
Retroactive Ordering for Dynamic Backtracking

Roie Zivan ZIVANR@CS.BGU.AC.IL

Uri Shapen SHAPENKO@CS.BGU.AC.IL

Moshe Zazone MOSHEZAZ@CS.BGU.AC.IL

Amnon Meisels AM@CS.BGU.AC.IL

Department of Computer Science,
Ben-Gurion University of the Negev,
Beer-Sheva, 84-105, Israel

Abstract
Dynamic Backtracking (DBT) is a well known algorithm for solving Constraint Satisfaction

Problems. In DBT , variables are allowed to keep their assignment during backjump, if they are
compatible with the set of eliminating explanations. A previous study has shown that when DBT
is combined with variable ordering heuristics it performs poorly compared to standard Conflict-
directed Backjumping (CBJ) (Baker, 1994). The special feature of DBT , keeping valid elimina-
tion explanations during backtracking, can be used for generating a new class of ordering heuristics.
In the proposed algorithm, the order of already assigned variables can be changed. Consequently,
the new class of algorithms is termed Retroactive DBT.

The proposed algorithm exploits the fact that when the assignment of a variable is complete, its
heuristic evaluation can be higher than variables which were assigned before it. For the min-domain
heuristic, the newly assigned variable can be moved to a position in front of assigned variables
with larger domains and as a result prune the search space more effectively. The experimental
results presented in this paper show an advantage of the new class of heuristics and algorithms over
standard DBT and over CBJ on two different problem scenarios: random problems and realistic
structured problems. All algorithms tested were combined with forward-checking and used a Min-
Domain heuristic.

1. Introduction

Conflict Based Backjumping (CBJ) is a technique which is known to improve the search of Con-
straint Satisfaction Problems (CSP s) by a large factor (Dechter, 2003; Kondrak & van Beek,
1997; Chen & van Beek, 2001). Its efficiency increases when it is combined with forward check-
ing (Prosser, 1993). The advantage of CBJ over standard backtracking algorithms lies in the use
of conflict sets in order to prune unsolvable sub search spaces. Conflicts which caused a removal
of values from a variables’ domain are stored in the variables’ conflict set. When a dead end is
detected only variables whose assignment is included in the conflict set of the backtracking variable
need to be considered as a target for backtrack (we say that the algorithm backtracks to the culprit
variable/assignment (Prosser, 1993)). The down side of CBJ is that when such a backtrack (back-
jump) is performed, assignments of variables which were assigned later than the culprit assignment
are discarded.

Dynamic Backtracking (Ginsberg, 1993) improves on standard CBJ by preserving assignments
of non conflicting variables during back-jumps. In the original form of DBT, the culprit variable
which replaces its assignment is moved to be the last among the assigned variables. In other words,

1

the new assignment of the culprit variable must be consistent with all former assignments (Ginsberg,
1993).

Although DBT saves unnecessary assignment attempts and was proposed as an improvement
to CBJ , a later study by Baker (Baker, 1994) has revealed a major drawback of DBT . According
to Baker, when no specific ordering heuristic is used, DBT performs better than CBJ . However,
when ordering heuristics which are known to improve the run-time of CSP search algorithms are
used (Haralick & Elliott, 1980; Bessiere & Regin, 1996; Dechter & Frost, 2002), the performance
of DBT is slower than the performance of CBJ . This phenomenon is easy to explain. Whenever
the algorithm performs a back-jump it actually takes a variable which was placed according to the
heuristic in a high position and moves it to a lower position. Thus, while in CBJ , the variables are
ordered according to the specific heuristic, in DBT the order of variables becomes dependent on
the algorithm’s behavior (Baker, 1994).

In order to leave the assignments of non conflicting variables without a change on backjumps,
DBT maintains a system of eliminating explanations (Nogoods) (Ginsberg, 1993). As a result, the
DBT algorithm maintains dynamic domains for all variables and can potentially benefit from the
Min-Domain (fail first) heuristic.

The present paper investigates a number of improvements to DBT that use radical versions of
the Min-Domain heuristic.

1. The algorithm avoids moving the culprit variable to the lowest position in the partial assign-
ment. This alone can be enough to eliminate the phenomenon reported by Baker (Baker,
1994).

2. The assigned variables which were originally ordered in a lower position than the culprit
variable can be reordered according to their current heuristic value (for example, the size of
there current domain).

3. A retroactive ordering heuristic in which assigned variables are reordered is proposed. A
retroactive heuristic allows an assigned variable to be moved upwards beyond assigned vari-
ables as far as the heuristic is justified.

Consider the run of a search algorithm in which variables are ordered according to the Min-
Domain heuristic. Although variables are selected according to a Min-Domain heuristic, a newly
assigned variable can have a smaller current domain than previously assigned variables. This can
happen because of two reasons.

1. As a result of forward-checking which might cause values from the current variables’ domain
to be eliminated due to conflicts with unassigned variables.

2. As a result of multiple backtracks to the same variable which eliminate at least one value each
time.

The present study proposes to exploit the heuristic properties, not only by selecting the next
variable to be assigned, but by placing it in its right place among the already assigned variables
after it is assigned successfully.

The combination of the three ideas above was found to be successful in the empirical study
presented in the present paper.

2

Constraints satisfaction problems (CSP s) are presented in Section 2. Next, a description of the
dynamic backtracking (DBT) algorithm is presented, followed by an explanation of how Forward
Checking can be introduced into DBT . The proposed Retroactive FC DBT algorithm is described
in Section 4. A correctness proof for Retroactive FC DBT is presented in Section 5. The exper-
imental section includes an empirical study which compares CBJ , DBT and Retroactive DBT
with and without forward-checking. The algorithms were evaluated on two different scenarios:
random CSPs and a realistic structured problems (meeting scheduling (Wallace & Freuder, 2002;
Modi & Veloso, 2004; Maheswaran, Pearce, Bowring, Varakantham, & Tambe, 2006)). Retroactive
DBT was found to perform better on all these three experimental scenarios. On realistic meeting
scheduling problems the improvement of Retroactive DBT is by a large factor.

2. Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is composed of a set of n variables V1, V2, ..., Vn. Each
variable can be assigned a single value from a discrete finite domain. Constraints or relations R are
subsets of the Cartesian product of the domains of constrained variables. For a set of constrained
variables {Vi, Vj , ..., Vm}, with domains of values for each variable {Di, Dj , ..., Dm}, the constraint
is defined as R ⊆ Di ×Dj × ...×Dm. A binary constraint Rij between any two variables Vj and
Vi is a subset of the Cartesian product of their domains; Rij ⊆ Dj ×Di.

An assignment (or a label) is a pair 〈var, val〉, where var is a variable and val is a value from
var’s domain that is assigned to it. A partial solution is a consistent set of assignments of values to
a set of variables. A solution to a CSP is a partial solution that includes assignments to all variables
(Dechter & Frost, 2002)..

3. Dynamic Backtracking

The dynamic backtracking (DBT) algorithm is presented following (Baker, 1994). We assume in
our presentation that the reader is familiar with CBJ (Prosser, 1993).

Like any backtrack algorithm, DBT attempts to extend a partial solution. A partial solution
is an ordered set of value assignments to a subset of the CSP variables which is consistent (i.e.
violates no constraints). The algorithm starts by initializing an empty partial solution and then
attempts to extend this partial solution by adding assigned variables to it. When the partial solution
includes assignments to all the variables of the CSP , the search is terminated successfully.

In every step of the algorithm the next variable to be assigned is selected according to the heuris-
tic in use, and the values in its current domain are tested. If a value is in conflict with a previous
assignment in the partial solution, it is removed from the current domain and is stored together with
its eliminating Nogood. Otherwise, it is assigned to the variable and the new assignment is added
to the partial solution (Baker, 1994; Ginsberg, 1993).

An order is defined among the assignments in the partial solution. In the simplest form, this
order is simply the order in which the assignments were performed (other options will be discussed).

Following (Ginsberg, 1993; Baker, 1994), all Nogoods are of the following form:
(v1 = q1) ∧ ... ∧ (vk−1 = qk−1)⇒ vk 6= qk

The left hand side serves as the explanation for the invalidity of the assignment on the right hand
side. An eliminating Nogood is stored as long as its left hand side is consistent with the current

3

partial solution. When a Nogood becomes invalid, it is discarded and the forbidden value on its
right hand side is returned to the current domain of its variable.

When a variable’s current domain empties, the eliminating Nogoods of all its removed values
are resolved and a new Nogood which contains the union of all assignments from all Nogoods is
generated. The new Nogood is generated as follows. The right hand side of the generated Nogood,
includes the assignment which was ordered last in the union of all Nogoods (the culprit assignment).
The left hand side is a conjunction of the rest of the assignments in the united set (Ginsberg, 1993;
Baker, 1994).

After the new Nogood is generated, all Nogoods of the backtracking variable which include
the culprit assignment are removed and the corresponding values are returned to the current domain
of the backtracking variable. Notice that this assignment to the backtracking variable cannot pos-
sibly be in conflict with any of the assignments which are ordered before the culprit assignment.
Otherwise, they would have been included in an eliminating Nogood. The culprit variable on the
right hand side of the generated Nogood is the next to be considered for an assignment attempt,
right after its newly created Nogood is stored. Its new position in the order of the partial solution is
after the latest assignment (i.e. it is moved to a lower place in the order than the one it had before).
Note again that variables that were originally assigned after the culprit variable can stay assigned.

3.1 DBT with Forward Checking

Forward Checking is a common method for maintaining consistency in CSP search (Prosser, 1993;
Kondrak & van Beek, 1997; Dechter, 2003). After each assignment, all values in the domains of
unassigned variables which are in conflict with the new assignment are removed. Thus the domains
of unassigned variables include only values which are consistent with the current partial solution.
An empty domain of an unassigned variable triggers a backtrack operation. When an assignment is
replaced as a result of a backtrack, all values which were removed from the domains of unassigned
variables due to a conflict with the replaced assignment must be returned to the current domain of
their variables (Prosser, 1993).

Forward Checking introduces two advantages to the search. The first is an early detection of an
inconsistent assignment. The second is the fact that the relevant size of domains of variables can be
easily computed. This makes the Min Domain heuristic very efficient (Dechter & Frost, 2002).

CBJ with Forward Checking (FC CBJ) is known to be a successful algorithm (Prosser, 1993;
Kondrak & van Beek, 1997). In order to introduce Forward Checking into Dynamic Backtracking,
after each assignment all values of unassigned variables are checked and inconsistent values are re-
moved and stored along with their eliminating explanations. When an empty domain is encountered,
the algorithm operates similarly to the case for any exhausted domain. A new Nogood is resolved
out of the stored Nogoods of the variable whose domain was emptied. The culprit assignment is
removed from the partial solution after the new Nogood is stored for that variable. After an assign-
ment is replaced, all eliminating Nogoods which include the replaced assignment are discarded and
the corresponding values are returned to their variable’s domain.

Figure 1 presents the code of Forward Checking Dynamic Backtracking (FC DBT). The main
procedure of the algorithm attempts to extend the current partial solution which is the assignment
1..pos− 1 to 1..pos. It ends when all the variables are assigned.

4

FC DBT
1. var list← variables;
2. assigned list← φ;
3. pos← 1;
4. while (pos < N)
5. next var← select next var(var list);
6. var list.remove(next var);
7. assigned list.insert(next var, pos);
8. assign(next var);
9. report solution;

assign(var)
10. for each (value ∈ var.current domain)
11. var.assignment← value;
12. consistent← true;
13. forall (i ∈ var list

and while consistent)
14. consistent← check forward(var, i);
15. if not (consistent)
16. nogood← resolve nogoods(i);
17. store(var, nogood);
18. undo reductions(var, pos);
19. else
20. pos← pos+1;
21. return;
22. var.assignment← Nil;
23. backtrack(var);

backtrack(var)
24. nogood← resolve nogoods(var);
25. if (nogood = φ)
26. report no solution;
27. stop;
28. culprit← nogood.RHS variable;
29. store(culprit, nogood);
30. undo reductions(culprit, pos culprit);
31. culprit.assignment← Nil;
32. var list.insert(var);
33. assigned list.remove(var, pos);
34. pos← pos-1;
35. forall (j, j ∈ assigned list and

pos j > pos culprit and pos j ≤ pos-1)
36. consistent← check forward(j, culprit);
37. if not (consistent)
38. backtrack(culprit);
39. return;
40. var list.insert(culprit);
41. assigned list.remove(culprit, pos culprit);

Figure 1: The FC DBT algorithm with the original ordering of DBT (Ginsberg, 1993)

Picking the next variable for assignment among the unassigned variables is performed by the
procedure select next var according to the ordering heuristic. Assignments are made by calling
the procedure assign (line 8).

Procedure assign is passed the variable for assignment. Each of the values in the current domain
is considered for assignment. If the value is consistent with the current domain of all unassigned
variables (lines 12-14) the assignment is completed successfully, and the value of pos is incremented
to extend the partial solution.

If the value is inconsistent, it is stored along with its eliminating Nogood. The Nogood is ob-
tained from the variable whose domain was emptied (lines 16, 17). Values that were removed from
unassigned variables because of a direct conflict with this value, are returned back by procedure
undo reductions(var, pos var) (line 18).

If a domain is exhausted, procedure backtrack is called, procedure backtrack is passed the
variable whose domain was emptied. The eliminating Nogoods of the removed values from the
domain of that variable are resolved into a new Nogood (line 24). If the generated Nogood is
empty, the algorithm reports no solution and terminates (lines 25-27). Otherwise, the assignment of

5

check forward(var, i)
1. for each val ∈ i.current domain
2. if not check(i, val, var.assignment)
3. remove val from i.current domain
4. nogood← (var = var.assignment→ i 6= val)
5. store(i, nogood)
6. return (i.current domain 6= φ)

undo reductions(var, pos var)
7. forall var 1 ∈ assigned list and pos var 1 ≤ pos)
8. remove eliminating nogoods of var 1 containing var
9. forall (var 2 ∈ assigned list and pos var 2 > pos var)
10. check forward(var 2, var 1)
11. forall var 1 ∈ var list
12. remove eliminating nogoods of var 1 containing var
13. forall (var 2 ∈ assigned list and pos var 2 > pos var)
14. check forward(var 2, var 1)

Figure 2: check forward() and undo reductions() for FC DBT

the variable that is on the right hand side of the generated Nogood is removed and stored with the
generated Nogood as its eliminating explanation (lines 28, 29). Next, all Nogoods which contained
the removed assignment are discarded (line 30), the current partial solution size is reduced by one
and the backtracking variable is entered into the list of unassigned variables (lines 31-34). Now
comes a special part of the algorithm, that deals with the inherent dynamic ordering of FC DBT .
The current domain of the culprit variable has to be updated by forward checking it against the
variables that were assigned after it. This is done in lines 35-36. In case the current domain of
the culprit variable empties, procedure backtrack is called (lines 37-39). In case the culprit agent
remains consistent at the end of the process, it is removed from the assigned list and entered into
the unassigned set (lines 40,41).

The procedure check forward (presented in Figure 2) is similar to the one introduced in (Prosser,
1993). It is responsible for the removal of conflicting values from the domain of all unassigned vari-
ables. It returns false if a variable’s domain is emptied.

The procedure undo reductions (also presented in Figure 2) is called as a result of removing an
assignment of the passed variable var. Values whose eliminating explanations include the removed
assignment are returned to their variable’s current domain. Returned values must be filtered in case
they are in conflict with assignments with lower position than var (i.e ordered after var).

4. Retroactive Dynamic Backtracking

The first step in enhancing the heuristic (Min-Domain in our case) for DBT is to avoid the move
forward in the resulting order, of variables that the algorithm backtracks to (i.e. culprit variables).
One way to do this is to try to replace the assignment of the culprit variable and leave the variable

6

in the same position. This of course would require to check that all assignments of later variables,
in the partial solution, are consistent with the replaced assignment. Since the replaced assignment
is in a higher position, in case of a conflict, the assignment of the lower position variable is the one
to be replaced.

The second potential enhancement is to reorder the assigned variables that have a lower order
than the culprit assignment which was replaced. This step takes into consideration the possibility
that the replaced assignment of a variable that lies higher in the order has the potential to change the
size of the current domains of the already assigned variables that are ordered after it. The simplest
way to perform this step is to reorder these variables by the selected heuristic.

The third enhancement derives from the observation that in many cases the size of the current
domain of a newly assigned variable is smaller than the current domains of variables which were
assigned before it. There can be two reasons for this phenomenon.

1. During the assignment attempt, some values may be in conflict with values of unassigned
variables. These values may be pruned as a result of Forward Checking (e.g. causing an
empty domain of an unassigned variable). As a result, by the time a consistent assignment
is found for the selected variable, the size of its current domain can be smaller than at the
beginning of the assignment procedure.

2. Smaller domains during the assignment procedure may be the result of backtracking. On
backtracks, the current domain of a variable whose domain was exhausted is in many cases
small. Only values that were eliminated by the culprit assignment are returned to its domain.

Allowing a reordering of assigned variables enables the use of heuristic information which was
not available while the previous assignments have been performed. This takes heuristics which take
the current domain size of variables into consideration (Haralick & Elliott, 1980; Bessiere & Regin,
1996; Dechter & Frost, 2002) to a new level and generates a radical new approach. Variables can
be moved up in the order, in front of assigned variables of the partial solution. As long as the new
assignment is placed after the most recent assignment which is in conflict with one of the variable’s
values, the size of the domain of the assigned variable is not changed. Such a heuristic is retroactive
since variables are moved in front of assigned variables which in any standard heuristic would not
have been touched. The algorithm can check the sizes of the domains of variables with lower priority
than the last assignment in the LHS of the generated Nogood and move the backtracking variable
to a higher position than variables with larger domains.

In the best ordering heuristic proposed by the present paper, the new position of the assigned
variable in the order of the partial solution is dependent on the size of its current domain. The
heuristic checks all assignments from the last up to the first assignment which is included in the
union of the newly assigned variable’s eliminating Nogoods. The new assignment will be placed
right after the first assigned variable with a smaller current domain.

Figure 5 presents an example of this ordering heuristic for Retroactive DBT. In the first step
the variables are ordered lexicographically. Beneath each variable is the size of its current domain.
Notice that although variables are ordered according to the Min-Domain heuristic, the size of do-
mains is dynamic throughout the search. Therefore, in this example the size of the current domain
of variable V4 is smaller than the size of variables V1 and V2. In the second step, variable V6 is
assigned and its current domain size becomes 2. Assume that the union of the eliminating Nogoods
of V6 includes the assignment of V1 and V3. Now, the algorithm searches for a new position for V6.

7

Retroactive FC DBT
1. var list← variables;
2. assigned list← φ;
3. pos← 1;
4. while (pos < N)
5. next var← select next var(var list);
6. var list.remove(next var);
7. assign(next var);
8. report solution;

procedure assign(var)
10. for each (value ∈ var.current domain)
11. var.assignment← value;
12. consistent← true;
13. forall (i ∈ var list)

and while consistent
14. consistent← check forward(var, i);
15. if not (consistent)
16. nogood← resolve nogoods(i);
17. store(var, nogood);
18. undo reductions(var, pos);
19. else
20. nogood← resolve nogoods(pos);
21. lastVar← nogood.RHS variable;
21. newPos← select new pos(var, lastVar);
22. assigned list.insert(var, newPos);
23. forall (var 1 ∈ assigned list) and (pos var 1 > newPos)
24. check forward(var, var 1);
25. update nogoods(var, var 1);
26. forall (var 2 ∈ var list)
27. update nogoods(var, var 2);
28. pos← pos+1;
29. return;
30. var.assignment← Nil;
31. backtrack(var);

Figure 3: The Retroactive FC DBT algorithm

8

procedure backtrack(var)
1. nogood← resolve nogoods(var);
2. if (nogood = φ)
3. report no solution;
4. stop;
5. culprit← nogood.RHS variable;
6. store(culprit, nogood);
7. culprit.assignment← Nil;
8. undo reductions(culprit, pos culprit);
9. forall (var 1 ∈ assigned list) and (pos var 1 > newPos)
10. undo reductions(var 1, pos var 1);
11. var 1.assignment← Nil;
12. var list.insert(var 1);
13. assigned list.remove(var 1);
14. pos← pos culprit;

procedure update nogoods(var 1, var 2)
15. for each (val ∈ {var 2.domain - var 2.current domain})
16. if not (check(var 2, val, var 1.assignment))
17. nogood← remove eliminating nogood(var 1, val);
18. if not (∃var 3 ∈ nogood and pos var 3 < pos var 1)
19. nogood← 〈var 1.assignment→ var 2 6= val〉;
20. store(var 2, nogood);

Figure 4: Retroactive FC DBT algorithm (continued)

Figure 5: Example of Reordering after an assignment.

It starts by comparing its current domain size to the current domain size of V5. Since the current
domain of V6 is smaller it is compared with the current domain size of V4 and is found to be larger.

9

Thus, the state in step 3 is achieved where V6 is placed after V4 and before V5. Now, due to the
assignment of V6, forward checking has to be performed for V5 which is an assigned variable.

Figures 3, 4 present the code of Retroactive Forward Checking Dynamic Backtracking (Retro FC DBT).
The main procedure of the algorithm is identical to standard FC DBT .

Procedure assign is changed to support retroactive heuristics. After a successful consistency
check (lines 12-14), the variable is moved to a new position. The new position is returned by call-
ing select new position(var, lastV ar). This function selects the highest position for the assigned
variable according to the specified heuristic and as long as it is lower than the position of the most
recent variable appearing in its stored Nogoods (lastV ar) (lines 20-21). The change in the position
of the variable that is being assigned generates a need to update the domains of future variables
(lines 23-27) However, this update can not lead to inconsistency since the current assignment of
these variables are not in conflict with the new assignment. These future variables include variables
that kept their assignment.

The procedure update nogoods is called to remove values in conflict with the newly placed
variable. These values may have already been pruned by Nogoods that now contain lower order
variables and must be updated to be eliminated by the variable that is currently being assigned.

In Procedure backtrack (Figure 4), as in standard FC DBT , the Nogood is resolved and
checked for termination (lines 1-4). Then the algorithm unassigns the culprit variable and variables
later in the order than the culprit, and returns removed values to their domains (lines 9-13). At the
end of the backtrack procedure pos is adjusted to a value that extends the actual assignment (line
14).

The change from the standard algorithm is in lines (9-13). Assignments that are placed after
the culprit in the order are removed and their assigned values are restored to the variables’ domains.
After each removal of an assignment, the Nogoods of lower order variables are updated. Nogoods
containing the removed assignment are discarded and their corresponding values are returned to the
variables’ domains.

Introducing Forward Checking into Retroactive DBT is more complicated than in the case of
standard DBT . After an assignment is performed all inconsistent values must be removed not only
from the domains of unassigned variables but also from the domains of assigned variables with a
lower priority than the new assignment.

In the best ordering heuristic proposed by the present paper, the new position of the assigned
variable in the order of the partial solution is dependent on the size of its current domain. The
heuristic checks all assignments from the last up to the first assignment which is included in the
union of the newly assigned variable’s eliminating Nogoods. The new assignment will be placed
right after the first assigned variable with a smaller current domain.

5. Correctness of Retroactive DBT

We first assume the correctness of the standard DBT algorithm (as proven in (Ginsberg, 1993))
and prove that after the changes made for forward checking and for retroactive heuristics, it is still
sound, complete and it terminates.

Soundness is immediate since after each successful assignment the partial solution is consis-
tent. Therefore, when the partial solution includes an assignment for each variable the search is
terminated and a consistent solution is reported. Note that lines 23-25 take care of the retroactive
part of forward checking. �

10

As in the case of standard DBT, the completeness of Retroactive DBT derives from exploring
the entire search space except for sub search spaces which were found not to contain a solution. One
needs to prove that the sub search spaces which DBT does not search do not contain solutions. Sub
search spaces are pruned by Nogoods. It is enough to prove the consistency of the set of Nogoods
generated by Retroactive DBT.

In other words, that the assignment of values removed by Nogoods never lead to solutions.
For standard DBT this is proven in the original paper (Ginsberg, 1993). The consistency property
of Nogoods generated by FC DBT can be shown as follows. First, observe that during forward-
checking (function check forward in Figure 2) Nogoods are standardly stored as explanations to
removed values in the future variable’s domain. Next, consider the case of a backtrack triggered by
lines 15-18 and 22-23 of the main FC DBT procedure in Figure 1. It is easy to see that Nogoods of
the future variables are resolved identically to those of standard DBT. this proves the completeness
of FC DBT.

The consistency of Nogoods generated by Retroactive FC DBT follows immediately from the
same property in FC DBT. The only difference is that future variables against which consistency are
checked by check forward(), can be already assigned. This special case is treated in lines 23-25 of
the main function of Retroactive FC DBT in Figure 3. Clearly, all Nogoods resolution are identical
to standard FC DBT. This proves the completeness of Retroactive FC DBT.

Last, we need to prove that the algorithm terminates. In order to do so we prove the following
lemmas:

Lemma 1 The number of times that a pair of variables can change order between them (i.e. one
moving in front of the other) without another variable in a higher position of both of them replacing
its assignment is bounded by 2m where m is the initial domain size.

proof: variables change places when their assignment is replaced. An assignment replacement
includes the removal of the assign value in accordance to its eliminating Nogood. Since variables
are not moved in front of assignments which are included in their nogoods variable Xi can move in
front of variable Xj all the nogoods of Xi must be with a higher position than Xj . Therefore, as
long as non of the variables in a higher position change their assignment, non of the values removed
from the variables domains can be restored in the variables domains, thus the number of times the
variables can change places is bound by the size of their domains. �

Lemma 2 derives directly from Lemma 1.

Lemma 2 The number of position replacements of variables which are in a position lower than
position k is bounded.

Therefore, for k = 0, the number of position replacements in the entire CSP is bounded. Thus,
the termination of the algorithm derives from the termination of static backtrack algorithms. �

6. Experimental Evaluation

The common approach in evaluating the performance of CSP algorithms is to measure time in
logical steps to eliminate implementation and technical parameters from affecting the results. Two
measures of performance are used by the present evaluation. The number of assignments and the
number of constraints checks (Prosser, 1996; Kondrak & van Beek, 1997).

The experiments were conducted on two problem scenarios: Random CSPs and on structured
problems that represent a realistic scenario - Meeting Scheduling Problems (Gent & Walsh, 1999).

11

Figure 6: Constraints checks performed by DBT, CBJ and Retroactive DBT (p1 = 0.3).

Figure 7: Assignments performed by DBT, CBJ and Retroactive DBT (p1 = 0.3).

6.1 Experiments on Random CSPs

Random CSPs are parametrized by n variables, k values in each domain, a constraints density of p1

and a tightness p2 which are commonly used in experimental evaluations of CSP algorithms (Smith,
1996). Two sets of experiments were performed on random problems. The first set compared three
methods of backjumping on CSPs with 15 variables (n = 15). The second set compared the three
backjumping algorithms,combined with forward-checking. Here larger problems can be solved and
the CSPs included 20 variables (n = 20). In all of our experiments the number of values for each
variable was 10 (k = 10). Two values of constraints density were used, p1 = 0.3 and p1 = 0.7.
The tightness value p2, was varied between 0.1 and 0.9, in order to cover all ranges of problem
difficulty. For each of the pairs of fixed density and tightness (p1, p2), 50 different random problems
were solved by each algorithm and the results presented are an average of these 50 runs.

Three backjumping algorithms were compared, Conflict Based Backjumping (CBJ), Dynamic
Backtracking (DBT) and Retroactive Dynamic Backtracking (Retro DBT). In all of our experi-
ments all the algorithms use a Min-Domain heuristic for choosing the next variable to be assigned.

12

Figure 8: Constraints checks performed by DBT, CBJ and Retroactive DBT (p1 = 0.7).

Figure 9: Assignments performed by DBT, CBJ and Retroactive DBT (p1 = 0.7).

Figure 6 presents the number of constraints checks performed by the three algorithms on low
density CSPs (p1 = 0.3). The CBJ algorithm does not benefit from the heuristic when it is not
combined with forward-checking. The advantage of both versions of DBT over CBJ is therefore
large. Retroactive DBT improves on standard DBT by a large factor as well. Figure 7 presents
similar results for the number of assignments performed by the algorithms.

Figures 8 and 9 present the results for high density CSPs (p1 = 0.7). Although the results are
similar, the differences between the algorithms are smaller for the case of high density CSPs.

In our second set of experiments, each algorithm was combined with Forward-Checking (Prosser,
1993). This improvement enabled the testing of the algorithms on larger CSPs, with 20 variables.

Figure 10 presents the number of constraints checks performed by each of the algorithms. It is
very clear that the combination of CBJ with forward-checking improves the algorithm and makes it
compatible with the others. This is easy to explain since the pruned domains as a result of forward-
checking enable an effective use of the Min-Domain heuristic. Both FC CBJ and Retroactive
FC DBT outperform FC DBT. Retroactive FC DBT performs better than FC CBJ. Similar results
in the number of assignment attempts are presented in Figure 11.

13

Figure 10: Constraints checks performed by FC DBT, FC CBJ and FC Retroactive DBT (p1 =
0.3).

Figure 11: Assignments performed by FC DBT, FC CBJ and FC Retroactive DBT (p1 = 0.3).

Figures 12 and 13 present similar results for high density CSPs. As before, the differences
between the algorithms are smaller when solving CSPs with higher densities.

6.2 Experiments on Meeting Scheduling Problems (MSPs)

Meeting scheduling is a well-known, recurrent and easily described problem. The meeting schedul-
ing problem (MSP) will be described below as a centralistic constraints satisfaction problem (CSP).
However, one of its most interesting features is the fact that it is a Distributed CSP. Informally, a set
of agents want to meet. They search for a feasible meeting time that satisfies the private constraints
of each of the agents and in addition satisfies arrival-time constraints (among different meetings of
the same agent).

The general definition of the MSP family is as follows:

• A group S of m agents

14

Figure 12: Constraints checks performed by FC DBT, FC CBJ and FC Retroactive DBT (p1 =
0.7).

Figure 13: Assignments performed by FC DBT, FC CBJ and FC Retroactive DBT (p1 = 0.7).

• A set T of n meetings

• The duration of each meeting mi is durationi

• Each meeting mi is associated with a set si of agents in S, that attend it

• Consequently, each agent has a set of meetings that it must attend

• Each meeting is associated with a location

• The scheduled time-slots for meetings in T must enable the participating agents to travel
among their meetings

The table below presents an example of a MSP, including the traveling time in time-units (say,
hours) between different meeting locations.

15

Meeting Location Attending agents
m1 L1 A1,A3

m2 L2 A2,A3,A4

m3 L3 A1,A4

m4 L4 A1,A2

The distances (in time-slots) between the meetings are described in the figure 14.

Figure 14: Example of a meeting scheduling problem.

The meeting scheduling problem as described above can be naturally represented as a constraints
satisfaction problem (CSP) in the following way:

• A set of variables T - m1,m2...,mn - the meetings to be scheduled

• Domains of values D - all weekly time-slots

• A set of constraints C - for every pair of meetings mi,mj there is an arrival-time constraint, if
there is an agent that participates in both meetings. Private meetings are equivalent to unary
constraints that remove values from domains of some meetings. Since all agents have the
same arrival-times between any two locations, there is only one type of arrival-time binary
constraint.

arrival-time constraint (AC) - Given two time-slots ti, tj there is a conflict if |time(ti) −
time(tj)| − durationi < TravellingT ime(location(mi), location(mj))

Simplifying assumptions:

1. All agents have the same size of weekly calendar - M time-slots

2. All Meetings have the same duration 1 time-slot.

3. Each agent attends the same number of meetings

The Density of the CSP network depends on the number of meetings (m), the number of agents
(n) and the number of meetings per agent (k). The Tightness of a constraint depends on the domain
size of the meetings and the locations of the two constrained meetings. The Density and Tightness
can be calculated in the following way:

Density (p1) - the ratio of the total number of edges to the maximal number of possible edges.
p1 = edgesinthenetwork/(m ∗ (m− 1)/2)

16

Figure 15: representing a MSP as a CSP.

Tightness (p2) - the ratio between the total number of eliminated time slots to the total number
of tuples (D2). Therefore p2 is defined as follows:
p2 = (D ∗ (2 ∗ s + 1)− s2)/(D ∗D), where s is the traveling time between the meetings locations.
A representation of a Meeting Scheduling Problems as CSP is described in Figure 15

Random Meeting Scheduling Problem (RMSP) specification: The RMSP can be parametrized
in many ways. Parameters can be the number of meetings, locations, number of agents, etc.
Following is the list of all parameters

• number of meetings - m

• number of agents - n

• number of meetings per agent- k

• distances between locations of meetings - in units of time slots

• domain size - number of time-slots- l

The meetings are the set of m variables of the constraints network, each representing a meet-
ing at a specific location. The domains of values are the time-slots l. An edge between any pair
of variables represents an agent that participates in both meetings. The density of the constraints
network is a function of the number of edges in the network. The number of edges in the network
depends on the number of agents and the distribution of meetings that each agent attends. If each
agent participates in k meetings, we generate the resulting CSP as follows. For each of the n agents
a clique of k variables (meetings) is selected randomly, such that not all of the edges of the clique
are already in the network. All the edges of the generated clique are added to the CSP network, rep-
resenting the arrival-time constraints between the meetings of each agent. The arrival-time between
each two meetings is also randomly generated. Note, that an agent Ai adds an arrival-constraint
between meetings mj ,mk only if there is no other agent that attends both meetings. Two agents
or more that participate in mj , mk define only one arrival-constraint. The distance between loca-
tions of meetings randomly generated according to the given range (between the minimal meeting
distance and the maximal one).

17

Figure 16: CCs performed by FC DBT, FC CBJ and Retroactive FC DBT solving sparse MSPs
(13 agents).

The randomly generated meeting scheduling problems (RMSPs) included 40 meetings and a
domain size of 12. The distance between every two meetings was randomly selected between 2,
3 and 4. We evaluated sparse problems with 13 agents and dense problems with 17 agents. The
number of meetings per agent was varied between 3 and 5 to evaluate a range of problem difficulty.
Figure 16 presents the number of constraints checks performed by the three algorithms while solving
random meeting scheduling problems with 13 agents (i.e. sparse problems). FC CBJ performs
approximately half the number of constraints checks performed by FC DBT. Retroactive FC DBT
improves the results of FC CBJ by a factor larger than 2 and the results of standard DBT by a factor
of 6.

Figure 17 presents similar results for the number of assignments performed by the algorithms.
A large advantage of Retroactive FC DBT over the other algorithms. On the hardest instances, 3
and 4 meetings per agent, the improvement over standard FC DBT and FC CBJ is by an order of
magnitude.

Figures 18 and 19 present similar results for RMSPs with higher density. The improvement
factor in these experiments is much larger. In fact, it is hard to get a good perspective on the
difference between FC CBJ and Retroactive FC DBT since both of them improve the performance
of standard FC DBT by orders of magnitude. Therefore, figures 20 and 21 present a closer look
into the performance on these two algorithms on dense MSPs. It is clear that Retroactive FC DBT
is much better than FC CBJ for dense RMSPs.

7. Discussion

Variable ordering heuristics such as Min-Domain are known to improve the performance of CSP
algorithms (Haralick & Elliott, 1980; Bessiere & Regin, 1996; Dechter & Frost, 2002). This im-
provement results from a reduction in the search space explored by the algorithm. Previous studies
have shown that DBT does not preserve the properties of variable ordering heuristics since it dy-
namically places variables during backtracking in a different position than the original position
which was selected by the heuristic. As a result, DBT was found to perform poorly compared to

18

Figure 17: Assignments performed by FC DBT, FC CBJ and Retroactive FC DBT solving sparse
MSPs (13 agents).

Figure 18: CCs performed by FC DBT, FC CBJ and Retroactive FC DBT solving Dense MSPs
(17 agents).

CBJ (Baker, 1994). The Retroactive DBT algorithm, presented in this paper, combines the ad-
vantages of both previous algorithms by preventing the placing of variables in a position which
does not support the heuristic. More importantly, Retroactive FC DBT enables the reordering (or
reassigning) of assigned variables that are re-placed after the culprit assignment, after a backtrack
operation.

We have used the mechanism of Dynamic Backtracking which by maintaining eliminating
Nogoods, allows variables with higher priority to be reassigned while lower priority variables keep
their assignment. These dynamically maintained domains enable to take the Min-Domain heuristic
to a new level. Standard backtracking algorithms use ordering heuristics only to decide on which
variable is to be assigned next. Retroactive DBT enables the use of heuristics which reorder as-
signed variables. Since the sizes of the current domains of variables are dynamic during search, the

19

Figure 19: Assignments performed by FC DBT, FC CBJ and Retroactive FC DBT Dense MSPs
(17 agents).

Figure 20: CCs performed by FC CBJ and Retroactive FC DBT solving Dense MSPs (17 agents).

flexibility of the heuristics which are possible in Retroactive DBT enables a dynamic enforcement
of the Min-Domain property over assigned and unassigned variables.

It is especially interesting to see the improved performance of the retroactive ordering approach
in the presence of forward-checking. The heuristic idea of selecting Min-Domain, performs well for
the combination of domain filtering algorithms- FC and DBT. Both maintaining dynamic domains
for all variables during search.

The ordering of assigned variables requires some overhead in computation when the algorithm
maintains consistency by using Forward Checking. This overhead was found by the experiments to
be worth the effort since the overall computation effort is reduced.

Our choice for combining lookahead and backjumping uses forward-checking. Although deeper
lookahead methods such as maintaining arc-consistency (MAC) were suggested for DBT (Jussien &
Lhomme, 2002), forward-checking preferred for two reasons. First its simplicity. The combination
of standard DBT with MAC results in a very complicated algorithm which its consistency is delicate.

20

Figure 21: Assignments performed by FC CBJ and Retroactive FC DBT Dense MSPs (17 agents).

Second, a recent study on the properties of ordering heuristics on CSP search algorithms (Wallace,
2005) have shown that the effect of ordering heuristics on FC and {MAC is similar.

8. Conclusions

Standard ordering heuristics are commonly used in CSP solving algorithms. The standard use of
an ordering heuristic is taking an intelligent choice when selecting the next variable to be ordered.
In this paper we proposed a new algorithm which takes into consideration the dynamic nature of
a CSP solving algorithm takes into an extreme level the exploitation of the current structure of the
problem by the heuristic. This is done by enforcing the ordering on assigned variables according to
there dynamic state. Our experimental study shows clearly the advantage of the proposed algorithm
over the standard heuristics. While on random problems, the factor of improvement is small, on a
realistic structured problem the improvement is by a large factor.

References

Baker, A. (1994). The Hazards of Fancy Backtracking. In Proceedings of the 12th National Confer-
ence on Artificial Intelligence (AAAI ’94), Volume 1, pp. 288–293 Seattle, WA, USA. AAAI
Press.

Bessiere, C., & Regin, J. (1996). MAC and combined heuristics: two reasons to forsake FC (and
CBJ?) on hard problems. In Proc. CP 96, pp. 61–75 Cambridge MA.

Chen, X., & van Beek, P. (2001). Conflict-directed backjumping revisited. Journal of Artificial
Intelligence Research (JAIR), 14, 53–81.

Dechter, R., & Frost, D. (2002). Backjump-based backtracking for constraint satisfaction problems.
Artificial Intelligence, 136:2, 147–188.

Dechter, R. (2003). Constraint Processing. Morgan Kaufman.

Gent, I., & Walsh, T. (1999). CSPLib: a benchmark library for constraints. Tech. rep., Technical re-
port APES-09-1999. Available from http://csplib.cs.strath.ac.uk/. A shorter version appears in

21

the Proceedings of the 5th International Conference on Principles and Practices of Constraint
Programming (CP-99).

Ginsberg, M. L. (1993). Dynamic Backtracking. J. of Artificial Intelligence Research, 1, 25–46.

Haralick, R. M., & Elliott, G. L. (1980). Increasing Tree Search Efficiency for Constraint Satisfac-
tion Problems. Artificial Intelligence, 14, 263–313.

Jussien, N., & Lhomme, O. (2002). Local search with constraint propagation and conflict-based
heuristics. Artificial Intelligence, 139(1), 21–45.

Kondrak, G., & van Beek, P. (1997). A Theoretical Evaluation of Selected Backtracking Algorithms.
Artificial Intelligence, 21, 365–387.

Maheswaran, R. T., Pearce, J. P., Bowring, E., Varakantham, P., & Tambe, M. (2006). Privacy
Loss in Distributed Constraint Reasoning: A Quantitative Framework for Analysis and its
Applications. Autonomous Agents and Multi-Agent Systems, 13(1), 27–60.

Modi, J., & Veloso, M. (2004). Multiagent Meeting Scheduling with Rescheduling. In Proc. 5th
workshop on distributed constraints reasoning DCR-04 Toronto.

Prosser, P. (1993). Hybrid Algorithms for the Constraint Satisfaction Problem. Computational
Intelligence, 9, 268–299.

Prosser, P. (1996). An Empirical Study of Phase Transitions in Binary Constraint Satisfaction Prob-
lems. Artificial Intelligence, 81, 81–109.

Smith, B. M. (1996). Locating the phase transition in binary constraint satisfaction problems. Arti-
ficial Intelligence, 81, 155 – 181.

Wallace, R. J. (2005). Factor Analytic Studies of CSP Heuristics. In CP-2005, pp. 712–726 Sigtes
(Barcelona), Spain.

Wallace, R. J., & Freuder, E. (2002). Constraint-based multi-agent meeting scheduling: effects of
agent heterogeneity on performance and privacy loss. In Proc. 3rd workshop on distributed
constrait reasoning, DCR-02, pp. 176–182 Bologna.

22

