
Retroactive Ordering for Dynamic Backtracking

Roie Zivan, Uri Shapen, Moshe Zazone and Amnon Meisels,
{zivanr,moshezaz,shapenko,am}@cs.bgu.ac.il

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, 84-105, Israel

Abstract. Dynamic Backtracking (DBT ) is a well known algorithm for solving
Constraint Satisfaction Problems. In DBT , variables are allowed to keep their
assignment during backjump, if they are compatible with the set of eliminating
explanations. A previous study has shown that when DBT is combined with
variable ordering heuristics it performs poorly compared to standard Conflict-
directed Backjumping (CBJ) [1]. The special feature of DBT , keeping valid
elimination explanations during backtracking, can be used for generating a new
class of ordering heuristics. In the proposed algorithm, the order of already as-
signed variables can be changed. Consequently, the new class of algorithms is
termed Retroactive DBT.
In the proposed algorithm, the newly assigned variable can be moved to a position
in front of assigned variables with larger domains and as a result prune the search
space more effectively. The experimental results presented in this paper show an
advantage of the new class of heuristics and algorithms over standard DBT and
over CBJ. All algorithms tested were combined with forward-checking and used
a Min-Domain heuristic.

1 Introduction
Conflict directed Backjumping (CBJ) is a technique which is known to improve the
search of Constraint Satisfaction Problems (CSP s) by a large factor [4, 7]. Its efficiency
increases when it is combined with forward checking [8]. The advantage of CBJ over
standard backtracking algorithms lies in the use of conflict sets in order to prune un-
solvable sub search spaces [8]. The down side of CBJ is that when such a backtrack
(back-jump) is performed, assignments of variables which were assigned later than the
culprit assignment are discarded.

Dynamic Backtracking (DBT ) [5] improves on standard CBJ by preserving as-
signments of non conflicting variables during back-jumps. In the original form of DBT,
the culprit variable which replaces its assignment is moved to be the last among the
assigned variables. In other words, the new assignment of the culprit variable must
be consistent with all former assignments. Although DBT saves unnecessary assign-
ment attempts and therefore was proposed as an improvement to CBJ , a later study
by Baker [1] has revealed a major drawback of DBT . According to Baker, when no
specific ordering heuristic is used, DBT performs better than CBJ . However, when
ordering heuristics which are known to improve the run-time of CSP search algo-
rithms by a large factor are used [6, 2, 3], DBT is slower than CBJ . This phenomenon
is easy to explain. Whenever the algorithm performs a back-jump it actually takes a
variable which was placed according to the heuristic in a high position and moves it
to a lower position. Thus, while in CBJ , the variables are ordered according to the
specific heuristic, in DBT the order of variables becomes dependent on the algorithm’s
behavior [1].



In order to leave the assignments of non conflicting variables without a change
on backjumps, DBT maintains a system of eliminating explanations (Nogoods) [5].
As a result, the DBT algorithm maintains dynamic domains for all variables and can
potentially benefit from the Min-Domain (fail first) heuristic.

The present paper investigates a number of improvements to DBT that use radical
versions of the Min-Domain heuristic. First, the algorithm avoids moving the culprit
variable to the lowest position in the partial assignment. This alone can be enough to
eliminate the phenomenon reported by Baker [1].

Second, the assigned variables which were originally ordered in a lower position
than the culprit variable can be reordered according to their current domain size.

Third, a retroactive ordering heuristic in which assigned variables are reordered
is proposed. A retroactive heuristic allows an assigned variable to be moved upwards
beyond assigned variables as far as the heuristic is justified.

If for example the variables are ordered according to the Min-Domain heuristic, the
potential of each currently assigned variable to have a small domain is fully utilized.
We note that although variables are chosen according to a Min-Domain heuristic, a
newly assigned variable can have a smaller current domain than previously assigned
variables. This can happen because of two reasons. First, as a result of forward-checking
which might cause values from the current variables’ domain to be eliminated due to
conflicts with unassigned variables. Second, as a result of multiple backtracks to the
same variable which eliminate at least one value each time. Therefore, the exploitation
of the heuristic properties can be done, not only by choosing the next variable to be
assigned, but by placing it in its right place among the assigned variables after it is
assigned successfully.

The combination of the three ideas above was found to be successful in the empirical
study presented in the present paper.

2 Retroactive Dynamic Backtracking
We assume in our presentation that the reader is familiar with both DBT following [1]
and CBJ [8].

The first step in enhancing the desired heuristic (Min-Domain in our case) for DBT
is to avoid the moving forward variables that the algorithm backtracks to (i.e. culprit
variables). One way to do this is to try to replace the assignment of the culprit variable
and leave the variable in the same position.

The second step is to reorder the assigned variables that have a lower order than the
culprit assignment which was replaced. This step takes into consideration the possibility
that the replaced assignment of a variable that lies higher in the order has the potential to
change the size of the current domains of the already assigned variables that are ordered
after it. The simplest way to perform this step is to reassign these variables and order
them using the desired heuristic.

The third step derives from the observation that in many cases the size of the current
domain of a newly assigned variable is smaller than the current domains of variables
which were assigned before it.

Allowing a reordering of assigned variables enables the use of heuristic information
which was not available while the previous assignments have been performed. This
takes ordering heuristics to a new level and generates a radical new approach. Variables
can be moved up in the order, in front of assigned variables of the partial solution.
As long as the new assignment is placed after the most recent assignment which is in
conflict with one of the variable’s values, the size of the domain of the assigned variable
is not changed.



Retroactive FC DBT
1. var list← variables;
2. assigned list← φ;
3. pos← 1;
4. while (pos < N)
5. next var← select next var(var list);
6. var list.remove(next var);
7. assign(next var);
8. report solution;

procedure assign(var)
10. for each (value ∈ var.current domain)
11. var.assignment← value;
12. consistent← true;
13. forall (i ∈ var list)

and while consistent
14. consistent← check forward(var, i);
15. if not (consistent)
16. nogood← resolve nogoods(i);
17. store(var, nogood);
18. undo reductions(var, pos);
19. else
20. nogood← resolve nogoods(pos);
21. lastVar← nogood.RHS variable;
21. newPos← select new pos(var, lastVar);
22. assigned list.insert(var, newPos);
23. forall (var 1 ∈ assigned list) and

(pos var 1 > newPos)
24. check forward(var, var 1);
25. update nogoods(var, var 1);
26. forall (var 2 ∈ var list)
27. update nogoods(var, var 2);
28. pos← pos+1;
29. return;
30. var.assignment← Nil;
31. backtrack(var);

procedure backtrack(var)
32. nogood← resolve nogoods(var);
33. if (nogood = φ)
34. report no solution;
35. stop;
36. culprit← nogood.RHS variable;
37. store(culprit, nogood);
38. culprit.assignment← Nil;
39. undo reductions(culprit, pos culprit);
40. forall (var 1 ∈ assigned list) and

(pos var 1 > newPos)
41. undo reductions(var 1, pos var 1);
42. var 1.assignment← Nil;
43. var list.insert(var 1);
44. assigned list.remove(var 1);
45. pos← pos culprit;

procedure update nogoods(var 1, var 2)
46. for each (val ∈

{var 2.domain - var 2.current domain})
47. if not (check(var 2, val, var 1.assignment))
48. nogood← remove eliminating nogood

(var 1, val);
49. if not (∃var 3 ∈ nogood and

pos var 3 < pos var 1)
50. nogood← 〈var 1.assignment→

var 2 6= val〉;
51. store(var 2, nogood);

Fig. 1. The Retroactive FC DBT algorithm

In the best ordering heuristic proposed by the present paper, the new position of
the assigned variable in the order of the partial solution is dependent on the size of
its current domain. The heuristic checks all assignments from the last up to the first
assignment which is included in the union of the newly assigned variable’s eliminating
Nogoods. The new assignment will be placed right after the first assigned variable with
a smaller current domain.

Figures 1 presents the code of Retroactive Forward Checking Dynamic Backtrack-
ing (Retro FC DBT ). For lack of space we leave out the detailed description of the
algorithm and its correctness proof.

3 Experimental Evaluation

The common approach in evaluating the performance of CSP algorithms is to mea-
sure time in logical steps to eliminate implementation and technical parameters from
affecting the results. The number of constraints checks serves as the measure in our
experiments [9, 7].



(a) (b)
Fig. 2. CCs performed by DBT, CBJ and Retroactive DBT (a) p1 = 0.3, (b) p1 = 0.7.

(a) (b)
Fig. 3. CCs performed by FC DBT, FC CBJ and FC Retroactive DBT (a) p1 = 0.3, (b) p1 = 0.7.

Experiments were conducted on random CSPs of n variables, k values in each do-
main, a constraints density of p1 and tightness p2 (which are commonly used in exper-
imental evaluations of CSP algorithms [10]). Two sets of experiments were performed.
In the first set the CSPs included 15 variables (n = 15) and in the second set the CSPs
included 20 variables (n = 20). In all of our experiments the number of values for each
variable was 10 (k = 10). Two values of constraints density were used, p1 = 0.3 and
p1 = 0.7. The tightness value p2, was varied between 0.1 and 0.9, in order to cover all
ranges of problem difficulty. For each of the pairs of fixed density and tightness (p1, p2),
50 different random problems were solved by each algorithm and the results presented
are an average of these 50 runs.

Three algorithms were compared, Conflict Based Backjumping (CBJ), Dynamic
Backtracking (DBT ) and Retroactive Dynamic Backtracking (Retro DBT ). In all of
our experiments all the algorithms use a Min-Domain heuristic for choosing the next
variable to be assigned. In the first set of experiments, the three algorithms were imple-
mented without forward-checking.

Figure 2 (a) presents the number of constraints checks performed by the three al-
gorithms on low density CSPs (p1 = 0.3). The CBJ algorithm does not benefit from
the heuristic when it is not combined with forward-checking. The advantage of both
versions of DBT over CBJ is therefore large. Retroactive DBT improves on standard
DBT by a large factor as well. Figure 2 (b) present the results for high density CSPs
(p1 = 0.7). Although the results are similar, the differences between the algorithms are
smaller for the case of higher density CSPs..

In our second set of experiments, each algorithm was combined with Forward-
Checking [8]. This improvement enabled testing the algorithms on larger CSPs with
20 variables

Figure 3 (a) presents the number of constraints checks performed by each of the
algorithms. It is very clear that the combination of CBJ with forward-checking im-



proves the algorithm and makes it compatible with the others. This is easy to explain
since the pruned domains as a result of forward-checking enable an effective use of the
Min-Domain heuristic. Both FC CBJ and Retroactive FC DBT outperform FC DBT.
Retroactive FC DBT performs better than FC CBJ. Figures 3 (b) presents similar re-
sults for higher density CSPs. As before, the differences between the algorithms are
smaller when solving CSPs with higher densities.

4 Discussion
Variable ordering heuristics such as Min-Domain are known to improve the perfor-
mance of CSP algorithms [6, 2, 3]. This improvement results from a reduction in the
search space explored by the algorithm. Previous studies have shown that DBT does
not preserve the properties of variable ordering heuristics and as a result performs
poorly compared to CBJ [1]. The Retroactive DBT algorithm, presented in this paper,
combines the advantages of both previous algorithms by preventing the placing of vari-
ables in a position which does not support the heuristic and allowing the reordering (or
reassigning) of assigned variables with lower priority than the culprit assignment after
a backtrack operation.

We have used the mechanism of Dynamic Backtracking which by maintaining elim-
inating Nogoods, allows variables with higher priority to be reassigned while lower pri-
ority variables keep their assignment. These dynamically maintained domains enable to
take the Min-Domain heuristic to a new level. Standard backtracking algorithms use
ordering heuristics only to decide on which variable is to be assigned next. Retroactive
DBT enables the use of heuristics which reorder assigned variables. Since the sizes
of the current domains of variables are dynamic during search, the flexibility of the
heuristics which are possible in Retroactive DBT enables a dynamic enforcement of
the Min-Domain property over assigned and unassigned variables.

The ordering of assigned variables requires some overhead in computation when
the algorithm maintains consistency by using Forward Checking. This overhead was
found by the experiments presented in this paper to be worth the effort since the overall
computation effort is reduced.

References
[1] Andrew B. Baker. The hazards of fancy backtracking. In Proceedings of the 12th National

Conference on Artificial Intelligence (AAAI ’94), Volume 1, pages 288–293, Seattle, WA,
USA, July 31 - August 4 1994. AAAI Press.

[2] C. Bessiere and J.C. Regin. Using bidirectionality to speed up arc-consistency processing.
Constraint Processing (LNCS 923), pages 157–169, 1995.

[3] R. Dechter and D. Frost. Backjump-based backtracking for constraint satisfaction problems.
Artificial Intelligence, 136:2:147–188, April 2002.

[4] Rina Dechter. Constraint Processing. Morgan Kaufman, 2003.
[5] M. L. Ginsberg. Dynamic backtracking. J. of Artificial Intelligence Research, 1:25–46,

1993.
[6] R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for constraint satisfaction

problems. Artificial Intelligence, 14:263–313, 1980.
[7] G. Kondrak and P. van Beek. A theoretical evaluation of selected backtracking algorithms.

Artificial Intelligence, 21:365–387, 1997.
[8] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational Intel-

ligence, 9:268–299, 1993.
[9] P. Prosser. An empirical study of phase transitions in binary constraint satisfaction prob-

lems. Artificial Intelligence, 81:81–109, 1996.
[10] B. M. Smith. Locating the phase transition in binary constraint satisfaction problems. Arti-

ficial Intelligence, 81:155 – 181, 1996.


