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Abstract. Fair division methods offer guarantees to agents of the proportional
size or quality of their share in a division of a resource (cake). These guarantees
come with a price. Standard fair division methods (or “cake cutting” algorithms)
do not find efficient allocations (not Pareto optimal). The lack of efficiency of
these methods makes them less attractive for solving multi-agent resource and
task allocation.
Trust can be the foundation on which agents exchange information and enable the
exploration of allocations that are beneficial for both sides. On the other hand, the
willingness of agents to put themselves in a vulnerable position due to their trust
in others, results in the loss of the fairness guarantees.
In this work we extend the study on fair and efficient cake cutting algorithms
by proposing a new notion of trust-based efficiency, which formulates a relation
between the level of trust between agents and the efficiency of the allocation. In
addition, we propose a method for finding trust-based efficiency. The proposed
method offers a balance between the guarantees that fair division methods of-
fer to agents and the efficiency that can be achieved by exposing themselves to
the actions of other agents. When the level of trust is the highest, the allocation
produced by the method is globally optimal (social welfare). 1

1 Introduction

One of the main challenges in multi-agent systems (MAS) is encouraging self-interested
agents to cooperate. Fair division methods offer a possible solution to this challenge for
resource and task allocation, by offering guarantees to agents of the quality or size of
their share, as long as they are cooperative (follow the instructions of the method’s
protocol). Moreover, these guarantees hold for an agent, even if other agents choose an
uncooperative strategy.

The classic problem that is considered in fair division studies is the division of a
heterogeneous resource (a cake) for which agents have their private utility/preference
function. Agents divide the cake among themselves by performing cut and choose oper-
ations. The most familiar cut and choose method is dividing a cake between two agents,
so that each will consider her share as at least half of the cake (a proportional share). The
method requires one of the agents to cut the cake into two pieces which she considers

1 A preliminary version of this paper was accepted for publication as an extended abstract of two
pages in the proceedings of AAMAS 2011. This submission followed a query to the program
chair of IJCAI 2011 who gave his approval.



to be equal and the other to choose the piece she prefers. It is obvious that both agents
would consider their share to be at least half of the value of the entire cake. However,
this method also demonstrates the weakness of fair division methods. The resulting al-
location is guaranteed to be fair but might not be efficient (not Pareto optimal). In other
words, there can exist a different allocation that is preferred by both (or preferred by one
and is equal in the eyes of the other). For example, consider a round cake, half choco-
late and half vanilla, and one agent who strictly prefers vanilla while the other strictly
prefers chocolate. The agent cutting the cake may cut the cake so that each piece would
include an equal amount of vanilla and chocolate. However, both agents would benefit
from an allocation in which each agent gets her preferred flavor.

Many applications of resource and task allocation among self-interested agents mo-
tivate the study of methods for fair and efficient allocations. Task allocation in an in-
dustrial environment is one example where both fairness and efficiency are required. If,
in the name of fairness, we allow workers to perform tasks that they are less qualified
for than other workers, we lose efficiency and the resulting revenue of the factory is
smaller. Such applications motivate the study of methods, which besides fairness guar-
antees, would offer guarantees on the level of efficiency.

Previous attempts to introduce efficiency into a fair division method offered exten-
sions of Austin’s method [2, 5]. Austin’s method is the only method for finding an exact
allocation of a cake among two agents, i.e., it finds an allocation where both agents con-
sider the two pieces to be exactly half of the cake [12]. A simple extension to Austin’s
procedure increases the efficiency of the allocation in an asymmetric manner. One of
the agents selects the most beneficial piece for herself such that the other agent con-
siders her share as exactly half of the cake. This method has the following obvious
limitations: (1) Only allocations that include up to two cuts of the cake are considered.
(2) The method does not consider allocations in which both agents value their share
as strictly more than 50%. A method that achieves a similar asymmetric increase in
efficiency by allowing one agent to exploit a model she holds of the other agent’s pref-
erences, was proposed in [13]. This method has the same limitations as the asymmetric
extension of Austin’s method with the addition of the dependency on the existence of
an accurate model held by one agent of the other agent’s preferences.

The possibility of finding solutions to negotiation problems that expand the pie, i.e.,
the sum of the benefit for the negotiating parties exceeds 100%, was acknowledged
by social scientists [15]. This acknowledgment triggered studies that investigated the
success of different strategies in producing such agreements.

Trust is a concept that has been intensively studied by social scientists and by the
multi-agent systems community [10]. The common and accepted definition of trust is
the willingness of an agent to put herself in a situation in which she is vulnerable to
the actions of another (the party she trusts). The relation between trust and efficiency
was also acknowledged by multi-agent system studies [10]. In a cake cutting algorithm,
it is easy to see how trust can increase the efficiency of the allocation. If the agents
would exchange information regarding their preferences, they can reach an agreement
in which each agent is allocated the parts she values more. On the other hand, sharing
such information can put an agent in a vulnerable position. The other agents can ex-
ploit this knowledge to increase their own benefit. Thus, trust can allow agents to find



efficient allocations, but at the same time, expose agents to the exploitive actions of
others.

When examining realistic applications, situations in which there exists complete
trust among self-interested agents are hard to find. It is common, for example, that
people in a working environment would trust each other when they are working together
on a project and share their ideas. However, rarely would an employee share her bank
account details with her peers. Our approach towards trust is that there exists a scale on
which the level of trust between agents can be measured and that the efficiency that can
be reached by a cake cutting procedure can be incremented according to this level of
trust. Notice, an agent may trust others to some extent to do the right thing in terms of
global efficiency, even if it may result in her own loss. In other words, the agents do not
trust one another to be fair but rather to be efficient.

In this paper we extend the research on fair and efficient cake cutting methods by:

1. Proposing a new notion of trust-based efficiency. It is a generalization of the con-
cept of Pareto optimality, which reflects the level of trust between agents.

2. Proposing a method for finding trust-based efficiency. The method proposed allows
agents to expose themselves with respect to the level of trust and make use of this
exposure to increase efficiency while maintaining the guarantees on the fraction
of the proportional share that the agents were not willing to risk. When the level
of trust is maximal, the allocation found by the method is globally optimal (social
welfare) 2.

Previous attempts to combine fairness and efficiency of a general cake considered
the division of a cake between two agents (e.g., [13, 8]). This effort follows most studies
on fair division, which attempt to solve the challenges such as proportionality, envy
freeness, exact division, first for two agents and later propose a generalization to the
case of n agents if possible [5, 12]. We follow this trend by formalizing the problem
for the general case of n agents, proposing a solution for two agents and discussing the
challenges that a generalized method will need to overcome.

2 Related work

Fair division is a well studied field that has drawn the attention of researchers for more
than half a century [14, 5, 12]. The general aim of this field is to propose methods that
allow agents with private preferences to divide a good among them. The methods offer
guarantees to agents on the level of fairness, as long as they follow the protocol of the
method. Standard fair division studies consider cake cutting algorithms in which agents
perform the cut and choose operations to divide a heterogeneous resource (cake) among
them [12].

Several studies acknowledged the existence of allocations that are both fair and
efficient. Weller [16], and later Barbanel [3], prove the existence of envy-free Pareto

2 Approximately fair protocols were suggested in previous studies, e.g., RobertsonW98. How-
ever, as far as we know, we are the first to present the relation between the level of guaranteed
fairness and efficiency.



optimal allocations for a single heterogeneous good (cake) among n agents. However,
there are very few studies on methods for finding fair and efficient allocations for a
general cake. For multiple homogeneous divisible goods for which agents have linear
utility functions, Reijnerse and Potters [11] propose an algorithm for finding an alloca-
tion among n agents, which is envy-free and Pareto optimal. Their solution is central-
ized, i.e., they assume that a central entity holds the true utility functions of all agents,
and based on market clearing that is achieved using Fisher’s model [7]. A later study [6]
proposes a polynomial-time combinatorial algorithm for solving the same market clear-
ing problem. The market clearing problem can also be solved using the Eisenberg Gale
linear program [7].

Another attempt to apply a centralized algorithm for finding an efficient and fair
division of multiple divisible homogeneous goods among two agents, was presented
by Brams and Taylor [5]. They propose two methods that find an equitable allocation
(an alternative notion of fairness in which both agents consider their allocation to be
of the same value). One of the methods (the “adjusted winner”) finds a Pareto optimal
allocation while the other divides each of the goods proportionally between the two
agents.

Another study, [8], proves that a division between two agents, which is fair and
efficient with respect to a single planar cut of the cake, exists and offers a centralized
method for finding it.

All of the above studies assume that a mediator holds the agents’ preferences and
computes the allocation. This is in contrast to standard cake cutting methods in which
agents do not reveal their preferences to others [12].

The special case of an allocation of multiple indivisible goods has also drawn the
attention of researchers. In this case a fair and efficient allocation does not always exist
and thus, studies investigate the conditions for its existence and the complexity for
finding it [9, 4].

We describe in Section 4 the method proposed by Sen and Biswas for increasing
the efficiency of a division of a general cake between two agents via a cake cutting
algorithm.

Trust is a concept whose different aspects are well studied by social scientists. These
aspects include the development of trust [17] and the efficiency of teams with respect
to the level of trust between their members [1]. The importance of the concept of trust
in multi-agent systems was also acknowledged and drew extensive attention [10]. How-
ever, to the best of our knowledge, ours is the first attempt to increase the efficiency of
resource allocation in multi-agent systems with respect to the level of trust, i.e., expose
the agents partially with respect to the level of trust and use this exposure to increase
efficiency.

3 Preliminaries

Our goal is to divide an infinitely divisible but bounded heterogeneous resource (cake)
X between n agents. We assume that the cake has a rectangular shape with length L and
width 1. We further assume that all cuts are planar. A piece of the cake x can be noted
by an ordered pair x = 〈xl, xr〉, where 0 ≤ xl ≤ xr ≤ L. The numerical values of



xl and xr are their distances from the left edge of the cake (coordinates) and therefore
the length of piece x is equal to xr − xl. Thus, X = 〈0, L〉 and a result of a single
cut at distance c < L from the left edge of the cake is two pieces 〈0, c〉 and 〈c, L〉.
When xl = xr the piece is empty (of size zero). For the operators⊆ and⊂ the standard
definitions (for sets) apply for pieces as well.

The following operators are defined on pieces:

– ∩̃: assume without loss of generality that m′ ≤ m.

〈m′, n′〉 ∩̃ 〈m,n〉 =


nil, n′ ≤ m

〈m,n′〉, m < n′ < n

〈m,n〉, n ≤ n′

– ∪̃: assume without loss of generality that m′ < m.

〈m′, n′〉 ∪̃ 〈m,n〉 =


nil, n′ < m

〈m′, n〉, m ≤ n′ < n

〈m′, n′〉, n ≤ n′

We will use the term sub-piece to describe a piece that is contained in another piece,
i.e., 〈m,n〉 is a sub-piece of piece 〈m′, n′〉 if and only if 〈m,n〉 ⊆̃ 〈m′, n′〉.

The operator \̃ removes a sub-piece x̂ from a piece x that contains it. The result is
a set including the remaining two pieces to the left and right of the removed sub-piece.
Formally:

〈m,n〉 \̃ 〈m′, n′〉 =

{
{〈m,m′〉, 〈n′, n〉}, 〈m′, n′〉 ⊆̃ 〈m,n〉
〈m,n〉, otherwise

We define a max-piece in a set of pieces S as follows: x ∈ S is a max-piece in S if
there is no ordered subset {xi, ..., xk} of S, for which x ⊂ [xi∪̃...∪̃xk]. In other words,
max pieces are obtained from a given set of pieces by applying the union operator on
any two pieces that are not disjoint. Any set of pieces can be uniquely represented by a
set of max pieces.

An allocation A is constructed of n disjoint finite sets of pieces, X1, ..., Xn, such
that if we order the pieces in the union of these sets according to their left coordinate
(xl) and apply the ∪̃ operator on all of them in this order (from left to right), we get the
entire cake X . Furthermore, for any two pieces in this union, x and x′, x ∩̃ x′ = nil.
Intuitively, the entire cake is split between the agents and the cutting process does not
decrease the quantities so the union of the agents’ pieces is the entire cake.

We define a max-allocation to be an allocation in which all the pieces included in the
sets Xa and Xb are max-pieces. Each allocation can be represented as a max allocation
and this representation is unique. In the rest of this paper, when we discuss allocations,
we will always refer to max-allocations unless we specifically say differently. Similarly,
we will always refer to max-pieces when discussing pieces allocated to agents unless
we specifically state differently

We further assume that for each agent i, 1 ≤ i ≤ n the function Fi : R→ R defines
for each point of the cake its value to agent i. We define Fi(z) = 0 for z < 0 and z ≥ L.
We assume that for 0 ≤ z < L, Fi(z) > 0 and that for 0 < z < L, Fi(z) is continuous
and differentiable.



The utility function Ui defines the utility that agent i derives from a piece allocated
to her, i.e., for 1 ≤ i ≤ n:
Ui(x) =

∫ xr

xl Fi(z) dz.
We assume that the utilities agents derive from an allocation of the entire cake are

equal and we normalize them as follows:
Ui(X) =

∫ L

0
Fi(z) dz = 1.

We will use the notation Ui(A) for the utility agent i derives from an allocation A,
which is equal to the utility the agent derives from her allocated set of pieces in A,
Ui(A) =

∑
x∈Xi

∫ xr

xl Fi(z) dz.
We assume that an agent i can compute accurately for any 0 ≤ m ≤ n ≤ L the

integral:
∫ n

m
Fi(z) dz and that agents can perform cuts accurately, i.e., if an agent cuts a

piece 〈m,n〉 at point k, m ≤ k ≤ n, the result are two pieces 〈m, k〉 and 〈k, n〉.
We will call an allocation A efficient, if it is Pareto optimal, i.e., there is no other

allocation A′ so that for some j ∈ {1, ..., n}: Uj(A
′) > Uj(A) and for all 1 ≤ i ≤

n, i 6= j: Ui(A
′) ≥ Ui(A).

The social welfare value of an allocation A is the summation of utilities U1(A) +
... + Un(A). An allocation A has an optimal social welfare value (SWopt) when there
is no A′ with U1(A′) + ... + Un(A′) > U1(A) + ... + Un(A).

An allocation A is proportional if for every agent 1 ≤ i ≤ n, Ui(A) ≥ 1
n .

4 Austin’s method and asymmetric extensions

Austin’s moving knife procedure can find an exact division of a heterogeneous cake
between two agents, in which both agents consider their share as exactly 1

2 [2, 12]. One
agent (without loss of generality we will assume that this is agent a) holds two parallel
knives. In the initial state, the left knife is placed at point zero and the right knife at
point r so that

∫ r

0
Fa(z) dz = 1

2 . Agent a moves both knives to the right so that for
every location of the left knife, the right knife is placed so the piece between the knives
is worth exactly 1

2 to her (we will refer to the piece between the knives as P and to
the remainder of the cake as P ′. Pll and P̄ll will be used to note the piece between the
knives and the remainder when the left knife location is ll. The initial location of the
left knife is 0, in which agent a puts the left knife on the left edge of the cake. The
final location in which the right knife reaches the right edge will be noted by l̂l. When
at some location of the left knife ll, 0 ≤ ll ≤ l̂l, Ub(Pll) = 1

2 , agent b calls stop,
she gets Pll while agent a gets P̄ll. Notice that if both agents followed the protocol,
Ua(Pll) = Ub(P̄ll) = 1

2 . Such an allocation can always be found by Austin’s procedure
due to the continuous nature of the scan of the two knives by agent a.

A small adjustment to Austin’s procedure can result in increased efficiency. Notice
that while Ua(Pll) = 1

2 for any location of the left knife ll, 0 ≤ ll ≤ l̂l, Ub(Pll) may be
changing. Thus, if we would allow agent b to observe the full process in which agent a
moves the knives from the initial position to the final complementary position, and then
choose the piece Pll, 0 ≤ ll ≤ l̂l, we can increase the efficiency of the method, since
for the resulting allocation A′, Ub(A

′) ≥ 1
2 while Ua(A′) = 1

2 . However, it is clear that
this increment in efficiency is one-sided (agent a would never derive more utility than
1
2 ).



A different extension to Austin’s method, which increases its efficiency, was pro-
posed by Sen and Biswas [13]. This method is also asymmetric, only in contrast to the
asymmetric extension of Austin’s method described above, here, the advantage is to the
cutting agent (a). The advantage for agent a is derived from the assumption that she is
holding a model of the utility function of agent b, Ûb. As before, we assume that agent
b is allowed to observe the entire process in which the knives are moved by agent a
across the cake and select the position of the left knife ll, in which Ub(Pll) is maximal.

In order to increase the efficiency of the allocation, agent a selects a piece P̂ , for
which Ûb(P̂ ) = 1

2 and Ua(P̂ ) is minimal. Then, she makes sure that agent b will prefer
this piece P̂ over any other Pll by keeping the knives so that Ûb(Pll′) <

1
2 for ll′ 6= ll.

Thus, agent b selects P̂ and if Ûb is accurate, the utility for agent a is the greatest
possible among the allocations with two cuts in which agent b receives a proportional
share.

The two methods described above are both asymmetric. Both give an advantage to
one of the agents over the other. This advantage allows the agent to choose the allocation
that maximizes her gain, given that the allocation does not require more than two cuts
and that the utility the other agent derives from it is exactly 1

2 . However, the utility
derived from the allocation to the agent who does not have the advantage can never be
larger than 1

2 . Therefore, allocations that increment the benefit for both agents are not
considered.

5 Trust Efficient Allocations

The shortcoming of asymmetric methods in finding allocations that extend the benefit
for both agents beyond their proportional share, motivates the development of a model
or method that will enable such allocations. As mentioned in Section 1, the relation
between trust and efficiency in applications such as multi-agent negotiation, has been
acknowledged in previous studies. However, besides the potential for cooperation be-
tween agents that will result in efficiency, by definition, trust includes the willingness
of agents to become vulnerable to the manipulations of other agents. Such vulnerability
somewhat contradicts the motivation for fair division methods that offer guarantees to
agents regardless of the actions of others. In reality, this trust is rarely a “take it or leave
it” (binary) choice. While it would not be realistic to assume that an agent would trust
another enough to risk her entire share, commonly, some level of trust between agents
does exist. In other words, in many cases agents would be willing to expose themselves
partially in order to increase the efficiency of the result. The amount of risk they will be
willing to take (the level of trust) is determined by many elements and has been studied
by social scientists [17]. Our goal is to introduce trust into the existing efficiency for-
malization of cake allocations. This formalism will set lower bounds on the efficiency
of allocations dependent on the level of trust between agents.

We propose a novel approach to efficiency in cake cutting algorithms depending on
the level of trust between the agents. To this end, we make the following innovative
definitions:

Definition 1 l-trust: given l, the symmetric level of trust among agents 1, ..., n, l-trust
is the fraction of the proportional share that the agents are willing to risk.



Following this definition is an incentive participation constraint for each agent 1 ≤
j ≤ n, where for any possible resulting allocation A, Uj(A) ≥ 1−l

n .

Definition 2 l-trust-efficiency: An allocation A is l trust efficient if there does not exist
an ordered set of agents 1, ..., k each holding max-pieces xj , 1 ≤ j ≤ k, respectively,
such that Uj(xj−1) ≥ Uj(xj) for j = i + 1, ..., k and Ui(xk) > Ui(xi). Furthermore,
Uj(xj−1) ≥ 1−l

n , j = i + 1, ..., k and Ui(xk) ≥ 1−l
n .

Intuitively an l-trust-efficient allocation does not include a Pareto improvement ex-
change cycle, which is a cycle in which each of the participating agents gives a piece to
another agent and receives a different piece, and for one agent this exchange increases
her utility while for all others the utility does not decrease [3]. For l-trust-efficiency
we add another constraint, that the derived utility for each agent from the piece she is
receiving is at least 1−l

n ,
The definition of l-trust-efficient allocations is inspired by the definition of Pareto

optimal allocations in which no exchange that is strictly beneficial to one agent and
weakly beneficial to all others is possible [3]. Intuitively, l-trust-efficiency is the reso-
lution in which the value of pieces to different agents can be identified.

6 Finding l-trust-efficient allocations between two agents

For two players we start by extending the problem definition from Section 3 to include
l-trust. Formally, we assume that besides the cake X and the functions Fa and Fb, the
input of the problem includes the symmetric level of trust, l, 0 ≤ l < 1. Our aim is to
find an l-trust-efficient allocation A, in which Ua(A) ≥ 1−l

2 and Ub(A) ≥ 1−l
2 .

6.1 LTE

We propose the following method for finding l-trust-efficient allocations, LTE:

1. Agent a places the left knife on the left edge of the cake and the right knife so that
Ua(P0) = 1−l

2 .
2. Agent a moves the knives to the right, keeping Ua(Pll) = 1−l

2 until the right knife
reaches the right edge of the cake.

3. Agent b decides which pieces of the cake to allocate to agent a and which parts to
herself, cuts the cake and makes the allocation accordingly.

It remains to describe how agent b decides on the allocation at the third step. Notice
that, like in Austin’s procedure, while Ua(Pll) remains the same for each ll, 0 ≤ ll ≤ l̂l,
Ub(Pll) may be changing with the movement of the knives. The function Ub(Pll) is
observed and analyzed by agent b, in order to produce the allocation.

If possible, agent b selects a value v ≤ 1−l
2 and selects a set of pieces Xa where:

1. x ∈ Xa ⇒ x = Pll, 0 ≤ ll ≤ l̂l.
2. ∀x, x′ ∈ Xa, x 6= x′ ⇒ x ∩̃ x′ = nil.
3. x ∈ Xa ⇒ Ub(x) ≤ v.



4. ∃x̂ ⊆ x ∈ Xb s.t. x̂ = Pll, 0 ≤ ll ≤ l̂l⇒ Ub(x̂) > v.
5. Ub(Xb) ≥ 1−l

2 .
6. Xa 6= ∅.

Notice that the conditions above do not necessarily define a max-allocation since
the pieces in Xa can be adjacent. However, as always the resulting allocation has an
equivalent max-allocation.

If no such value v can be found, then agent b selects any location ll, 0 ≤ ll ≤ l̂l for
which Ub(Pll) is minimal and allocates Pll to a, leaving the rest of the cake for herself.

The conditions listed above for selecting the value v offer some degree of freedom
for agent b in selecting an l-trust-efficient allocation. We will call the method in which
the maximal possible value for v is selected LTE-max. We will prove in Section 6.2
that the selection of the maximal value for v maximizes the social welfare value of
the resulting allocation. We note that selection of a value v can result in a number
of possible allocations. In order to establish determinism we further assume that the
following two ordering decisions are used when selecting the pieces that will be added
to Xa:

1. A piece x will always be added to Xa before a piece x′ if Ub(x) < Ub(x
′).

2. If Ub(x) = Ub(x
′), then the piece with the smaller left coordinate will be selected

first.

When there is a limit to the number of cuts that can be made when performing the
allocation, the LTE method can be adjusted by adding an additional constraint to the
conditions for the selection of value v. The cuts should be made to generate max-pieces
only after the max-allocation is identified. Thus, assigning a set of consecutive pieces
to a single agent would result in two cuts at most. The smallest number of cuts that
allows LTE to find an l-trust-efficient allocation is 2. These two cuts are required so that
at least one piece x with Ua(x) = 1−l

2 and with minimal value b, can be allocated to
agent a.

6.2 Properties

The first property is concerned with the guarantees provided to agents by the LTE
method.

Theorem 1 For any allocation A found by LTE, Ua(A) ≥ 1−l
2 and Ub(A) ≥ 1−l

2 .

Proof: Immediate by construction.
Next, we prove that the LTE method proposed above indeed finds an l-trust-efficient

allocation.

Theorem 2 Any allocation found by LTE is l-trust-efficient.

Proof: The case where no value v that satisfies the conditions described in Section 6.1
exists is trivial; therefore we will only prove the case in which such a value v was found.

Assume that there exists a piece x ∈ Xa and a piece x′ ∈ Xb so that (reminder, we
are considering max-allocations):



1. Ua(x′) ≥ 1−l
2 .

2. Ub(x) ≥ 1−l
2 .

3. Ua(x) < Ua(x′).
4. Ub(x) ≥ Ub(x

′).

By construction, Ua(x) = k 1−l
2 , k ∈ N, and Ub(x) < kv. Therefore, according to the

assumption, Ua(x′) > k 1−l
2 and thus, x′ can be divided into k + 1 consecutive sub-

pieces, where for each sub-piece x̂′ among the first k, Ua(x̂′) = 1−l
2 and Ub(x̂

′) ≥ v.
Thus, Ub(x

′) ≥ kv > Ub(x) in contrast to our assumption.
Notice that in the last expression we do not use the additional k + 1 sub-piece.

Therefore, the same proof holds for the case where:

1. Ua(x′) ≥ 1−l
2 .

2. Ub(x) ≥ 1−l
2 .

3. Ua(x) ≤ Ua(x′).
4. Ub(x) > Ub(x

′).

�
The selection of v can affect the social welfare value. Therefore, we prove the fol-

lowing property:

Theorem 3 For two allocations A and A′ found by LTE with the corresponding values
v and v′, v ≥ v′ ⇒ Ua(A) + Ub(A) ≥ Ua(A′) + Ub(A

′).

Proof: Since v ≥ v′, either A = A′, or there exists a piece (without loss of generality
we assume there is exactly one such piece) x with the following properties:

1. Ua(x) = 1−l
2 .

2. Ub(x) ≤ v ≤ 1−l
2 .

3. in A, x ∈ Xa.
4. in A′, x ∈ Xb.

Therefore, due to the deterministic manner in which the allocation to agent a by
agent b is determined in LTE, both allocations are identical for X \̃x and Ua(x) >
Ub(x). Thus, Ua(A) + Ub(A) ≥ Ua(A′) + Ub(A

′). �
Last, we prove the strong relation between our proposed notations and method to

global efficiency (social welfare value). We start by defining a flip point: ẑ is a flip point
if Fj(ẑ) = Fi(ẑ) and F ′j(ẑ) 6= F ′i (ẑ).

We state the following Lemmas:

Lemma 1 In LTE, a piece x for which Ua(x) ≥ 1−l
2 or Ub(x) ≥ 1−l

2 , and x does not
contain a flip point, is allocated to agent a if and only if Ua(x) ≥ Ub(x).

Lemma 2 For a piece of the cake 〈zl, zr〉, which does not contain a flip point, and
Fa(z) > Fb(z) for each zl ≤ z ≤ zr, the number of sub-pieces that are not allocated
to agent a is equal to the number of extreme points of Fb in 〈zl, zr〉.

Now we can state and prove the following theorem:



Theorem 4 When the level of trust between agents is the highest, LTE-max finds an
allocation that is optimal in terms of social welfare, i.e., [Ua(Al) + Ub(Al)]l→1 =
SWopt

3.

Proof: Note by A∗ the allocation that maximizes social welfare. Assume there are k
flip points in X . According to Lemma 1, if piece x does not contain a flip point and
one of the agents values it at least as 1−l

2 , then LTE-max allocates x to the agent who
values it more. Thus, all Pll pieces, 0 ≤ ll ≤ l̂l, in A (an allocation found by LTE-
max) that do not contain flip points are allocated as in A∗ except for the k pieces, which
include the flip points and the pieces in set M from which agent a derives less utility
than 1−l

2 , which are allocated to agent b. According to Lemma 2 this number is bounded
by the number of extreme points in Fb. Thus, the following holds: Ua(Al) + Ub(Al) ≥
Ua(A∗) + Ub(A

∗)− k 1−l
2 − |M |

1−l
2 = Ua(A∗) + Ub(A

∗)− (k + |M |) 1−l
2 .

Since liml→1
1−l
2 = 0, we get that when l→ 1, Ua(Al)+Ub(Al) ≥ Ua(A∗)+Ub(A

∗).
�

Notice that the scale of the level of trust has social welfare on one side (when l→ 1);
on the other side, when l = 0 we get the asymmetric extension of Austin’s method.

6.3 Example

Consider the example depicted in Figure 1. The agents have contradicting preferences
for the left side of the cake, while having similar preferences for its right side. We
evaluated two levels of trust, l = 0.4 and l = 0.8, and had agent a move the knives
accordingly. The functions Ub(Pll), which agent b generates for the two different levels
of trust, are depicted in Figure 2. The utilities derived by the agents from the resulting
allocations, are depicted in Table 1.

The sum of the resulting utilities that the agents derive from the allocation (Ua = 0.3
and Ub = 0.8) expands the benefit beyond 100% as derived in Austin’s procedure.
However, agent a received the minimal value according to the l-trust guarantees.

l-trust 0.4 0.8

Ua 0.3 0.7

Ub 0.8 0.719

SW 1.1 1.419

Table 1. Utilities derived by agents and the social welfare value in the different example
scenarios

If the trust level between the agents is greater, e.g., l = 0.8, agent b can be much
more specific and expressive regarding her preferences. The resulting utilities are Ua(Xa) =
0.7 and Ub(Xb) = 0.719. Thus, the greater level of trust not only enabled an allocation
with greater social welfare value (1.419), but also, both agents derived utilities beyond
a 50% allocation.

3 Al is defined as before, an allocation found by LTE when the level of trust is equal to l.



Fig. 1. Example of LTE

Fig. 2. Ub(Pll) for l = 0.4 (left) and l = 0.8 (right)

7 Discussion of the general case

An l-trust-efficient allocation can be found using the following extension of the pro-
posed LTE method for two agents. We order the agents 1, ..., n and let the first among
them, agent 1, move the knives in the same manner as agent a did in the two agents
method. Each agent 1 ≤ i ≤ n− 1 generates the function Ui(ll) as done by agent b in
the two agents version. Then, all functions Ui(ll) are passed to agent n, which gener-
ates the function Umax(ll) = maxUi(ll), 1 ≤ i ≤ n− 1. Agent n adds to Xn disjoint
pieces so that x ∈ Xn ⇒ Ui(xl) = Umax(xl) and Un(x) > 1−l

n . The pieces are added
in a deterministic order beginning with the piece from which agent n derives the most
utility to the piece which she derives the least from. This process repeats with agent
n − 1 selecting pieces not yet allocated according to Umax(ll), and so on until finally
agent n− 1 splits what ever is left with agent n.

While this method would result in an l-trust efficient allocation of pieces x for which
U1(x) = 1−l

n , the following issues need to be solved so the generalized method will
apply to the properties achieved by the two agent method:

1. There can exist a piece x′, for which U1(x′) < 1−l
n but for some other agent j > 1,

Uj(x
′) = 1−l

n . We need to be careful when allocating such pieces in order not to
lose l-trust-efficiency.

2. The allocation may not satisfy the trust guarantees for some agents, i.e., when agent
i is considering her share, there might be not enough left so that Ui(Xi) ≥ 1−l

n . We



will need to propose some initial phase in which each agent receives her guarantee
before applying the method above.

8 Conclusion

In this paper we proposed the use of trust in cake cutting algorithms. We defined the
level of trust between agents as the proportional quantity of their fair share that they are
willing to expose to the actions of other agents, and risk losing. We further defined a
new concept, l-trust-efficiency, which generalizes the Pareto efficiency concept. When
an allocation is l-trust-efficient, there does not exist any other allocation that can be
derived from the current allocation by exchanging pieces that are worth at least 1−l

n
to the agents between them and is strictly better for at least one agent and at least as
beneficial to all other agents as the current allocation.

We proposed a method for finding l-trust-efficient allocations between two agents.
The method allows agents to achieve this kind of efficiency with respect to the level of
trust between them, but at the same time, guarantees the allocation of the quantity that
they were not willing to risk. The method allows the agents to divide the cake between
them according to the utility they derive from allocations of the different parts of the
cake (the one who values it more gets the share) and, as a result, achieve not only the
efficiency we defined but also increased the social welfare of the allocation.

We discussed the challenges in proposing a method that finds l-trust-efficient allo-
cations between n agents. In future work we intend to find solutions to these challenges
and propose a method for the general case.
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