑐𝑟𝑒𝑑𝑖

𝑐𝑟𝑒𝑑𝑖 − max{0,
∑
𝑖′ ∈𝑁 (𝐹𝑇𝑗 ) 𝑐𝑟𝑒𝑑𝑖′ −𝐸𝑅𝐹𝑇𝑗

|𝑁 (𝐹𝑇𝑗 ) | }, otherwise

Figure 1: A factor-graph generated in CAMS.

We refer to this calculation of the neighbors coverage utilities as

balanced utility adaptation (BUA).

2)𝐹𝐿(𝑖 ) , a function-node representing a location to which only one

agent can move. The corresponding constraint is unary. A random

positive utility is selected for the option that𝐴𝑖 selects this location

(selected from the same range as the random utilities selected for

the binary constraints described next) and zero for not selecting

this location.

3)𝐹𝐿(𝑖,𝑒 ) , a function-node representing a location 𝑙 to which mobile

sensors 𝐴𝑖 and 𝐴𝑒 can move in this iteration. The utility for both

mobile sensors for not selecting location 𝑙 is zero, for both selecting

𝑙 is −∞ and for both options in which only one of them selects 𝑙 ,

a random utility is selected from a range of numbers that is much

smaller than 𝐸𝑅𝐹𝑇𝑗
2
. In the case where one of the mobile sensors

is located in 𝑙 (without loss of generality, assume this is 𝐴𝑖 ), then

the option that 𝐴𝑒 moves to 𝑙 and 𝐴𝑖 moves to the current location

of 𝐴𝑒 is also excluded by utility -∞, and thus, edge constraints for

avoiding collisions are enforced. We emphasize that although there

may exist scenarios in which more than two mobile sensors can

move to the same location, 𝐹𝐿 is defined as a binary constraint,

and thus, if there are 𝑘 > 2 mobile sensors that can select the same

location, there will be an 𝐹𝐿 for each pair of these 𝑘 mobile sensors.

Figure 1 presents an example of a factor-graph generated in some

iteration of CAMS. It includes two mobile sensors, each with four

possible locations to move to, and the option to stay in their current

location. All function-nodes representing locations to which only

one mobile sensor can move are of the second type. While the

domain of each mobile sensor’s current position variable includes

five values (representing the possible locations it can select), only

for the selection of the location represented by the function-node

the utility is positive, and for all other locations it is zero. Themiddle

location to which both mobile sensors can move, is represented

by a function-node of the third type. It includes four options, one

for both mobile sensors not selecting this location (zero utility),

one for both selecting this location (minus infinity) and two with

positive utilities for the cases that only one mobile sensor selects

this location. The target is represented by a function-node of the

first type. Its coverage requirement is 200, while the credibility

of each mobile sensor is 70, which is the utility they derive for

2
Random numbers are selected to avoid ties between desired options, as in [9]
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𝐶𝑜𝑚𝑏1 𝐶𝑜𝑚𝑏2 . . . 𝐶𝑜𝑚𝑏2𝑛

𝑛𝑜_𝑐𝑜𝑣𝑒𝑟 𝑢1 𝑢2 . . . 𝑢2𝑛

𝑐𝑜𝑣𝑒𝑟 𝑢1 + 𝑢𝑐𝑜𝑣𝐴,𝑇
𝑢2 + 𝑢𝑐𝑜𝑣𝐴,𝑇

. . . 𝑢2𝑛 + 𝑢𝑐𝑜𝑣
𝐴,𝑇

Table 1: Function-node message generation.

covering the target. In this example, covering the target is only

possible from the middle location that both mobile sensors can

move to. However, if they both move to this location they collide.

5 PROPERTIES OF CAMS
In this section we discuss properties of CAMS that affect its con-

vergence and its run-time analysis.

5.1 Messages sent by Target Representing
Function Nodes

In order to identify the properties of the factor-graphs on which

CAMS is guaranteed to converge to the optimal (collision-free)

solution and to analyze its run-time properties, we aim to prove

that function-nodes in Max-sum_MST (when implementing FMR,

and BUA or OVP) do not change the content of the messages they

send throughout the algorithm run. This property ofMax-sum_MST

has not been reported, nor proven, in previous studies.

We use in our proof a table (as depicted in Table 1), which repre-

sents the calculations performed by a target representing function-

node 𝐹𝑇 , when generating a message to be sent to mobile sensor

𝐴. This table includes 𝑡𝑤𝑜 rows, one for positions from which 𝐴

covers the target and one for positions from which it does not.

The columns represent combinations of position selections of all

neighboring mobile sensors that can either select a position from

which they cover the target or a position from which they do not.

Thus, if there are 𝑛 such neighbors (not including 𝐴), the number

of columns will be 2
𝑛
. Each entry in the table includes the sum of

the utility derived from the coverage, which the mobile sensors

that selected a covering position in this column provided, and the

relevant beliefs included in the messages received from the target’s

neighbors in the previous iteration.

Theorem 5.1. In every iteration of CAMS and of Max-sum_MST,
each target representing function-node will send to its neighbors in
every step of the Max-sum algorithm, a message including zero utility
for not covering this target and 𝑢𝑐𝑜𝑣

𝐴,𝑇
for covering it (here, 𝑇 is the

target and 𝐴 is the neighbor to which the message is sent).

Proof: Table 1 demonstrates the calculation performed by function-

node 𝐹𝑇 , representing target 𝑇 , when generating a message to be

sent to its neighboring mobile sensor 𝐴. The message will include

two utilities (beliefs), one for covering the target and one for not.

As stated above, each of the columns represents a combination of

positions selected by the target’s other neighbors. The target selects

the largest utility in each row to be included in the message it sends

to 𝐴𝑖 , one for not covering the target and the other for covering it.

For each column 𝑗 , the utilities are 𝑢 𝑗 for the first (non covering)

row, and 𝑢 𝑗 + 𝑢𝑐𝑜𝑣𝐴,𝑇
for the row representing a covering position of

𝐴. Thus, if for some column 𝑗 ′ and for all other columns 𝑗 ≠ 𝑗 ′,
𝑢 𝑗 ′ > 𝑢 𝑗 , then the message will include 𝑢 𝑗 ′ for not covering the

Figure 2: A tree structured factor-graph including only loca-
tion representing function-nodes.

target and 𝑢 𝑗 ′ + 𝑢𝑐𝑜𝑣𝐴,𝑇
for covering it. Thus, after the reduction of

𝛼 = 𝑢 𝑗 ′ the message sent will include ⟨0, 𝑢𝑐𝑜𝑣
𝐴,𝑇

⟩. □
The significance of Theorem 5.1 is that it explains previ-

ously published evidence regarding the instant convergence of

Max-sum_MST (e.g., [37]) in contrast to Max-sum’s behavior on

other benchmarks [2, 5].

5.2 Convergence Properties
We start the discussion by identifying factor-graph structures on

which CAMS is guaranteed to converge to the optimal solution,

and then we establish a more general property.

Lemma 5.2. In any iteration of CAMS, if the factor-graph includes
no cycles, and a collision-free solution exists, the algorithm will con-
verge to the optimal collision-free solution in a linear number of steps.

Proof: The factor-graph representation of this scenario has a

tree structure and thus, Max-sum will converge in a linear number

of steps to an optimal solution [19]. This optimal solution
3
cannot

include the selection of the same location by two or more agents,

since the utility of such a mutual selection is −∞. □
This proof is immediate, given the properties of belief propaga-

tion as established in [19]. We mention it just to indicate that the

hard constraint function-nodes do not interfere with this property,

as long as a solution that does not violate hard constraints exists.

Note that if the current position of the agents is collision free, then

indeed such a solution exists, since the agents can choose to stay

in their current locations.

Figure 2 presents an example of a tree-structured factor-graph

including only location representing function-nodes. Note that

additional function-nodes of the second type do not change the

tree structure of the graph. In the optimal solution, the left mobile

sensor moves down, the middle one moves to the left and the one

on the right moves to the right. The (optimal) utility derived from

this solution is 18.

Tree-structured graphs include all scenarios in which adjacent

mobile sensors have only one location that they both can move to.

However, when there are more than one such location, or when

more than two mobile sensors can move to the same location, the

factor-graph includes a cycle (See examples for two such scenarios

in Figure 3).

Lemma 5.3. In any iteration of CAMS, if the factor-graph includes
a single cycle with two or more location representing function-nodes of

3
Here by optimal solutionwemean the collision-free solution that provides the smallest

remaining coverage in this iteration.
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Figure 3: Single cycle factor-graphs including: (a) two mobile
sensors and (b) three mobile sensors.

the third type 𝐹𝐿(𝑖, 𝑗 ) , and a collision-free solution exists, the algorithm
converges to a collision-free optimal solution in a pseudo linear number
of steps.

Proof: The factor-graph representation of such scenarios in-

cludes a single cycle with at least two 𝐹𝐿(𝑖, 𝑗 ) function-nodes. This
type of function-node has four entries in the utility table, which

one of them includes minus infinity utility. According to [10], when

belief propagation is applied to a single cycle graph, it converges to

the optimal solution if and only if the optimal (maximal in our case)

repeated path is consistent. The only way to generate a maximal

inconsistent path in such cycles including two or more function-

nodes with four entry utility tables, is when the maximal path visits

alternately entries of opposing directed diagonals in the utility ta-

bles (see proof in the supplementary material). Since in all utility

tables the entry representing the movement of both mobile sensors

to the represented location is equal to minus infinity, it is impossible

to generate a maximal path including opposing directed diagonals.

Thus, the maximal path must be consistent. The number of steps

depends on the constant utilities sent by the unary function-node

neighbors, which are not included in the cycle. If the difference

between these utilities is negligible, the time for convergence is

linear, i.e., in the order of the size of the cycle. □
In the proof above we stated that in a single cycle graph includ-

ing two or more function-nodes representing binary constraints

with four entries in their utility table, the maximal path can be

inconsistent if and only if this path visits entries that are part

of opposite direction diagonals. While the complete proof of this

statement appears in our supplementary material, the following

description provides intuition to its correctness. Consider such a

cycle (as depicted in Figure 4 (a)). Assume each agent can select

value assignments 𝑣1 or 𝑣2. Thus, the four entries represent the

pairs of assignments ⟨𝑣1, 𝑣1⟩ on the top left, ⟨𝑣2, 𝑣1⟩ on the bottom

left, ⟨𝑣1, 𝑣2⟩ on the top right and ⟨𝑣2, 𝑣2⟩ on the bottom right. With-

out loss of generality, we will follow a clockwise path that starts

with the top left entry in the bottom utility table in the example

depicted in Figure 4 (a). A consistent path will have both agents

take 𝑣1, i.e., the assignment will include ⟨𝑣1, 𝑣1⟩ and the path will

visit the left top entries in both utility tables until the algorithm

terminates resulting in the path 15 → 1 → 15 → 1 . . .. On the

other hand, an inconsistent path includes shifts of assignments for

each variable. However, since it is a path of a route, this shift is

done alternately by the agents. Thus, after visiting ⟨𝑣1, 𝑣1⟩ in the

Figure 4: A single cycle factor-graph with two four entry
function nodes.

bottom utility table, the path shifts to ⟨𝑣1, 𝑣2⟩ in the top utility table,

then it shifts to ⟨𝑣2, 𝑣2⟩ in the bottom utility table, to ⟨𝑣2, 𝑣1⟩ in
the top utility table and back to ⟨𝑣1, 𝑣1⟩ in the bottom. The path

visited is 15 → 2 → 10 → 6 → 15 . . .. One of these two passes is

maximal (since the accumulated utility of all other consistent and

inconsistent paths is much lower). In order to compare we need to

normalize by length. The inconsistent path visits four entries that

their sum is 33. The consistent path visits two entries, that their

accumulated utility is 16. In order to normalize we will visit this

path twice and get a utility of 32. Thus, the maximal path here is the

inconsistent path. However, in the example depicted in Figure 4 (b)

we increased the utility in the entry for ⟨𝑣1, 𝑣1⟩ (top left) in the top

utility table from 1 to 5. Now, the accumulated normalized utility of

the maximal consistent path is 40, while the maximal accumulated

utility of an inconsistent path remains 33. Thus, when solving the

factor-graph depicted in Figure 4 (b), Max-sum would converge to

the solution ⟨𝑣1, 𝑣1⟩, while when solving the factor-graph depicted

in Figure 4 (a) it would not converge.

A similar observation to the one we stated following Lemma 5.2

can be noted here as well. Additional unary constraints (function-

nodes of the second type) would not affect the correctness of

Lemma 5.3, since regardless of their content, they cannot overcome

the minus infinity utilities that prevents an inconsistent maximal

path.

Note that factor-graphs similar to the ones depicted in Figure 3(a)

are generated when two mobile sensors can both move to two dif-

ferent locations, and that factor-graphs similar to the one depicted

in Figure 3(b) are generated when three mobile sensors can move to

a single location. When more than three mobile sensors can move

to a single location, the representing factor-graph will include more

than one cycle.

In order to state the final Theorem in this section, we intro-

duce the following definition: The Underlying location factor-graph
(ULFG) is the factor-graph that is generated in an iteration of CAMS,

after removing all target representing function-nodes and all the

edges connecting them to the mobile sensor variable nodes. Thus,

all the function-nodes in a ULFG represent locations.

Theorem 5.4. In any iteration of CAMS in which a factor-graph
𝐺 is being solved by Max-sum, if the ULFG of 𝐺 is tree structured or
includes a single cycle, then Max-sum is guaranteed to converge on𝐺
to the optimal solution (collision-free, if such a solution exists) in a
pseudo linear number of steps.
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Proof: According to Theorem 5.1, the target representing function-

nodes in 𝐺 constantly send the same messages. Thus, they act as if

they are unary constraints (function-nodes with a single variable-

node neighbor) and are not affected by the messages sent to them.

According to [10, 39], Max-sum will converge if and only if the

maximal path is consistent. As stated in the observations following

Lemmas 5.2 and 5.3, unary constraints cannot change the fact that

the maximal path in these graphs cannot be inconsistent. □

6 EMPIRICAL EVALUATION
In order to evaluate the performance of CAMS, we designed two

types of experiments. The first set of experiments was performed in

software simulation, implemented in Python
4
, allowing for rigorous

evaluation of CAMS compared to existing solutions. In the second

set of experiments, we have fully implemented CAMS on a physical

multi-robot system that included 3 Hamster robots [4]. We report

here a subset of the results (identical trends were seen with other

parameters, as well).

6.1 Evaluation in Simulation
The software simulation included two types of environments: grid,

and random graphs. The obstacle-free grid contained 50𝑋50 cells

(locations), and the random graphs contained 625 nodes, where

each node had a random number of neighbors selected in the range

[2, 7]. The graph environment represents a more complex setting

in terms of coverage and collision constraints.

The number of targets was set to 20 and 10 for the grid and graph

environments, respectively, and they were randomly positioned.

The number of mobile sensors was 30 and 15, respectively, and

they were also positioned randomly such that every location of the

graph included at most one mobile sensor. For each environment,

we tested the algorithms in both static and dynamic settings. In

the static settings the number of targets and their location was

constant, while in the dynamic setting new targets were added

every 𝑡 iterations (we used 𝑡 = 20 for the grid, and 𝑡 = 10 for the

graph). The ER values of all targets were 100, the sensing range all

sensors, 𝑠𝑟𝑖 , was set to 1 (its adjacent locations), and the credibility of

each sensor was randomly selected between 25 and 50. The positive

utilities of location function-nodes were selected randomly from

the range [10−10, 10−5]. In each iteration of the algorithm, each

mobile sensor could either move to one of the adjacent locations or

stay in its current location.

Each experiment was executed 50 times, and we report the av-

erage remaining coverage and accumulated number of collisions

obtained by each algorithm solving these scenarios, in each execu-

tion of the experiment.

We compared CAMSwith six other algorithms: (1)Max-sum_MST

(including FMR and OVP), in which the mobile sensor movements

were not affected by collisions; (2)Max-sum_MSTwith breakdowns,

in which colliding agents exhibited a breakdown and stopped mov-

ing, but kept on sensing and communicating with other sensors; (3)
DSA_MST, the standard DSA version described in [37]. (4) CADSA,
a collision avoiding version of DSA_MST. We ranked the mobile

sensors according to their indexes. Each mobile sensor updated

4
To preserve anonymity of the submission, code will be available upon publication of

the paper

(a) (b)

Figure 5: Remaining coverage (a), and accumulated collisions
(b), as a function of the iterations, Grid-Static

its neighbors before moving to a new location. A mobile sensor

did not move to a new location if a different mobile sensor with

higher rank reported that it plans to move to the same location.

(5) DSSA, the distributed stochastic search algorithm, designed to

avoid collisions between ships [11]. DSSA allows mobile sensors to

keep suggesting locations they intend to move to while checking

for collisions, until they converge to a collision avoiding decision in

each iteration. (6) Random walk, used as a baseline for the number

of expected collisions.

Each algorithm performed 120 iterations (grid) and 40 iterations

(graph), where in each iteration the mobile sensors selected loca-

tions. CAMS and Max-sum_MST performed 10 steps of Max-sum

in each iteration, before the mobile sensors selected their loca-

tions. The remaining coverage in each iteration was calculated as∑
𝑇𝑗 ∈𝑇 𝑐𝑟 (𝑇𝑗 ). We performed t-tests with 𝑝 < 0.01 in order to eval-

uate statistical significance when comparing between the results

produced by the different algorithms.

Figure 5(a) presents the remaining coverage requirement of the

sensors performing the different algorithms as a function of the

number of iterations in the static grid setting. It is clear that both

CAMS and Max-sum_MST algorithms had a significant advantage

over random walk and over all the DSA versions. Since the mobile

senors in Max-sum_MST do not avoid collisions, they are less re-

stricted and therefore the resulting coverage is significantly better

than the results of the experiments that included breakdowns. Nev-

ertheless, CAMS significantly outperformed also Max-sum_MST,

which did not exhibit breakdowns, that is, CAMS was able to find

collision-free solutions that their coverage results are significantly

better than the solutions produced by the best algorithm that ig-

nored collisions.

Figure 5(b) presents the number of accumulated collisions for

each algorithm in these experiments, as a function of the number

of iterations. Clearly, the algorithms that do not avoid collisions

exhibit more collisions than the randomwalk. This can be explained

by the attraction of mobile sensors to locations from which targets

can be covered. CAMS, as well as CADSA and DSSA, do not exhibit

any collisions.

Figure 6 presents the remaining coverage (a) and the number of

accumulated collisions (b) of the different algorithms in the dynamic
grid setting. Also here CAMS significantly outperforms all other

algorithms in terms of remaining coverage. In addition, the gap
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(a) (b)

Figure 6: Remaining coverage (a), and accumulated collisions
(b), as a function of # iterations, Grid-Dynamic

(a) (b)

Figure 7: Remaining coverage (a), and accumulated collisions
(b), as a function of # iterations, Graph-Static

(a) (b)

Figure 8: Remaining coverage (a), and accumulated collisions
(b), as a function of # iterations, Grid-Dynamic

between algorithms grows with the progression of iterations, while

CAMS continues to successfully adapt itself to periodic changes

and maintains a consistent advantage over the other algorithms.

Figures 7 and 8 present results of experiments for random graphs

in static and dynamic settings, respectively. CAMS outperforms

other algorithms here as well. The number of collisions grows for

the algorithms that do not prevent collisions in these experiments

due to the dense environment.

Figure 9: Remaining coverage as a function of time

6.2 Evaluation in a Physical Robotic System
In the next set of experiments our goal was to examine the practi-

cality of CAMS in a physical multi-robot system, and specifically

to evaluate the delay caused by collisions between robots in such

realistic setting. Thus, we have fully implemented CAMS and Max-

sum_MST on a mobile sensing team composed of three Hamster

robots [4] and two targets, placed in a 4 × 4 grid, where the size

of each cell of the grid was one square meter. The targets’ ER was

set to 60, and they were placed randomly in non-adjacent cells

of the grid. The sensors’ credibility and the number of steps the

Max-sum algorithm was performed in each iteration were identical

to the simulation experiments. The number of iterations performed

was 10. We selected four different positions for the targets, and for

each of them five different positions for the robots, resulting in 20

experiments for each algorithm.

Figure 9 presents the remaining coverage requirement as a func-

tion of the experiment execution time. Both algorithms produced

the same level of coverage after completing 10 iterations. However,

CAMS reached this coverage state faster.

7 CONCLUSION
An important feature of applications that include mobile sensors, is

that they should avoid collisions, while optimizing coverage. CAMS

achieves this challenging combination by adding to the factor-graph

representation of the problem, hard constraint function-nodes, rep-

resenting the locations that mobile sensors may choose to move

to. In contrast to what one might expect, although this addition

resulted in a much denser factor-graph including many more cycles,

it did not prevent the algorithm from converging. Our theoretical

analysis gave some insight to this phenomenon. We proved that in

Max-sum_MST, target representing function-nodes send consistent

messages throughout the algorithm run. This result explains the

fast convergence of Max-sum_MST, in contrast to the behavior of

standard Max-sum when solving other benchmark problems. We

proved that when considering only location representing function-

nodes, on tree structured graphs and on single cycle graphs the

algorithm is guaranteed to converge to the optimal, collision-free

solution. Moreover, adding target representing function-nodes to

these graphs does not change the convergence properties. Our em-

pirical results, revealed that the desired properties are maintained

when the problem scales and in the presense of dynamic events.

Most important, the advantage of Max-sum_MST over DSA_MST

is maintained in the collision avoiding versions of these algorithms.
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