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Abstract. Max-sum is a version of Belief Propagation, used for solving DCOPs.
On tree-structured problems, Max-sum converges to the optimal solution in lin-
ear time. When the constraint graph representing the problem includes multiple
cycles, Max-sum might not converge and explore low quality solutions. Damp-
ing is a method that increases the chances that Max-sum will converge. Damped
Max-sum (DMS) was recently found to produce high quality solutions for DCOP
when combined with an anytime framework.
We propose a novel method for adjusting the level of asymmetry in the factor
graph, in order to achieve a balance between exploitation and exploration, when
using Max-sum for solving DCOPs. By converting a standard factor graph to an
equivalent split constraint factor graph (SCFG), in which each function-node is
split to two function-nodes, we can control the level of asymmetry for each con-
straint. Our empirical results demonstrate that by applying DMS to SCFGs with a
minor level of asymmetry we can find high quality solutions in a small number of
iterations, even without using an anytime framework. As part of our investigation
of this success, we prove that for a factor-graph with a single constraint, if this
constraint is split symmetrically, Max-sum applied to the resulting cycle is guar-
anteed to converge to the optimal solution and demonstrate that for an asymmetric
split, convergence is not guaranteed.

1 Introduction

The Max-sum algorithm [5] is an incomplete inference (GDL-based) algorithm for solv-
ing Distributed Constraint Optimization Problems (DCOP), a general model for dis-
tributed problem solving that has a wide range of applications in multi-agent systems.
Max-sum has drawn considerable attention in recent years, including being proposed for
multi-agent applications such as sensor systems [24, 21] and task allocation for rescue
teams in disaster areas [17]. Max-sum is actually a version of the well known Belief
propagation algorithm [26], used for solving DCOPs. Agents in Max-sum propagate
cost/utility information to all neighbors. This contrasts with other inference algorithms
such as ADPOP [14], which only propagate costs up a pseudo-tree structure overlaid
on the agents. As is typical of inference algorithms, Max-sum is purely exploitive both
in the computation of its beliefs and in its selection of values based on those beliefs.

Belief propagation in general (and Max-sum specifically) is known to converge to
the optimal solution for problems whose constraint graph is acyclic. On problems with
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cycles, the agents’ beliefs may fail to converge, and the resulting assignments that are
considered optimal under those beliefs may be of low quality [26, 5, 31]. This occurs
because cyclic information propagation leads to inaccurate and inconsistent information
being computed by the agents. Unfortunately, many DCOPs that were investigated in
previous studies are dense and indeed include multiple cycles (e.g., [11, 7]). However,
in contrast to most DCOP algorithms, Max-sum was found to produce solutions with
similar quality when applied to symmetric and asymmetric problems [32].

Damping is a method that decreases the effect of cyclic information propagation in
Belief propagation by balancing the weight of the new calculation performed in each
iteration and the weight of calculations performed in previous iterations. As a result it
increases the chances for convergence [9, 20, 22, 15]. A recent investigation of the ef-
fect of damping on Max-sum when applied to DCOPs revealed that damping generates
efficient exploration that, when combined with an anytime framework, produces high
quality results [2]. However, without the anytime framework [30], a large number of
iterations is required for damped Max-sum (DMS) to reach a high quality solution.

In this paper we contribute to the development of incomplete inference algorithms
for solving DCOPs by proposing a novel degree of freedom for balancing between ex-
ploration and exploitation, in Max-sum. This degree of freedom, is the level of asymme-
try in function-nodes representing constraints in the factor graph. The ability to control
the level of asymmetry for each constraint is achieved by shifting a standard factor
graph to an equivalent split constraint factor graph (SCFG), where each constraint is
represented by two function-nodes instead of one.1.

Our empirical evaluation reveals that the level of asymmetry in SCFGs can deter-
mine the level of exploration that the algorithm performs. When combining damping
with low levels of asymmetry, Max-sum converges very fast to high quality solutions,
without the need of an anytime framework.

As part of our investigation of this success, we investigate the effect of a split on a
single constraint factor graph. We prove that when the cost table of the single function-
node is split symmetrically, Max-sum is guaranteed to converge on the resulting cycle
to the optimal solution, regardless of the damping factor used, and demonstrate that this
is not the case when the constraint is split asymmetrically.

2 Related Work

The first paper to propose the use of Belief propagation for solving DCOPs and named
it Max-sum was [5]. This work was followed by a number of studies that addressed the
in-convergence of the algorithm on graphs that include multiple cycles, including [18],
which proposed Bounded Max-sum and [31] which proposed Max-sum ADVP.

Max-sum was applied to sensor nets both with mobile and static sensors [21, 6, 27],
to supply chain management [1] and teams of rescue agents [17]. A number of papers
made an attempt to overcome its most apparent drawback, the exponential computation
of the content of messages sent by function-nodes [21, 10]. For specific applications
with cardinality constraints, the Tractable High Order Potentials (THOP) method [23],

1 A similar factor graph was used in [32] for representing asymmetric DCOPs.
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which was adjusted to DCOPs, and implemented by [16] can be used. It reduces the
computation runtime of function-nodes to O(Klog(K)), where K is the number of
neighboring variable-nodes of the calculating function-node.

Max-sum was applied to asymmetric DCOPs in [32], by having each agent involved
in a constraint hold a function-node representing its personal costs for that constraint.
Thus, for each binary constraint there were two representing function-nodes. In con-
trast to other DCOP algorithms, Max-sum versions were found to maintain the quality
of solutions they produce when applied to asymmetric problems. The main difference
from our work is that, while they have used more than one function-node for a single
constraint in order to represent the given natural structure of an asymmetric problem,
we initiate a split of a standard function-node to two function-nodes representing the
same constraint as an algorithmic method.

The possibility to encourage convergence of Max-sum by splitting nodes in the
factor-graph was first suggested in [19]. This study investigated the theoretical condi-
tions for convergence of the algorithm when using constant even splits. It further pro-
poses a sequential version of the algorithm which, under some conditions, is guaranteed
to converge to a local optimum and specifies the conditions in which this algorithm con-
verges to the global optimum. They mention that by using damping with damping factor
of 1

n , this algorithm converges in a distributed synchronous execution as well. The main
difference from our work is that we investigate the use of splitting nodes to control the
level of symmetry in the factor graph and to balance exploitation and exploration, and
therefore we investigate theoretical and empirical implications of constant even and
uneven, random and limited random splits.

Recently, the effect of the use of damping within Max-sum was investigated [2]. It
was found to immensely improve the quality of solutions traversed by Max-sum, and
when combined with an anytime framework [30], produce high quality solutions. How-
ever, the use of Max-sum within an anytime framework, requires agents to exchange
their value assignments in each iteration. This is not a requirement of the algorithm
and therefore, such an exchange reduces the privacy of the algorithm. When an anytime
framework is not used, a large number of iterations is required for Max-sum to find
solutions with low costs.

3 Background

In this section we present background on DCOPs, the Max-sum algorithm and the
damping method.

3.1 Distributed Constraint Optimization

Without loss of generality, in the rest of this paper we will assume that all problems are
minimization problems (as in many DCOP papers, e.g., [11]). Thus, we assume that all
constraints define costs and not utilities.2

2 The inference algorithm for minimization problems is actually Min-sum. However, we will
continue to refer to it as Max-sum since this name is widely accepted.
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A DCOP is a tuple 〈A,X ,D,R〉. A is a finite set of agents {A1, A2, ..., An}.
X is a finite set of variables {X1,X2,...,Xm}. Each variable is held by a single agent
(an agent may hold more than one variable). D is a set of domains {D1, D2,...,Dm}.
Each domain Di contains the finite set of values that can be assigned to variable Xi.
We denote an assignment of value d ∈ Di to Xi by an ordered pair 〈Xi, d〉. R is
a set of relations (constraints). Each constraint Rj ∈ R defines a non-negative cost
for every possible value combination of a set of variables, and is of the form Rj :
Dj1×Dj2× . . .×Djk → R+∪{0}. A binary constraint refers to exactly two variables
and is of the form Rij : Di × Dj → R+ ∪ {0}.3 A binary DCOP is a DCOP in
which all constraints are binary. A partial assignment (PA) is a set of value assignments
to variables, in which each variable appears at most once. vars(PA) is the set of all
variables that appear in PA, vars(PA) = {Xi | ∃d ∈ Di∧〈Xi, d〉 ∈ PA}. A constraint
Rj ∈ R of the form Rj : Dj1 ×Dj2 × . . . ×Djk → R+ ∪ {0} is applicable to PA if
each of the variables Xj1 , Xj2 , . . . , Xjk is included in vars(PA). The cost of a partial
assignment PA is the sum of all applicable constraints to PA over the value assignments
in PA. A complete assignment (or a solution) is a partial assignment that includes all
the DCOP’s variables (vars(PA) = X ). An optimal solution is a complete assignment
with minimal cost.

For simplicity, we make the common assumption that each agent holds exactly one
variable, i.e., n = m, and we concentrate on binary DCOPs, in which all constraints
are binary. These assumptions are customary in DCOP literature (e.g., [13, 28]). In our
description of algorithms and their properties, we will assume that there are no ties, i.e.,
that each entry in the constraint tables held by function-nodes has a unique numeric
value. This can easily be achieved by using a method similar to the one proposed in [4],
which we use in our empirical study.4

3.2 The Max-Sum algorithm

5Max-sum operates on a factor-graph, which is a bipartite graph in which the nodes
represent variables and constraints [8]. Each variable-node representing a variable of the
original DCOP is connected to all function-nodes that represent constraints, which it is
involved in. Similarly, a function-node is connected to all variable-nodes that represent
variables in the original DCOP that are involved in the constraint it represents. Variable-
nodes and function-nodes are considered “agents” in Max-sum, i.e., they can send and
receive messages, and perform computation.

A message sent to or from variable-node x (for simplicity, we use the same notation
for a variable and the variable-node representing it) is a vector of size |Dx| including a
cost for each value in Dx. Before the first iteration, all nodes assume that all messages
they previously received (in iteration 0) include vectors of zeros. A message sent from
a variable-node x to a function-node f in iteration i ≥ 1 is formalized as follows:

3 We say that a variable is involved in a constraint if it is one of the variables the constraint refers
to.

4 For an example of the need to break ties in the factor-graph see [31].
5 For lack of space we describe the algorithm briefly and refer the reader to more detailed de-

scriptions in [5, 18, 31].
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Qi
x→f =

∑
f ′∈Fx,f ′ 6=f

Ri−1
f ′→x − α

where Qi
x→f is the message variable-node x intends to send to function-node f in

iteration i, Fx is the set of function-node neighbors of variable-node x and Ri−1
f ′→x is

the message sent to variable-node x by function-node f ′ in iteration i−1. α is a constant
that is reduced from all costs included in the message (i.e., for each d ∈ Dx) in order
to prevent the costs carried by messages throughout the algorithm run from growing
arbitrarily.

A message sent from a function-node f to a variable-node x in iteration i includes
for each value d ∈ Dx:

minPA−x
cost(〈x, d〉, PA−x)

where PA−x is a possible combination of value assignments to variables involved in f
not including x. The term cost(〈x, d〉, PA−x) represents the cost of a partial assignment
a = {〈x, d〉, PA−x}, which is: f(a)+

∑
x′∈Xf ,x′ 6=x,〈x′,d′〉∈aQ

i−1
x′→f .d

′, where f(a) is
the original cost in the constraint represented by f for the partial assignment a, Xf is
the set of variable-node neighbors of f , and Qi−1

x′→f .d
′ is the cost that was received in

the message sent from variable-node x′ in iteration i−1, for the value d′ that is assigned
to x′ in a. x selects its value assignment d̂ ∈ Dx following iteration k as follows:

d̂ = argmin
d∈Dx

∑
f∈Fx

Rk
f→x.d

Introducing Damping into Max-sum In order to add damping to Max-sum a parame-
ter λ ∈ [0, 1) is used. Before sending a message in iteration k an agent performs calcu-

lations as in standard Max-sum. Denote by m̂k
i→j the result of the calculation made by

agentAi of the content of a message intended to be sent fromAi to agentAj in iteration
k. Denote by mk−1

i→j the message sent by Ai to Aj at iteration k − 1. The message sent
from Ai to Aj in iteration k is calculated as follows:

mk
i→j = λmk−1

i→j + (1− λ)m̂k
i→j

Thus, λ expresses the weight given to previously performed calculations with respect to
the most recent calculation performed. Moreover, when λ = 0 the resulting algorithm
is standard Max-sum.

Applying Max-sum to Asymmetric Problems When Max-sum is applied to an asym-
metric problem, the representing factor graph has each (binary) constraint represented
by two function-nodes, one for each part of the constraint held by one of the involved
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Fig. 1. An acyclic DCOP factor graph (on the left) and its equivalent SCFG (on the right).

agents. Each function-node is connected to both variable-nodes representing the vari-
ables involved in the constraint [32]. Figure 1 presents two equivalent factor graphs that
include two variable-nodes, each with two values in its domain, and a single binary
constraint. On the left, the factor graph represents a (symmetric) DCOP including a sin-
gle constraint between variables X1 and X2, hence, it includes a single function node
representing this constraint. On the right, the equivalent factor graph representing the
equivalent asymmetric DCOP is depicted. It includes two function-nodes, representing
the parts of the constraint held by the two agents involved in the asymmetric constraint.
Thus, the cost table in each function-node includes the asymmetric costs that the agent
holding this function-node incurs. The factor graphs are equivalent since the sum of
the two cost tables held by the function-nodes representing the constraints in the factor
graph on the right, is equal to the cost table of the single function-node representing this
constraint in the factor graph on the left (see [32] for details).

Exploration and Exploitation in Max-sum In local search algorithms, an agent com-
monly selects an assignment that minimizes the cost according to the information avail-
able to it, i.e., it exploits the information. On the other hand, the agent can select an
assignment that does not minimize (and even enlarges) its cost, hoping this will allow
it to find assignments with lower cost in following iterations. Such actions, which do
not result in immediate benefit are aka exploration. In distributed local search, even if
each agent performs only exploitive actions, concurrent actions by a number of agents
can generate exploration, e.g., in DSA when neighboring agents replace assignments
concurrently.

In inference algorithms such as Max-sum agents do not propagate assignments.
However, each variable-node can select an assignment at each iteration based on the
costs it receives. Thus, as in the distributed stochastic algorithm (DSA) [29], a global
view that examines the quality of the global assignment that can be inferred in each
iteration, can reveal whether the agents are improving the global assignment or invol-
untarily, selecting assignments that are with higher costs and hence, exploring.

4 Split Constraint Factor Graphs

Damping can be used as a degree of freedom, to balance exploration and exploitation in
Max-sum [2, 3]. However, when using damping, thousands of iterations are required for
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the algorithm to find high quality solutions. By combining damped Max-sum (DMS)
with an anytime framework [30], the number of iterations required in order to find high
quality solutions is an order of magnitude smaller.

We aim at shortening the process of producing high quality solutions by Max-sum
and eliminating the dependency on the anytime framework, which requires agents to
share value assignments in contrast to the requirements of the algorithm. Thus, we pro-
pose an additional degree of freedom, the level of asymmetry of constraints in the factor
graph. To this end, we propose the use of Split Constraint Factor Graphs (SCFGs) in
which each constraint that was represented by a single function-node in the original fac-
tor graph, is represented by two function-nodes. The SCFG is equivalent to the original
factor graph, if the sum of the cost tables of the two function-nodes representing each
constraint in the SCFG is equal to the cost table of the single function-node represent-
ing the same constraint in the original factor graph. By tuning the similarity between
the two function-nodes representing the same constraint we can determine the level of
asymmetry in the SCFG.

Formally, an SCFG G′ is equivalent to a factor graph G, if their sets of variable-
nodes (and their domains) are equal, and if for each function-node F in G with cost
table CF , there exist function-nodes F ′ and F ′′ in G′, which are connected to the same
variable-nodes as F , and their constraint tables satisfy CF = CF ′ + CF ′′ . Thus, each
SCFG has a single equivalent DCOP factor graph to which its function-nodes’ con-
straints sum up to, however, a standard DCOP factor graph can have countless equiva-
lent SCFGs.

Returning to the example portrayed in Figure 1, given a standard factor graph of a
symmetric DCOP as presented on the left, the cost table of the function-node F12 in
this factor graph is split using a different random ratio for each entry, thus generating a
new equivalent SCFG (on the right) containing 2 function-nodes F ′12 and F ′21.

We differentiate between constant SCFGs, in which constraint costs are split ac-
cording to a predetermined constant ratio, and random SCFGs, in which each cost in
each constraint table is split according to a randomly generated ratio.

It is important to notice the difference between the use we make of SCFGs and the
use made of factor graphs with two function-nodes representing a constraint in [32].
There, they assume this type of factor graph is required to represent the asymmetric
state of the world, while we assume the input problem is symmetric, and the generation
of the SCFG is an algorithmic action (represented by the small black arrow between the
factor graphs in Figure 1).

5 Splitting a Single Constraint

In Section 6 we present empirical evidence of the success of applying DMS to sym-
metric SCFGs and SCFGs with minor asymmetry. As part of an attempt to explain this
success we investigate the different effect of a symmetric split and an asymmetic split
in a single constraint factor graph.6

6 Although Lemmas 1 and 2 can be implied from Lemma 3, for simplicity of presentation we
enclose all three, provide complete proof for Lemma 1, and intuitive explanations how to
generalize the proof so it will apply to Lemmas 2 and 3.
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Lemma 1. On a factor graph with two variable-nodes X1 and X2 and two identical
function-nodes, F12 and F21, each connected to both variable-nodes, Max-sum is guar-
anteed to converge to the optimal solution after the first iteration.

Proof: We prove by induction on the number of iterations. If the smallest cost c in the
cost table held by both function-nodes7 is in entry i, j representing the cost when the
value assignments selected are the i’th value in the domain of X1 and the j’th value in
the domain of X2, then in the first iteration of the algorithm, each function-node will
send toX1 a vector where the i’th cost in it is c, and the messages sent toX2 will include
c in the j’th cost of the vector. All other costs in these vector must be larger than c. Thus,
following the first iteration values i and j are selected. The induction assumption is that
in the k’th iteration8, k > 1, the i’th cost in the messages sent to X1 and the j’th cost
in the messages sent to X2 will be k+1

2 c, while all other costs in these vectors will be
larger. In the next iteration (k + 1), X1 and X2 will send forward the message received
from each function-node, to the other function-node. In iteration k+2 in the vector sent
in each message to X1 the i’th cost will include a sum of the smallest cost in the vector
received, which according to the induction assumption is k+1

2 c, and the smallest cost
in the cost table, c. Thus, the resulting cost, which must still be smallest in the vector,
is k+1

2 c+ c = k+3
2 c. For similar reasons, the smallest cost in the vectors sent to X2 in

iteration k + 2 are the j’th costs and they are equal to k+3
2 c. �

Lemma 2. On a factor graph with two variable-nodes X1 and X2 and two function-
nodes, F12 and F21, each connected to both variable-nodes. If for any real number m,
the cost tables held by the two function-nodes maintain the relation CF12

= mCF21

then Max-sum is guaranteed to converge to the optimal solution after the first iteration.

The main difference is that in the first iteration, X1 is sent one message with the i’th
cost equal to c and another where it is equal to mc and this is true for the j′th costs in
the messages sent to X2. In iteration k the i’th cost in a message sent to X1 and the j’th
cost in the messages sent to X2 will include alternating summations of c and mc, while
all other costs in the vectors will include corresponding summations of other (larger)
numbers.

Lemma 3. On a factor graph with two variable-nodes X1 and X2 and two function-
nodes, F12 and F21, each connected to both variable-nodes. If for any real number m,
the cost tables held by the two function-nodes maintain the relation CF12 = mCF21

then DMS is guaranteed to converge to the optimal solution after the first iteration,
regardless of the damping factor being used.

In each iteration the costs calculated are multiplied by 1− λ and added to the previous
message sent, multiplied by λ. Thus, in the first iteration the costs we mention in the
proofs for the lemmas above will be multiplied by 1 − λ, but the smallest entries will
remain i for X1 and j for X2. The same will be true for the k + 2 iteration in the
induction step. The smallest entry will not change as a result of multiplying all messages
by the same factor.

7 Recall that we assumed in Section 3.1 that there are no ties, so such a cost is unique.
8 Without loss of generality, we assume that k is odd. If it was even, then the assumption was

that the cost is k
2
c.
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Proposition 1. If DMS is applied to a constant SCFG generated from a factor graph
including two variable-nodes and a single function-node representing the constraint
among them, it will converge after the first iteration, regardless of the damping factor
used.

Proof: Immediate from Lemma 3.

It is important to notice that previous works on the behavior of Belief propagation
on single cycle graphs, only prove the optimality of the solutions obtained when the
algorithm converges [25]. Moreover, when damping is used (as in DMS), the algorithm
might converge to sub-optimal solutions on single cycle graphs. Thus, the fact that on
constant split cycles both Max-sum and DMS are guaranteed to converge after a single
cycle to the optimal solution is novel and significant.

In contrast, when Max-sum is applied to an SCFG generated by a random split
of a single constraint, function-nodes might choose in their calculations minimal costs,
which do not correspond with identical value assignments, and further calculations may
be based on inconsistent assignment choices for the same variable, producing impossi-
ble belief costs for the variable-nodes. Hence, Max-sum does not necessarily converge
to the optimal solution. We empirically observed this behavior in experiments on 20,000
randomly generated, single cycle factor graphs, in which Max-sum did not converge to
the optimal solution in many problem instances. Interestingly, DMS always converged,
but not necessarily to the optimal solution. For example, when applied to the SCFG por-
trayed in Figure 1, standard Max-sum alternates endlessly between solutions of costs
120, 190 and 360. The optimal solution incurs a cost of 120. DMS, however, converges
after 18 iterations to the suboptimal solution of cost 190.

Nevertheless, as demonstrated in Section 6, in SCFGs based on DCOPs contain-
ing multiple cycles, this pathology can induce exploration, which can be adjusted by
determining the level of asymmetry of split constraints, and exploited by using a high
damping factor.9

6 Experimental Evaluation

In order to investigate the advantages of the use of SCFGs when applying Max-sum
to DCOPs, we present a set of experiments comparing standard Max-sum and DMS,
both when applied to different SCFGs and two versions that guarantee convergence:
Bounded Max-sum and Max-sum ADVP (for detailed descriptions of these algorithms
see [18, 31]). We also include in our experiments the results of the well known DSA
algorithm (we use type C with p = 0.7 [29]), in order to give an insight on the quality
of the results, in comparison with local search DCOP algorithms.

We evaluated the algorithms on random uniform minimization DCOPs and on struc-
tured and realistic problems, i.e., graph coloring, meeting scheduling and scale-free nets
(see details below). At each experiment we randomly generated 50 different problem
instances and ran the algorithms for 2,000 iterations on each of them. The results pre-
sented in the graphs are an average of those 50 runs. For each iteration we present the

9 further insights on the relation between the success of our empirical results and the properties
presented in this section are detailed in Section 6.2.
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sum of costs of the constraints involved in the assignment that would have been selected
by each algorithm at that iteration. The statistical significance of the results was verified
using paired t-tests with significance level of p=0.05. In order to maximize the benefit
of the algorithms exploration property we implemented all algorithms within the any-
time framework proposed in [30]. This allowed us to report for each of the algorithms
the best result it traverses within 2,000 iterations. Also, in all versions of Max-Sum, we
used personal value preferences, selected randomly for the purpose of tie breaking, as
was suggested in [4].

All problems were formulated as minimization problems. The uniform random
problems were generated by adding in each problem a constraint for each pair of agents
(variables) with probability p1. For each constrained pair we set a cost for each combi-
nation of value assignments, selected uniformly between 100 and 200.10 Each problem
included 50 variables with 10 values in each domain.

Graph coloring problems include random constraint graph topologies and all con-
straintsRij ∈ R are “not-equal” cost functions where an equal assignment of neighbors
in the graph incurs a cost of 50 and non equal value assignments incur 0 cost. Follow-
ing the literature, we used p1 = 0.05 and three values (i.e., colors) in each domain to
generate these problems, which included 50 agents [29, 5, 30].

Scale-free network problems were generated using the Barabási–Albert (BA) model
with an initial set of 7 connected agents, and additional 43 agents, which were added se-
quentially and connected to 3 other agents with a probability proportional to the number
of links that the existing agents already had. The rest of the problem parameters were
identical to the random uniform problems.

Meeting scheduling problems included ninety agents, which scheduled 20 meetings
into 20 time slots. Each agent was a participant in two randomly chosen meetings. For
each pair of meetings, a travel time was chosen uniformly at random between 6 and
10. When the difference between the time slots of two meetings is less than the travel
time between them, participants in both meetings are overbooked, and a cost equal to
the number of overbooked agents is incurred.

Space limitations do not allow us to present all results obtained in our comprehen-
sive experimental study, therefore we focus on the most significant results. We present
results when applying Max-sum and DMS to two constant SCFGs, one splitting the
costs evenly among the two function-nodes (0.5 version) and one in which the split had
95% of the cost in one function-node and 5% on the other (0.95 version). For random
SCFGs we specify the range of costs from which the cost for the first function-node
was selected, i.e., version 0.4 − 0.6 includes SCFGs where for each entry including
cost c in the original constraint cost table, the cost for the corresponding entry of the
first function-node was selected randomly between 0.4c and 0.6c. Following [2] we
present results of DMS with λ = 0.9. Our experiments with other λ values (0.5 and
0.7) validated that this version indeed performs best.

Figure 2 presents the costs per iteration and the costs of the anytime solution per
iteration, when applying Max-sum, DSA, Bounded Max-sum and Max-sum ADVP to

10 This range was selected so that the numbers do not become too small and due to precision,
generate distorted SCFGs. Obviously, if the input costs are between 0 and 100, adding 100 to
each cost can be the first step of the splitting method.
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Fig. 2. Solution costs for Max-sum solving SCFGs of random uniform problems.

Fig. 3. Solutions costs for DMS solving SCFGs of random uniform problems.
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Fig. 4. Solution and anytime costs for DMS solving SCFGs of random uniform problems.

SCFGs. For constant SCFGs and random SCFGs where costs were selected from a
small range, the solutions found have lower cost than standard Max-sum. However, the
results are of much lower quality (higher costs) than DSA. In order to avoid density
we only depict the best anytime results among all versions of the algorithm presented
in this graph, which were obtained when applying Max-sum to constant SCFGs 0.95.
They are significantly better than the costs per iteration when applying Max-sum to any
of the SCFGs but are far worse than the results produced by DSA and Max-sum ADVP.
The results Max-sum produces on random SCFGs 0− 1, are consistent with the results
in [32], where only random splits were considered and damping was not used.

Figure 3 presents results for DMS applied to the same SCFGs. While the trends are
the same, and the best results are achieved using constant SCFGs and random SCFGs
with a small range for selecting the first cost, here the best results significantly out-
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Fig. 5. Costs per iteration and anytime costs for DMS solving SCFGs of scale free nets.
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Fig. 6. Costs per iteration and anytime costs for DMS solving SCFGs of graph coloring problems.

perform DSA. When using SCFG 0.5 and SCFG 0.4 − 0.6 the algorithm finds high
quality solutions in a small number of iterations. When using SCFG 0.95, the algorithm
performs more exploration, and after approximately 500 iterations it averagely finds
solutions of higher quality than when the 0.5 and the 0.4− 0.6 SCFGs are used. Notice
that all results presented in Figure 3 are cost per iteration and not the anytime costs.
Figure 4 provides a closer look on the differences of the most successful versions of
the algorithm and their anytime results. The anytime results of DMS on standard fac-
tor graphs are similar to the results per iteration of DMS on the SCFG 0.95 version.
However, the anytime results of the 0.95 version converge must faster. When applied to
SCFG 0.5 the algorithm converges very fast, yet the costs of the solutions are higher.
When applied to random SCFGs 0.4− 0.6, solutions with lower costs are also reached
very fast. The small level of additional exploration gives an advantage in this case.

The general trends were similar for denser uniform random problems with p1 =
0.7 and for all other problem types, therefore, only selective graphs that give a closer
view on the results of the most successful versions of DMS for these problems are
presented. On scale free nets (Figure 5), both the cost per iteration and the anytime
costs of solutions found by DMS when applied to constant SCFGs and random SCFGs
0.4− 0.6, converge much faster than the anytime result of DMS solving standard factor
graphs. In addition, the costs per iteration and the anytime costs when applying DMS
to random SCFGs 0.3− 0.7 of scale free nets were lower than for constant SCFGs 0.5
and random SCFGs 0.4 − 0.6, thus, we depict them as well. On constant SCFGs 0.95,
DMS found high quality solutions very fast.
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problems.

Fig. 8. Number of iterations for convergence and convergence rate on relatively sparse random
uniform problems p1 = 0.2.

For graph coloring problems (Figure 6) DMS on standard factor graphs produces
solutions with relatively high costs, and its anytime results are similar to the results of
DSA. On the other hand the solutions found by DMS when applied to constant SCFGs
0.5 and to random SCFGs 0.4−0.6 are of significantly lower costs per iteration and any-
time costs. The 0.95 version performs more exploration and the resulting anytime costs
are lowest. The results for the meeting scheduling problems (Figure 7) show a similar
trend. When DMS is applied to constant SCFGs 0.95 it performs more exploration than
when applied to SCFGs 0.5 and 0.4− 0.6.

Figure 8 presents the time for convergence for each of the 50 runs of each of the
algorithms and the percentage of problems on which the algorithm converged among
the 50 runs on each problem type. The random SCFGs with larger ranges than 0.3−0.7
do not appear because they never converge. It is clear that constant SCFGs and the
0.4 − 0.6 random version have higher convergence rate than when DMS is applied
to standard factor graphs. Moreover, it is also apparent that the constant 0.5 version
converges very fast. Both the constant SCFG 0.95 and the random SCFG 0.4 − 0.6
versions converge slower and with slightly lower rates than the SCFG 0.5 version. Thus,
they have more opportunities to perform exploration, which can explain the advantage
they have in solution quality, as can be seen in Figure 4.

Figure 9 presents the time for convergence and the convergence rate for graph color-
ing problems. Here, it is clear that fast convergence prevents the algorithm from finding
solutions with low cost, when applied to standard factor graphs. On the other hand,
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Fig. 9. Number of iterations for convergence and convergence rate on graph coloring problems.

when applied to SCFGs, DMS performs balanced exploration, which results in solu-
tions with low costs. The constant SCFG 0.95 version triggers more exploration that
results in lower anytime costs.11

6.1 Runtime overhead

If we consider each node in the factor graph as a separate agent, the overhead in run-
time caused by splitting function-nodes is only for the variable-nodes, since they need
to produce and send a double amount of messages. On the other hand, splitting function-
nodes does not create a delay in the computation of function-nodes, since they are per-
formed concurrently. However, commonly it is assumed that the role of the nodes in the
factor-graphs are performed by the original (”real”) DCOP agents. Thus, when adding
function-nodes to the graph we increment the runtime of each iteration. We note that a
factor 2 increase in runtime can be easily achieved by having each agent that performed
the role of a function-node in the original factor graph to perform the role of the two
function-nodes resulting from its split. Our results indicate that for Symmetric SCFGs
and SCFGs with limited randomness, the convergence of DMS is orders of magnitude
faster than when using standard factor graphs and that is still true when each iteration
takes a double amount of time.

6.2 Discussion

Our results indicate success in combining damping and asymmetry for balancing ex-
ploration and exploitation. Damping alone is enough to trigger Max-sum to explore
solutions with low cost, however, it does not converge to high quality solutions within
two thousand iterations. However, when using constant SCFGs split evenly (0.5), con-
vergence is achieved within a few tens of iterations. The use of an uneven split of a
constant SCFG (0.95 version) or random SCFGs with small ranges (0.4− 0.6), allows
limited exploration that results in solutions with both per iteration and anytime lower
costs.
11 For lack of space we do not present convergence graphs for the other problems. As expected

the meeting scheduling convergence results were similar to graph coloring while the results for
the other problem types were similar to the convergence results of the sparse uniform random
problems.
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In order to explain this success one needs to look back at the results presented
in Section 5. In problems with two variables and a single constraint, when splits are
symmetric both Max-sum and DMS converge after a single iteration. Thus, in the gen-
eral case, the difference between a single function-node representing a constraint and
its symmetric split to two function-nodes is the ratio between the costs sent from the
variable-nodes to the function-nodes and the costs in the function-nodes’ tables. Con-
sider a variable-node v and its neighboring function-node f in factor graph G, which
is symmetrically split to f ′ and f ′′ in factor graph G′ (for simplicity assume that other
function-nodes are not split). Let vc be the vector that holds the sum of costs v has
received from function-node neighbors, which are not f , in iteration i. InG, in iteration
i+1, vc will be sent to f . InG′, vc will be sent to both function-nodes f ′ and f ′′. How-
ever, each cost in the table of f is cut by half in the tables of f ′ and f ′′. Thus, f ′ and
f ′′ will make different calculations than f giving more consideration to the differences
between costs in vc.

This phenomenon allows DMS to converge faster. Damping allows Max-sum to
explore high quality solutions because it reduces the effect of multiple counting of in-
formation as observed by Pearl [12, 3]. On the other hand, it slows the aggregation of
costs in the propagated cost vectors, and thus the differences between costs in the vec-
tors are less pronounced in the beginning of the run. In contrast, the function-node cost
tables are fixed throughout the run. Thus, damping delays assignment replacements,
which are required for convergence. Symmetric SCFGs reduce the differences in the
cost tables by half but do not reduce the costs in the propagated vectors and thus, allow
the required changes to take place faster.

On the other hands, as demonstrated in Section 5, random splits might generate
oscillations. When such oscillations occur in multiple cycles in the graph, the beliefs
propagated are inconsistent and prevent convergence.

7 Conclusion

We introduced a novel degree of freedom for balancing exploration and exploitation
when using Max-sum for solving DCOPs, the level of asymmetry in the factor graph.
To this end, we proposed to shift standard factor graphs representing a DCOP to equiv-
alent split constraint factor graphs (SCFGs), in which each constraint is represented by
two function-nodes. The level of asymmetry in SCFGs is determined by the similarity
between table costs of function-nodes representing the same constraint.

We proved that Max-sum is guaranteed to converge to the optimal solution on cycles
generated as a result of a constant split of a single constraint factor graph, regardless
of the constant fraction and the damping factor used. This is in contrast to the general
case where Max-sum is not guaranteed to converge on single cycle factor-graphs, and
DMS might converge to a sub-optimal solution. Empirical results indicate that by tuning
the two degrees of freedom, the damping factor and the level of asymmetry, Max-sum
can produce solutions of high quality within a small number of iterations, even when
an anytime framework cannot be used. When the level of exploration is too high, e.g.,
without damping, the algorithm fails to find solutions of high quality. On the other hand,
limited exploration results in solutions of higher quality than immediate convergence.
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