
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Distributed Constraint Satisfaction with Partially Known
Constraints

Ismel Brito{1}, Amnon Meisels{2}, Pedro Meseguer{1}, Roie Zivan{3}

1. IIIA, Ins. Inv. Intel.ligència Artificial, CSIC
Campus UAB, 08193 Bellaterra, Spain
{ismel—pedro}@iiia.csic.es

2. Department of Computer Science,
Ben-Gurion University of the Negev,
Beer-Sheva, 84-105, Israel am@cs.bgu.ac.il

3. Department of Industrial Engineering and Management,
Ben-Gurion University of the Negev,
Beer-Sheva, 84-105, Israel zivanr@bgu.ac.il∗

Abstract Distributed Constraint Satisfaction problems (DisCSPs) are com-
posed of agents connected by constraints. The standard model for DisCSP
search algorithms uses messages containing assignments ofagents. It as-
sumes that constraints are checked by one of the two agents involved in a
binary constraint, hence the constraint is fully known to both agents. This
paper presents a new DisCSP model in which constraints are kept private
and are only partially known to agents. In addition, value assignments can
also be kept private to agents and not be circulated in messages. Two ver-
sions of a new asynchronous backtracking algorithm that work with partially
known constraints (PKC) are presented. One is a two-phase asynchronous
backtracking algorithm and the other uses only a single phase. Another new
algorithm preserves the privacy of assignments by performing distributed
forward-checking (DisFC). We propose to use entropy as quantitative mea-
sure for privacy. An extensive experimental evaluation demonstrates a trade-
off between preserving privacy and the efficiency of search,among the dif-
ferent algorithms.

Keywords: Distributed CSPs, Asynchronous Search, Privacy, Entropy.

∗ Supported by the Lynn and William Frankel center for Computer Sciences and the Paul
Ivanier Center for Robotics and Production Management.

c© 2008Kluwer Academic Publishers. Printed in the Netherlands.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.1

* Manuscript
Click here to download Manuscript: pkc-journal-minor_rev_2.ps

http://www.editorialmanager.com/cons/download.aspx?id=2880&guid=7ad5d21b-aff7-4e20-925e-04f04c8cef02&scheme=1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2

1. Introduction

Distributed constraint satisfaction problems (DisCSPs) are composed of agents,
each holding its local constraint network, which are connected by constraints
among variables of different agents. Agents assign values to variables, at-
tempting to generate a locally consistent assignment that is also consistent
with all constraints between agents (YH00; GM96). To achieve this goal,
agents check the value assignments of their variables for local consistency and
exchange messages with other agents, to check consistency of their proposed
assignments against constraints with variables owned by different agents (BBMM05).

DisCSP is an elegant model for many every day combinatorial problems
that are distributed by nature. Take for example the meetingscheduling prob-
lem in whichn agents attempt to schedulek meetings. In each meeting, a
sub-group of then agents participate (WF02; MV04; ML04; GW99). Arrival
constraints define the time that must differentiate meetings with common
participants.

Standard search algorithms for DisCSPs, like AsynchronousBacktracking
(ABT) (YDIK92; YDIK98), assume a static priority order among all agents.
Higher priority agents perform assignments and send them via messages to
lower priority agents. ABT assumes that every inter-agent constraint can be
checked by the lower priority agent that is involved in the constraint, i.e. the
lower priority agent must hold the entire constraint (YH00). In dynamic or-
dering ABT (ZM06a), each assignment is checked for consistency according
to the order at the time it is performed. Since both agents involved in a binary
constraint can be with lower priority at the time the assignment is checked,
both agents are required to hold the entire constraint.

In many real world problems the above assumptions are too strong. In the
meeting scheduling example, people are usually not willingto reveal their
private schedule which imposes constraints on the scheduleof meetings they
participate in. A more suitable model for a realistic DisCSPis thePartially
Known Constraints(PKC) model, where each inter-agent constraint is com-
posed of two parts, each held by one of the two constraining agents (BM03).
When agents hold parts of the constraint privately, checking for consistency
has to be performed by both of the constrained agents becausesome value
combinations may be seen as permitted by one agent and forbidden by the
other.

In (SSHF00) an algorithm which keeps the constraints of agents private
was presented.Asynchronous Aggregations Search(AAS) enables the filter-
ing of a global assignment by agents according to their private constraints.
Unlike the common definition of DisCSP where variables are distributed
among agents, AAS considers the dual case where constraintsare distributed
and controlled by a single agent. The use of AAS may cause thatthe problem
to be solved has to be translated into a new one. This transformation could be

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

inadequate in many naturally distributed problems where the initial problem
structure must remain unchanged. Furthermore, in AAS thereis no privacy
of domains i.e. all agents hold the domains for all variables. This property
makes AAS unsuitable for many real world problems that are concerned with
privacy.

A number of secured protocols for DisCSPs which use cryptographic tools
in order to preserve privacy were proposed in recent years (SM04; YSH05;
NZ05). All of these studies propose secured protocols whichcan solve asym-
metric constraints. However, the overhead in communication and computa-
tion in all of these protocols is very large.

In this paper we differentiate between two types of privacy:privacy of
constraints and privacy of assignments. Regarding privacyof constraints we
assume the PKC model of DisCSPs, where each binary constraint is divided
between the two constraining agents. A value tuple is allowed by the con-
straint if it is allowed by each part separately. To solve theresulting DisCSP,
two asynchronous backtracking algorithms are proposed: ABT-2ph, a two-
phase algorithm and ABT-1ph a single-phase one. Similarly to standard ABT,
a static order of priorities is defined among all agents in both algorithms.
In the first phase of ABT-2ph, an asynchronous backtracking algorithm is
performed, in which only the constraints held by the lower priority agents
are examined. In other words, only one of the two constraining agents in
each binary constraint checks for consistency. When a solution is reached, a
second phase is performed in which the consistency of the solution is checked
again, according to the constraints held by the higher priority agents in each
binary constraint. If no constraint is violated, a solutionis reported. If there
are violated constraints, the first phase is resumed after the necessary nogoods
are recorded.

The first and immediate drawback of a two-phase algorithm is the effort
of producing solutions in each first phase. Since constraints in the oppo-
site direction are not examined, large parts of the search space, which could
have been pruned if all constraints were considered, are being exhaustively
scanned. The second drawback is the synchronized manner in which the algo-
rithm switches between the two phases. For each such switch among phases, a
termination detection mechanism must be performed which isa complicated
task in asynchronous backtracking. Furthermore, all agents must be informed
about every switch between phases.

In order to avoid these drawbacks, a single-phase distributed search algo-
rithm (ABT-1ph) is proposed. ABT-1ph checks inter-agent constraints asyn-
chronously at both of the constraining agents. Agents send their proposed
assignments to all their neighbors in the constraints graph, with both higher
and lower priority ones. Agents assign their local variables according to the
priority order as in standard ABT, but check the constraintsalso against

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

the assignment of lower priority agents. Nogoods are sent both from lower
priority agents, as in standard ABT, and from higher to lowerpriority agents.

An algorithm for preserving privacy of assignments was proposed in (BM03),
calledDistributed Forward Checking(DisFC). Unlike ABT, in DisFC con-
straints are checked by higher priority agents. Instead of sending its own
assignment, every DisFC agent sends to each lower priority neighbor the in-
consistent subset of values of the neighboring agent which are consistent with
its own assignment. To preserve privacy of constraints and assignments, this
paper considers two versions of DisFC: DisFC-2ph (BM03) andDisFC-1ph,
a double and a single-phase algorithm, respectively. Similar to the versions
of ABT for PKC, all constraints are simultaneously considered in the single-
phase of DisFC-1ph while some constraints are checked in thefirst phase of
DisFC-2ph and the others in its second phase.

The evaluation of the proposed algorithms is done taking into account
computation effort, communication cost and privacy loss. The evaluation of
computation effort and communication cost in DisCSPs is performed accord-
ing to the methods of (ZM06b). To evaluate privacy loss, the natural measure
is the entropy (CT06). Entropy decrement, from the initial state of the search
to its final state, is taken as a measure of the privacy loss during search.
Regarding privacy of assignments, the loss during a complete search can
be evaluated theoretically. Regarding privacy of constraints, we adjust the
method of (MPB+06) to evaluate the constraint privacy alone by measuring
the percentage of the conflicts in a constraint matrix held byan agent that are
revealed to another agent involved in a conflict. This approach is motivated by
the fact that both of our proposed algorithms will reveal some of the informa-
tion that ABT would have revealed during its execution via standardok?and
ngdmessages. However, in order to perform standard ABT, the entire part of
every binary constraint held by the higher priority agent must be revealed to
the lower priority agent. Our results focus on the part of theconstraint that is
revealed relatively to standard ABT.

The idea of entropy as privacy measure has already been considered in
Distributed Constraint Optimization problems, particularly in the context of
the meeting scheduling problem (MPB+06; Gre07). The entropy model that
we present in this paper is an adjustment of these works to constraints and
assignment privacy in DisCSPs, which is out of the scope of previous works.

The paper is organized as follows. A formal DisCSP definitionappears
in Section 2. Section 3 contains a summary of the standard ABTalgorithm.
Privacy of DisCSPs and the description of the PKC model appear in Section 4.
In Section 5 we present two ABT versions for the PKC model, ABT-2ph
and ABT-1ph. Following each algorithm description are its correctness and
completeness proofs. In Section 6 we discuss an option for preserving as-
signment privacy by sending domain subsets instead of assignments (DisFC).
In Section 7 we present a theoretical model for evaluating privacy loss by

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

the entropy decrement during search, considering privacy of assignments and
privacy of constraints. An extensive experimental evaluation, which demon-
strates the difference between the algorithms with respectto performance,
communication and loss of privacy appears in Section 8. Finally, Section 9
contains some conclusions of this work.

2. Preliminaries

A Constraint Satisfaction Problem(CSP) involves a finite set of variables,
each one taking a value in a finite domain. Variables are related by con-
straints that impose restrictions on the combinations of values that subsets
of variables can take. Asolution is an assignment of values to variables
which satisfies every constraint. Formally, a finite CSP is defined by a triple
(X ,D, C), where

• X = {x1, . . . , xn} is a set ofn variables;

• D = {D(x1), . . . ,D(xn)} is a collection of finite domains;D(xi) is the
initial set of possible values forxi;

• C is a set of constraints among variables. A constraintci on the ordered
set of variablesvar(ci) = (xi1 , . . . , xir(i)

) specifies the relationprm(ci)

of thepermittedcombinations of values for the variables invar(ci). An
element ofprm(ci) is a tuple(vi1 , . . . , vir(i)

), vi ∈ D(xi).

A Distributed Constraint Satisfaction Problem(DisCSP) is a CSP where
variables, domains and constraints are distributed among automated agents.
Formally, a finite DisCSP is defined by a 5-tuple(X ,D, C,A, φ), whereX ,
D andC are as before, and

• A = {1, . . . , p} is a set ofp agents,

• φ : X → A is a function that maps each variable to its agent.

Each variable belongs to one agent. The distribution of variables dividesC
into two disjoint subsets,Cintra = {ci|∀xj, xk ∈ var(ci), φ(xj) = φ(xk)},
andCinter = {ci|∃xj, xk ∈ var(ci), φ(xj) 6= φ(xk)}, called intra-agent and
inter-agent constraint sets, respectively. An intra-agent constraintci is known
by the agent owner ofvar(ci), and it is unknown by the other agents. Usually,
it is considered that an inter-agent constraintcj is known by every agent that
owns a variable ofvar(cj) (YDIK98).

As in the centralized case, asolution of a DisCSP is an assignment of
values to variables satisfying every constraint. DisCSPs are solved by the

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

collective and coordinated action of agentsA. Agents communicate by ex-
changing messages. It is assumed that the delay in delivering a message is
finite but random. For a given pair of agents, messages are delivered in the
order they were sent.

For simplicity purposes, and to emphasize the aspects of distribution, in
the rest of this study we assume that each agent owns exactly one variable. We
identify the agent number with its variable index (∀xi ∈ X , φ(xi) = i). From
this assumption, all constraints are inter-agent constraints, soC = Cinter and
Cintra = ∅. Furthermore, we assume that all constraints are binary. Weuse
the termcij to indicate a constraint that binds agentsxi andxj .

We further assume that all information held by agents has an equal im-
portance with respect to privacy (i.e. there is no part of theagents private
information which is more important than other parts). Thisis a necessary
assumption in order to be able to compute objectively a loss of privacy (see
for example (MPB+06)). This is the basis for our experimental evaluation of
privacy loss in Section 8.

3. Asynchronous Backtracking

All the algorithms proposed in this paper are based on ABT. A summarized
description of ABT is presented here. For details, the reader is addressed to
the original papers (YDIK92; YDIK98; YH00).

Asynchronous Backtracking (ABT) (YDIK92; YDIK98; YH00) was a
pioneering algorithm to solve DisCSPs. ABT is an asynchronous algorithm
executed autonomously by each agent, which makes its own decisions and
informs other agents about them. The algorithm computes a solution (or de-
tects that no solution exists) in finite time; the algorithm’s correctness and
completeness have been proven.

ABT requires constraints to be directed. A constraint causes a directed
link between two constrained agents: the assignment-sending agent, from
which the link leaves, and the constraint-evaluating agent, to which the link
arrives. When the assignment-sending agent makes an assignment, it informs
the constraint-evaluating agent, which then tries to find a consistent value
assignment. To make the network cycle-free, there is a totalorder among
agents that corresponds to the directed links. Agenti has higher priority than
agentj if i appears beforej in the total order.

Each ABT agent keeps its own agent view and nogood list. Considering a
generic agentself , the agent view ofself is the set of values that it believes
to be assigned to agents connected toself by incoming links. The nogood
list keeps the nogoods received byself as justifications for the removal of
inconsistent values. Agents exchange assignments and nogoods.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

The algorithm starts by each agent assigning its variable, and sending
the assignment to its neighboring agents with lower priority. When an agent
receives an assignment, it updates its agent view with the received assign-
ment, removes inconsistent nogoods and checks the consistency of its current
assignment with the updated agent view.

When receiving a nogood, it is accepted if it is consistent with the agent
view of self . Otherwise, it is discarded since it is found to be obsolete.An
accepted nogood is used to update the nogood list. It makesself search for a
new consistent value, since the received nogood is a justification that forbids
its current value. When an agent cannot find any value consistent with its
agent view, either because of the original constraints or because of the re-
ceived nogoods, new nogoods are generated from its agent view and each one
sent to the closest agent involved in it. This operation causes backtracking.

There are several versions of ABT, depending on the way that new no-
goods are generated. In the simplest form of the ABT algorithm, the complete
agent view is sent as a nogood (YH00). The nogood is sent to thelowest
priority agent whose assignment is included in the nogood. In contrast, in
the version of ABT that appears in (BBMM05), when an agent cannot find
a consistent value, it resolves its nogoods lists followinga procedure based
on dynamic backtracking methods. From this resolution, a new nogood is
generated and sent to the agent with the lowest priority involved in the new
nogood.

If self receives a nogood including the assignment of an agent not con-
nected with it,self requires that a new link will be added from that agent to
self . From this point on, a link from the other agent toself will exist. ABT
execution ends upon achieving quiescence in the agent network, meaning that
a solution has been found, or when an empty nogood is generated, which
indicates that the problem is unsolvable.

The ABT code appears in Figure 1. This code uses the followingdata
structures:Γ−, Γ+, myAgentV iew andmyNogoodStore. Γ− containsself ’s
higher priority constraining agents, whereasΓ+ containsself ’s lower priority
constraining agents (BBMM05). Agentself stores assignments of higher pri-
ority agents inmyAgentV iew and the received nogoods inmyNogoodStore.
Agents exchange four different kinds of messages:ok?, ngd, adl andstp. An
ok? message comes from higher priority agents informingself of the new
assignment for the variable of the message’s sending agent.A ngd message
comes from lower priority agents, and includes a nogood which will serve as
a justification for the removal of the value assigned toself ’s variable. Anadl
message arrives from lower priority agents, requestingself to add a new link
between it and the sender. When an agent receives astp message, it means
that the problem is unsolvable since an empty nogood was found by at least
one agent and the search terminates.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8
procedure ABT()

myV alue← empty;end← false; computeΓ+, Γ−;
CheckAgentView();
while (¬end) do

msg ← getMsg();
switch(msg.type)

ok? : ProcessInfo(msg);
ngd : ResolveConflict(msg);
adl : SetLink(msg);
stp : end← true;

procedure CheckAgentView(msg)
if ¬consistent(myV alue, myAgentV iew) then

myV alue← ChooseValue();
if (myV alue) then for each child ∈ Γ+(self) do sendMsg:ok?(child, myV alue);
else Backtrack();

procedure ProcessInfo(msg)
UpdateAgentView(msg.Assig);
CheckAgentView();

procedure ResolveConflict(msg)
if Coherent(msg.Nogood, Γ−(self) ∪ {self}) then
CheckAddLink(msg);
add(msg.Nogood, myNogoodStore); myV alue← empty;
CheckAgentView();

else if Coherent(msg.Nogood, self) then SendMsg:ok?(msg.sender, myV alue);

procedure Backtrack()
newNogood← solve(myNogoodStore);
if (newNogood = empty)then

end← true;sendMsg:stp(system);
else
sendMsg:ngd(newNogood);
UpdateAgentView(rhs(newNogood)← unknown);
CheckAgentView();

function ChooseValue()
for each v ∈ D(self) not eliminated bymyNogoodStore do

if consistent(v, myAgentV iew[Γ−(self)]) then return (v);
else add(xj = valj ⇒ self 6= v, myNogoodStore); /*v is inconsistent withxj ’s value */

return (empty);

procedure UpdateAgentView(newAssig)
add(newAssig, myAgentV iew);
for each ng ∈ myNogoodStore do

if ¬Coherent(lhs(ng), myAgentV iew) then remove(ng, myNogoodStore);

function Coherent(nogood, agents)
for each var ∈ nogood ∪ agents do

if nogood[var] 6= myAgentV iew[var] then return false;
return true;

procedure SetLink(msg)
add(msg.sender, Γ+(self));
sendMsg:ok?(msg.sender, myV alue);

procedure CheckAddLink(msg)
for each (var ∈ lhs(msg.Nogood))

if (var /∈ Γ−(self)) then
sendMsg:adl(var, self);
add(var, Γ−(self)); UpdateAgentView(var← varV alue);

Figure 1. The ABT algorithm.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

4. Privacy in ABT-like Algorithms

ABT agents exchange assignments and nogoods. Regarding privacy, there are
two issues that reveal the private data of ABT agents:

• Constraints: An inter-agent constraintcij is totally known by the lower
priority agent (j for i < j).

• Assignments: Agents notify other agents about their value assignments.

This approach may be inappropriate for applications in which privacy is the
main reason for distributed solving. In this case, agents may desire to hide
the actual values of their variables from other agents, considered to be po-
tential competitors. For the same reasons, the informationcontained in the
constraints may be considered as reserved and agents might not be willing to
share it with other agents. In the following, we develop strategies to maintain
privacy of variable values and of inter-agent constraints,allowing agents to
share enough information to achieve a solution or detect that no solution exits.

4.1. THE PKC MODEL FOR CONSTRAINT PRIVACY

ABT assumes that an inter-agent constraintcij is totally knownby the agents
owning their related variables, that is,cij is totally known by agenti and
agentj (see Section 2.2 of (YDIK98)). In fact, it is enough for ABT that
the lower priority agent in each constraint knows the set of permitted tuples.
To enforce constraint privacy, we introduce thePartially Known Constraints
(PKC) model of a DisCSP as follows. A constraintcij is partially known by
its related agents. Agenti knows the constraintci(j) where:

• vars(ci(j)) = {xi, xj};

• ci(j) is specified by three disjoint sets of value tuples forxi andxj :

- prm(ci(j)), the set of tuples thati knows to be permitted;

- fbd(ci(j)), the set of tuples thati knows to be forbidden;

- unk(ci(j)), the set of tuples whose consistency is unknown byi;

• every possible tuple is included in one of the above sets, that is,prm(ci(j))∪
fbd(ci(j)) ∪ unk(ci(j)) = Di ×Dj.

Similarly, agentj knowsc(i)j , wherevars(c(i)j) = {xi, xj}. c(i)j is specified
by the disjoint setsprm(c(i)j), fbd(c(i)j) andunk(c(i)j). For the model to be
truly partial, it is required that, there is at least one pairof constrained agents
i andj that do not have the same information about the shared constraint (i.e.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

they differ in at least one of the three sets of tuples). The relation between a
totally known constraintcij and its corresponding partially known constraints
ci(j) andc(i)j is

cij = ci(j) ⊗ c(i)j

where⊗ depends on the semantic of the constraint. The above definitions
satisfy the following conditions:

• If the combination of valuesk and l, for xi andxj is forbidden in at
least one partial constraint, then it is forbidden in the corresponding total
constraint: if(k, l) ∈ fbd(ci(j)) or (k, l) ∈ fbd(ci(j)) then (k, l) ∈
fbd(cij).

• If the combination of valuesk andl, for xi andxj is permitted in both
partial constraints, then it is also permitted in the corresponding total
constraint: if(k, l) ∈ prm(ci(j)) and(k, l) ∈ prm(ci(j)) then(k, l) ∈
prm(cij).

In this paper, we only consider constraints for whichunk(c(i)j) = unk(ci(j)) =

∅ 1. In this case, a partially known constraintci(j) is completely specified by
its permitted tuples (tuples not inprm(ci(j)) are infbd(ci(j))). Furthermore,

prm(cij) = prm(ci(j)) ∩ prm(c(i)j) (1)

For example, let us consider then-pieces m-chessboardproblem. Given a
set ofn chess pieces and am×m chessboard, the goal is to put all pieces on
the chessboard in such a way that no piece attacks any other. As DisCSP, the
problem can be formulated as follows,

• Variables: one variable per piece.

• Domains: all variables share the domain{1, . . . ,m2} of chessboard po-
sitions.

• Constraints: one constraint between every pair of pieces, following chess
rules.

• Agents: one agent per variable.

For example, we can taken = 5 with the set of pieces{queen, castle, bishop,
bishop, knight}, on a4× 4 chessboard, with the variables,

x1 = queen, x2 = castle, x3 = bishop, x4 = bishop, x5 = knight.

1 In the PKC formulation for versions of stable marriage problem in which people desire to
keep their marriage proposals (assignments) and preference lists (constraints) private during
the search of a stable matching,unk(c(i)j) = unk(ci(j)) 6= ∅, see (BM05) for more details.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11

If agent 1 knows that agent 5 holds a knight, and agent 5 knows that agent 1
holds a queen, the result is a completely known constraintprm(c15) including
the following tuples,

prm(c15) = {(1, 8), (1, 12), (1, 14), (1, 15), . . .}

With the PKC model, agent 1 does not know which piece agent 5 holds. It
only knows how a queen attacks, from which it can develop the constraint,

prm(c1(5)) = {(1, 7), (1, 8), (1, 10), (1, 12), . . .}

Analogously, agent 5 does not know which piece agent 1 holds.Its only
information is how a knight attacks, from which it can develop the constraint,

prm(c(1)5) = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 8), . . .}

The whole constraintc15 is equal to the intersection of these two constraints,

prm(c15) = c1(5) ∩ c(1)5 = {(1, 8), . . .}

In fact, prm(c1(5)) does not depend on agent 5. It codifies the way a queen
attacks, which is independent of any other piece. In this problem, the PKC
model allows each agent to represent its constraints, independently of other
agents.

4.2. ASSIGNMENT PRIVACY

Agents may desire to keep the assigned values to their variables private. To
achieve this, agents must avoid sending their assigned values to other agents.
An ABT agent sends its value in two types of messages (betweeni and j,
i < j):

1. ok?: when agenti informs low priority agents of its value assignment.
This message is used byj to find a compatible value withi, soj has to
know the constraintcij .

2. ngd: when agentj sends a backtrack message toi. This message con-
tains the value assignments of theAgentV iew of j. It is used byi to
check whether the nogood message is obsolete, by checking whether the
assignments of common variables with agents of higher priority than i,
in the agent views ofi andj, are the same.

The first point could be solved if, instead of sendingi’s current value, the
ok? message contains the subset ofDj values that are compatible withi’s
current value. From this subset,j may be consistently assigned with respect
to the constraint withi.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12

The second point can be solved by the use of identifiers. We propose to
use a sequential number over the assignments of the variable. Each variable
keeps a sequence number that starts from 1 (or some random value), and
increases monotonically each time the variable changes itsassignment, acting
as a unique identifier for each assignment. Messages includethe sequential
number of the assignment of the sending agent. The agent viewof the re-
ceiver is composed of the sequence numbers it received inok? messages
from higher priority agents. Nogoods are composed of variables and their
sequential numbers.

5. ABT Algorithms for Partially Known Constraints

We present two ABT algorithms for solving DisCSP that incorporate the PKC
model of constraints. Initially, solving algorithms have two solving phases,
one for each partial constraint. Later, these two phases arecombined into
one.

We emphasize that in the case of constraints privacy, both ofour proposed
algorithms reveal the same kind of information that standard ABT would have
revealed in its messages when solving the same problem. However, standard
ABT requires that for every binary constraint, the entire part of the constraint
which is initially held by the higher priority agent will be revealed to the lower
priority agent before the algorithm starts. Our proposed algorithms attempt to
minimize this exposure of information to the minimum necessary.

5.1. TWO-PHASE STRATEGY

In the PKC model, if agentsi andj are constrained,i knowsci(j) andj knows
c(i)j , but none knows the total constraintcij . The first method for solving
DisCSP under the PKC model appears in (BM03). It consists of acycle of two
phases. In the first phase (phase I), the original problem is relaxed considering
only one partial constraint for each pair of constrained agents. If no solution is
found in phase I, the procedure ends returning failure, since no solution exists
for the whole problem. If a solution is found, it is passed to the second phase
(phase II) where it is checked against the partial constraints not considered in
phase I. If it is also a solution of phase II, then it is a solution for the whole
problem. Otherwise, one or several nogoods are generated and the search is
resumed in phase I. Nogoods found in phase II are used in phaseI to escape
from incompatible assignments.

The two-phase strategy is a generic method which implementation details
depend on the algorithm used to find a solution with respect tothe considered
partial constraints.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

13

ABT-2ph. The ABT-2ph algorithm is a combination of the ABT algorithm
with the two-phase strategy. It works as follows:

• Phase I. Constraints are directed, forming a DAG, and a compatible total
order of agents is selected. The standard ABT algorithm findsa solution
with respect to constraintsc(i)j , where agenti has higher priority thanj
(the constraintc(i)j is checked by the lower priority agent,j). A solution
is identified by detecting quiescence in the network. If no solution is
found, the process stops, reporting failure.

• Phase II. Constraints and the order of agents are reversed. Now ci(j) are
considered, wherej has higher priority thani (e.g. in thereversedorder).
j informs i of its value. If the value ofi is consistent,i does nothing.
Otherwise,i sends angd message toj, which receives that message
and does nothing (this nogood will be used when Phase I is resumed).
Quiescence is detected.

Figure 2 presents the code for the ABT-2ph algorithm. In the main procedure,
the agents perform standard ABT (procedureABT-I()) to find a solution
compatible with all constraints held by lower priority agents. If such a so-
lution is obtained, the agents reverse the total order by exchangingΓ− and
Γ+. Then phase II is performed (procedureABT-II()). If it is successful
(no nogood generated during phase II), the algorithm terminates. Otherwise
Γ− andΓ+ are exchanged again and phase I is resumed. Agents exchange
ABT message types, plus the messagesqes, qnn meaning quiescence in the
network afterngd and after nongd messages, respectively.

An extra agent calledsystemis responsible for detecting network quies-
cence. Messagesqes andqnn are sent bysystemto the rest of agents. Net-
work quiescence state can be detected bysystemusing specialized snapshot
algorithms (CL85).

5.2. ONE-PHASE STRATEGY

Instead of checking only part of the constraints in phase I and verifying the
proposed solution in phase II, all constraints can be testedsimultaneously in
a single phase. An agent has to check all its partially known constraints with
both higher and lower priority agents. To do this, an agent has to inform all
its neighboring agents when it assigns a new value, and nogood messages can
go in both directions (from lower priority to higher priority agents as in ABT
but, also from higher to lower). In the following, we presentthe ABT-1ph
algorithm obtained by combining ABT with the one-phase strategy.

ABT-1ph. In ABT, binary constraints are held completely by the lower pri-
ority agent involved in each constraint according to a totalagent ordering.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14
procedure ABT-2ph()

computeΓ−, Γ+; myV alue← empty;end← false;nogoods← false;
repeat
ABT-I();
if (¬end)

exchangeΓ−, Γ+;
ABT-II();
exchangeΓ−, Γ+;

until end or¬nogoods

procedure ABT-I()
quiescence← false;
CheckAgentView();
while (¬end ∧ ¬quiescence) do

msg ← getMsg();
switch(msg.type)

ok? : ProcessInfo(msg);
ngd : ResolveConflict(msg);
adl : SetLink(msg);
stp : end← true;
qes : quiescence← true;

procedure ABT-II()
quiescence← false;
for each child ∈ Γ+(self) do sendMsg:ok?(child, myV alue));
while (¬quiescence) do

msg ← getMsg();
switch(msg.type)

ok? : if ¬ consistent(myV alue, msg.V alue) then
sendMsg:ngd(self = myV alue⇒ msg.Sender 6= msg.V alue);

ngd : add(lhs(msg.Nogood, myNogoodStore)); myV alue← empty;
qes : quiescence← true;nogoods← true; /* quiescence with nogoods messages */
qnn : quiescence← true;nogoods← false; /* quiescence without nogoods messages */

Figure 2. The ABT-2ph algorithm for the PKC model. Missing proceduresappear in Figure
1.

Lower priority agents check consistency of assignments received from higher
priority agents viaok? messages. In the PKC model, constraints are only
partially known to each of the participating agents. Consequently, both of the
constrained agents need to check the consistency of their assignments against
each other. This means that checking consistency of a pair ofconstrained
assignments by the lower priority agent is no longer sufficient.

In single-phase Asynchronous Backtracking for the PKC model (ABT-
1ph), each agent checks its constraints with all constraining agents (i.e. neigh-
bors on the constraint graph). This includes higher priority, as well as lower
priority constraining agents. Agents hold in theirmyAgentV iew the assign-
ments of agents with higher and lower priorities. Values from the domain

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

15

of agents are eliminatedonly if they violate constraints with higher priority
agents. After a new assignment is found to be consistent with all assignments
of higher priority agents inmyAgentV iew (agents inΓ−), the selected as-
signment is checked against the assignments of lower priority agents (agents
in Γ+). If a conflict is detected, the agent keeps its assignment and sends a
ngd message to the lower priority agent, including its own assignment and the
conflicting assignment. An agent processesngd messages in the same way,
no matter if they come from higher or lower priority agents.

Figure 3 presents the changes in ABT to transform it into ABT-1ph. The
only differences areProcessInfo() andCheckAgentView(). In the
first procedure, after receiving the assignment of a lower priority agent, if it is
not compatible withself current value, angd message is sent to that agent.
In the second procedure, after assigningself with a value consistent with all
assignments of agents inΓ−, it is sent to all agents inΓ− ∪ Γ+. In addition,
if there are agents inΓ+ with inconsistent values, angd message is sent to
them. Although a nogood is sent, the current assignment (myV alue) is not
replaced.

5.3. FORMAL PROPERTIES

Here we prove that ABT-2ph and ABT-1ph inherit the good formal properties
of ABT. The search space is defined by the variables and domains of the
problem instance. The way this space is traversed depends on(i) the total or-
der among agents and (ii) the set of nogoods generated duringasynchronous
search. Assuming that all algorithms follow the same agent ordering, the
proof will be based on the fact that all algorithms generate the same nogoods.
This is proven in the following lemma.

LEMMA 1. A nogood can be generated by ABT-2ph/1ph iff it can be gener-
ated by ABT.

Proof. Let us differentiate between explicit and implicit nogoods. In ABT, an
explicit nogood is generated as a consequence of anok? message. An implicit
nogood is generated by resolution of the set of nogoods that forbid all values
of a variable.
Explicit nogoods. Let i andj be two agents,i < j in the total order, and let
xi = v ⇒ xj 6= w be a nogood generated by ABT-2ph/1ph. If the pair(v,w)
is forbidden inc(i)j , this nogood will be generated inj after receiving theok?
message containingxi = v , and it will be stored inj. Otherwise, if the pair
(v,w) is permitted inc(i)j but forbidden inci(j), it will be generated ini, and
it will be sent fromi to j as a Nogood and stored inj. In any case, if it is
forbidden by, at least, one partial constraint, the pair(v,w) is forbidden by
the total constraintcij . Therefore, it will be generated by ABT.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16
procedure ABT-1ph()

myV alue← empty;end← false; computeΓ+, Γ−;
CheckAgentView();
while (¬end) do

msg ← getMsg();
switch(msg.type)

ok? : ProcessInfo(msg);
ngd : ResolveConflict(msg);
adl : SetLink(msg);
stp : end← true;

procedure ProcessInfo(msg)
UpdateAgentView(msg.Assig);

if ¬consistent(myV alue, msg.Assig) then
if (msg.Sender ∈ Γ+) then
SendMsg:ngd(msg.Sender, self = myV alue⇒ msg.Sender 6= msg.Assig);

else CheckAgentView();

procedure CheckAgentView(msg)
if ¬consistent(myV alue, myAgentV iew[Γ−]) then

myV alue← ChooseValue();
if (myV alue) then

for each child ∈ Γ+(self) ∪ Γ−(self) do sendMsg:ok?(child, myV alue);
for each child ∈ Γ+(self) such that¬consistent(myV alue, child.Assig) do

sendMsg:ngd(child, self = myV alue⇒ ¬child.Assig);
else Backtrack();

Figure 3. The ABT-1ph algorithm for the PKC model. Missing proceduresappear in Figure
1.

Let us assume that(v,w) is forbidden bycij , so in ABT the nogoodxi =
v ⇒ xj 6= w will be generated byj when it receives theok? message from
i containingxi = v. We know that the pair(v,w) will be forbidden by,
at least, one of the partial constraints in the PKC model. If it is forbidden
by c(i)j , the nogood will be generated inj after receiving theok? message
containingxi = v, and stored inj. If it is forbidden byci(j), the nogood will
be generated ini after i sendsxi = v to j andj sendingxj = w to i (this
requires two phases in ABT-2ph but a single one in ABT-1ph). This nogood
will be sent toj, and stored there. So, in both cases the nogood is generated
(and stored inj).
Implicit nogoods.(Proof by induction on the number of implicit nogoods in a
sequence of backtracking steps). The first implicit nogood in the sequence
that appears in ABT-2ph/1ph is generated by resolving explicit nogoods.
Since all explicit nogoods of ABT-2ph/1ph can be generated by ABT, and the
nogood resolution mechanism is the same, this first implicitnogood can also
be generated by ABT. Let us assume that this is true up to then-th implicit

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

17

nogood generated by ABT-2ph/1ph, and let us prove that this is the case for
then+1-th implicit nogood. Let us consider then+1-th implicit nogood gen-
erated. It has been computed by resolving previous nogoods,either explicit or
implicit. We have already proved that explicit nogoods can also be generated
by ABT. All previous (n) implicit nogoods can be generated by ABT by the
induction step. Therefore, since the nogoods involved in the resolution can all
be generated by ABT and the resolution process is the same, the resolvent no-
good could also be generated by ABT. A similar argument holdsin the other
direction of the lemma, starting from ABT implicit nogoods and implying
nogoods of ABT-2ph/1ph. 2

PROPOSITION 1.ABT-2ph/1ph are sound, complete and terminate.

Proof. Soundness.If ABT-2ph/1ph report a solution, it is because the net-
work has reached quiescence. In that case, every partial constraint is satis-
fied (otherwise, quiescence cannot be reached). If every partial constraint is
satisfied, every total constraint is satisfied as well (by definition of partial
constraints, see 4.1). Therefore, the reported solution isa true solution.
Completeness.ABT-2ph/1ph perform the same kind of search as ABT: total
ordering of agents, asynchronous instantiation, resolving nogoods, adding
links, etc. Their only difference is that (i) agents send their assignments to
higher and lower priority agents throughok? messages, and (ii) if a higher
priority agent receives one of theseok? messages with a value that is incon-
sistent with its current value, it sends a nogood message to the sender. These
points are crucial in the generation of nogoods. But we know,by Lemma
1, that these changes do not cause any modification in the set of nogoods
generated by these algorithms with respect to ABT. Consequently the ABT-
2ph/1ph algorithms will discard the same parts of the searchspace as ABT,
but not other parts. Since ABT is complete, ABT-2ph/1ph are also complete.
Termination.An argument similar to the one used in completeness applies
here. Nogoods rule out parts of the search space. Because of the total ordering
of agents, discarded parts accumulate, so ABT terminates ina finite search
space (see (BBMM05)). Since ABT-2ph/1ph generate the same nogoods as
ABT, and they perform the same kind of search, ABT-2ph/1ph also terminate.
2

5.4. AN EXAMPLE

Let us consider the problem of safely locating a queenQ and a knightk on a
4× 4 chessboard (see Subsection 4.1 for the formal definition of the n-pieces
m-chessboard problem). Each piece is handled by an independent agent, and
none knows the identity of the other piece, so the PKC model applies here.
There is a single constraint betweenQ andk. Initially we assume thatQ has

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18

higher priority thank, so the constraint is directedQ→ k. Let us follow the
execution of ABT-2ph/1ph on this problem.

ABT-2ph works as follows. Phase I starts locating each piecein the first
position of the chessboard. Afterwards,Q informsk of its current assignment.
This causesk to take value 2, which is consistent according to its partial
constraint with the value ofQ. Then, quiescence is reached and phase II
starts. The constraint direction is reversed, nowk → Q. k informs Q of
its value.Q notes that its current value is not consistent with the valueof
k, so it sends angd message tok. Quiescence is reached and the constraint
direction is reversed again toQ → k. Phase I starts.k realizes that its value
is eliminated by theNogood contained in thengd message received in phase
II, so k changes its value to 3. Quiescence is reached and phase II starts. The
constraint direction is reversed, nowk → Q. k informs Q of its value.Q
finds that its current value is not consistent with the value 3of k and then
sends angd message tok. Quiescence is reached and the search is resumed
in phase I. This process continues untilk takes value 8. Then,k informsQ of
the new assignment.Q checks that its assignment is consistent withk value.
Quiescence is reached causing termination because nongd message has been
generated in phase II.

ABT-1ph works as follows. First, each piece takes value 1. Agents ex-
change twook? messages.Q informs k that it has taken value 1, andk
informs Q that it has taken value 1. WhenQ receives theok? message, it
sends angd message tok informing that its current value it is not consistent
with the value ofQ (both pieces are in the same chessboard cell). Whenk
receives theok? andngd messages it takes value 2 and informs this change
to Q via an ok? message. WhenQ receives this message it notes that its
current value is not consistent withk value, soQ sends anngd message to
k informing it to change its value. Then,k takes the value 3 and informsQ.
This process continues untilk takes value 8. Then, it informsQ of the new
assignment.Q finds that its current value is consistent with the value ofk, so
it does nothing. Quiescence is reached causing termination.

6. Distributed Forward Checking for Assignment Privacy

ABT-2ph/1ph reach a solution while keeping constraint privacy. However,
they do not achieve assignment privacy because two constrained agents have
to exchange their value assignments, in order to verify thattheir partial con-
straints are satisfied. Therefore, when a solution is found,an agent knows the
value assigned to every agent constrained with it.

To enforce assignment privacy while keeping constraint privacy in the
PKC model, we propose theDistributed Forward Checking(DisFC) algo-
rithm. It is inspired by the Forward Checking algorithm in the centralized

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

19

case (HE80). Considering two constrained agentsi and j, i < j, the idea
is, instead ofi sending its assigned value toj, it sends the subset ofDj that
is consistent with its assigned value. In addition, the current value assigned
to each agent is replaced by the sequential number of assignments of each
variable, as indicated in Section 4.2. As for ABT, we have twoversions of
this algorithm, with two phases or a single phase, which we term DisFC-
2ph and DisFC-1ph respectively. Each of them works as its respective ABT
counterpart, with the two differences mentioned above.

6.1. TWO-PHASE/ONE-PHASE STRATEGIES

DisFC-2ph. It works like ABT-2ph, with the already mentioned differences:
(i) instead of sending its current value assignment, agenti send the subset of
Dj consistent with it, and (ii) the assigned value is replaced by a sequence
number.

Let us consider DisFC-2ph and two constrained agentsi, j, i < j. In
phase I, the partial constraintci(j) is tested byi, while in phase IIc(i)j is
tested byj. In ABT-2ph it happens exactly in the opposite order: in phase I
c(i)j is tested byj and in phase IIci(j) is tested byi. This is due to the type of
information sent (values in ABT-2ph, consistent sub-domains in DisFC-2ph)
and to the partial constraint owned by each agent, but this isnot a fundamental
difference.

The DisFC-2ph algorithm appears in Figure 4. Each agent stores assign-
ments of higher priority agents inmyAgentV iew and the received nogoods
in myNogoodStore. It uses the same types of messages as ABT-2ph.

DisFC-1ph. It works like ABT-1ph, with the already mentioned differences:
(i) instead of sending its current value, agenti sends the subset ofDj consis-
tent with it, and (ii) the assigned value is replaced by a sequence number.
The DisFC-1ph algorithm appears in Figure 5. Beside the datastructures
of DisFC-2ph, each agent keeps inmyFilteredDomain[i] the last filtered
domain received from agenti, a lower priority constraining agent.

6.2. FORMAL PROPERTIES

Regarding nogoods, the only difference between ABT-2ph/1ph andDisFC-
2ph/ DisFC-1ph is that actual values are replaced by sequence numbers. This
is fine, as the only role of values/sequence numbers is to detect that an as-
signment is obsolete. However, it might occur that two different sequence
numbers for one variable would represent the same value. If this happens
after receiving a backtrack message, when comparing the agent view of the
message with the agent view of the receiver, the message willbe discarded
as obsolete. But this will cause no problem. Since each time the sequence
number changes, anok? message is sent, if either the sender or the receiver

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20
procedure DisFC-2ph()

computeΓ−, Γ+; myV alue← empty;end← false;nogoods← false;
repeat
DisFC-I();
if (¬end)

exchangeΓ−, Γ+;
DisFC-II();
exchangeΓ−, Γ+;

until end or¬nogoods

procedure DisFC-I()
quiescence← false;
CheckAgentView();
while (¬end ∧ ¬quiescence) do

msg ← getMsg();
switch(msg.type)

ok? : ProcessInfo(msg);
ngd : ResolveConflict(msg);
adl : SetLink(msg);
stp : end← true;
qes : quiescence← true;

procedure ProcessInfo(msg)
UpdateAgentView(msg.Sender = msg.Seq);
UpdateDomain(msg);
CheckAgentView();

procedure ResolveConflict(msg)
if coherent(msg.Nogood,Γ−(self) ∪ {self}) then
CheckAddLink(msg);
add(msg.Nogood,myNogoodStore); myV alue← empty;
CheckAgentView();

else if coherent(msg.Nogood, self) then
SendMsg:ok?(msg.Sender,mySeq,compatible(D(msg.Sender),myV alue));

procedure CheckAgentView()
if (myV alue = empty ∨myV alue eliminated bymyNogoodStore) then

myV alue← ChooseValue();
if (myV alue) then

mySeq← mySeq + 1;
for each child ∈ Γ+(self) do sendMsg:ok?(child, mySeq,compatible(D(child), myV alue));

else Backtrack();

procedure UpdateDomain(msg)
for each v ∈ D(self) ∧ v /∈ msg.Domain do
add(msg.Sender = msg.Seq⇒ self 6= v, myNogoodStore);

procedure DisFC-II()
quiescence← false;
for each child ∈ Γ+(self) do sendMsg:ok?(child, mySeq,compatible(D(child), myV alue));
while (¬quiescence) do

msg ← getMsg();
switch(msg.type)

ok? : if myV alue /∈ msg.Domain then
sendMsg:ngd(self = mySeq⇒ msg.Sender 6= msg.Seq);

ngd : add(msg.Nogood,myNogoodStore); myV alue← empty;
qes : quiescence← true;nogoods← true; /* quiescence with nogoods messages */
qnn : quiescence← true;nogoods← false; /* quiescence without nogoods messages */

Figure 4. The DisFC-2ph algorithm for the PKC model. Missing procedures appear in Figure
1.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

21

procedure DisFC-1ph()
myV alue← empty;end← false; computeΓ+, Γ−;
CheckAgentView();
while (¬end) do

msg ← getMsg();
switch(msg.type)

ok? : ProcessInfo(msg);
ngd : ResolveConflict(msg);
adl : SetLink(msg);
stp : end← true;

procedure ProcessInfo(msg)
UpdateAgentView(msg.Sender = msg.Seq);
if (msg.Sender ∈ Γ+(self)) then myFilteredDomain[msg.Sender]← msg.Domain;
if (msg.Sender ∈ Γ−(self)) then UpdateDomain(msg);
if ¬(myV alue ∈ msg.Domain) then

if (msg.Sender ∈ Γ+(self)) then
SendMsg:ngd(msg.Sender, self = mySeq ⇒ msg.sender 6= msg.Seq);

else CheckAgentView();

procedure CheckAgentView()
if (myV alue = empty ∨myV alue eliminated bymyNogoodStore) then

myV alue← ChooseValue();
if (myV alue) then

mySeq ← mySeq + 1;
for each child ∈ Γ+(self) ∪ Γ−(self) do

sendMsg:ok?(child, mySeq,compatible(D(child), myV alue));
for each child ∈ Γ+(self) such that¬ (myV alue ∈ myFilteredDomain[child]) do

sendMsg:ngd(child, self = mySeq ⇒ child 6= child.Seq);
else Backtrack();

Figure 5. The DisFC-1ph algorithm for the PKC model. Missing procedures appear in Figure
4.

of the backtrack message are not updated, it means that the message with the
most updated sequence number has not arrived yet, but it is onits way. After
its arrival, the backtrack message will be accepted. After this clarification,
we prove that the good theoretical properties of ABT-2ph/1ph also hold for
DisFC-2ph/1ph.

LEMMA 2. A nogood can be generated by DisFC-2ph/1ph iff it can be
generated by ABT.

Proof. Let us consider two constrained agentsi, j, i < j. The only difference
with ABT-2ph/1ph is thatok? messages may generate more than one nogood.
In fact, anok? message fromi to j generates as many nogoods as values

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22

considered inconsistent inDj. These nogoods would have been generated by
ABT if these values would have been successively assigned toj. The rest of
the proof is equal to the one of Lemma 1. 2

PROPOSITION 2.DisFC-2ph/1ph are correct, complete and terminate.

Proof. Analogous to the proof of Proposition 1 2

6.3. AN EXAMPLE

Let us consider the same problem of safely locating a queenQ and a knight
k on a4× 4 chessboard we have discussed as an example for ABT-2ph/1ph.
Each piece is handled by an independent agent, and none knowsthe identity
of the other piece, so the PKC model applies here. There is a single constraint
betweenQ andk. Initially, we assume thatQ has higher priority thank. We
show the execution of DisFC-2ph/1ph on this problem.

Considering DisFC-2ph, the algorithm execution is as follows (assuming
that values are selected lexicographically). When phase I starts, both pieces
take value 1.Q informsk of its filtered domain with respect toQ’s assigned
value, andk changes its assigned value to 7. Quiescence is reached and phase
II starts. The constraint direction is reversed, nowk → Q. k informsQ of its
filtered domain with respect to its assigned value.Q realizes that its current
value assignment is forbidden, so it sends anngd message tok. Quiescence
is reached and the constraint direction is reversed again, now Q→ k. Phase I
starts.k realizes that its assigned value is eliminated by the nogoodcontained
in thengd message received in phase II. Therefore,k changes its assignment
to 8. Quiescence is reached and phase II starts. The constraint direction is
reversed, nowk → Q. k informsQ of its filtered domain with respect to its
assigned value.Q finds that its current assignment is consistent, so it does
nothing. Quiescence is reached causing termination because nongd message
has been generated in phase II.

When DisFC-1ph starts, both pieces take value 1. Agents exchange two
ok? messages.Q informsk of its filtered domain with respect to its assigned
value, andk informsQ of its filtered domain with respect to its own assign-
ment. WhenQ receives the message, it sends angd message tok informing
that its current value assignment is not consistent withQ’s assignment. When
k receives theok? and ngd messages it assigns value 7 and informs this
change toQ via an ok? message. WhenQ receives this message it notes
that its current assignment is not consistent, soQ sends anngd message to
k informing that it has to change its value assignment. Then,k assigns value
8 and informsQ. Q finds that its current assignment is consistent, so it does
nothing. Quiescence is reached causing termination.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

23

7. Entropy as a Privacy Measure

Given a discrete random variableZ which takes values in the discrete setS,
its entropy is defined as,

H(Z) = −
∑

i∈S

pi log2 pi

wherepi is the probability thatZ takes the valuei. H(Z) measures the
amount of missing information about the possible values of the random vari-
ableZ (CT06; Sha63). If only one valuek is possible for that variable (that
is, pi = 0,∀i 6= k, pk = 1), there is no uncertainty about the state ofZ, and
H(Z) = 0. Entropy is a non-negative magnitude.

Given a DisCSP, defined by〈X,D,C,A, φ〉, let us consider agentj. The
rest of the problem can be considered as a random variable, with a discrete set
of possible statesS. Applying the concept of information entropy, we define
the entropy associated with agentj as,

Hj = −
∑

i∈S

pi log2 pi

and the entropy associated with the whole problem as,

H =
∑

j∈A

Hj

Let us consider two imaginary statesα andβ of the whole problem. In state
α, every agent knows nothing about the values of other agents,and knows
the minimum about their constraints. In this state, privacyis at maximum,
because each agent knows the minimum on the rest of the problem. It happens
that entropy is also at maximum, because the missing information each agent
has about the rest of the agents is maximal. Let us now consider stateβ, in
which every agent knows everything about the rest of the problem. Obviously,
in this case there is no privacy at all. It happens that the entropy of this state
has its minimum value (zero) because there is no uncertaintyon the state of
any problem element. Given the relationship between privacy and entropy
(coincidence at points of maxima and minima), and the good properties of
entropy (continuity, symmetry, additivity), we propose touse entropy as a
quantitative measure of privacy.

Assuming that the initial state of a DisCSP has maximum privacy (en-
tropy), any solving process can be seen as an entropy-decreasing process.
Entropy decrement is due to two factors: (i) if a global solution is finally
reached, the solution condition decreases the uncertaintyabout the values
assigned to agents, so the entropy of the whole problem should decrease, and
(ii) in the solving process some information about values orconstraints of

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.23

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24

neighboring agents is leaked, increasing the knowledge of particular agents;
therefore, their uncertainty (and entropy) decrease.

Following our proposal of entropy as quantitative measure for privacy, we
suggest to take the entropy decrement in the solving processas a measure
of privacy loss. This allows us to compare different algorithms with respect
to privacy. We assume that every algorithm starts from the same initial state,
where privacy (entropy) is at maximum. Entropy decrement depends on the
solving algorithm. Comparing the entropy of the final statesachieved by the
different algorithms, we can compare about their relative performance with
respect to privacy loss.

In this paper, we discuss privacy on two dimensions: assignment privacy
and constraint privacy. This difference can be captured in our entropy ap-
proach by considering that the part of the problem considered is limited to
the assignments of other agents (assignment privacy) or to their constraints
(constraint privacy). Both approaches are further developed in the following.

7.1. ASSIGNMENT PRIVACY

To measure assignment privacy we use entropy limited to the assignments
of other agents, for each agentj’s. Initially, an ABT-agentj knows the total
number of agentsn, the relative position of any agent with respect toj po-
sition in the ordering, the agents connected with it and above in the ordering
Γ−

j , the agents connected with it and below in the orderingΓ+
j , its own value

valj and its own partial constraintscj(l), l ∈ Γ−
j ∪Γ+

j . We assume a common
domain sized, and agent identifiers follow the total ordering. In the initial
state, calledinit, the entropy associated with agentj is (using the additive
property of entropy (CT06)),

Hj(init) = −
n∑

k=1,k 6=j

d∑

i=1

pi log2 pi = −
n∑

k=1,k 6=j

d
1

d
log2

1

d
=

n∑

k=1,k 6=j

log2 d

where we assume that thed values for agentk have the same probability,
pi = 1

d ∀i. For convenience, we rearrange this expression as follows,

Hj(init) =
∑

k∈Γ+
j

log2 d +
∑

k>j,k 6∈Γ+
j

log2 d +
∑

k∈Γ−
j

log2 d +
∑

k<j,k 6∈Γ−
j

log2 d

(2)
where the first two terms correspond to agents belowj (constrained and not
constrained withj) and the last two terms correspond to agents abovej in the
ordering (again, constrained and not constrained withj). After finding a so-
lution in the state calledsol, the entropy of agentj depends on the algorithm
used, as follows.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

25

• ABT. Let us consider an agentk below j and directly constrained with
it. Agent j does not know the value ofk, valk, but since it belongs to a
solution, it must be consistent with its own valuevalj . Sovalk must be
consistent withvalj in the partially known constraintcj(k). Assuming
that there arenj(k) values consistent withvalj , the contribution ofk to
the entropy ofj in sol is log2 nj(k). Therefore, the contribution of all
agents constrained withj and below it in the ordering is

∑

k∈Γ+
j

log2 nj(k)

The second term of (2) does not change. Let us consider an agent i
abovej in the ordering and constrained withj. Agentj knows its value
so its contribution toHj is zero. Since this is true for any constrained
agent abovej, the third term of (2) becomes zero. The fourth term
does not change. Therefore, the entropy associated withj restricted to
assignments of other agents in thesol states is,

HABT
j (sol) =

∑

k∈Γ+
j

log2 nj(k) +
∑

k>j,k 6∈Γ+
j

log2 d + 0 +
∑

k<j,k 6∈Γ−
j

log2 d

It is worth noting that new links may appear during the solving process,
changing the setsΓ−

j andΓ+
j with respect to their initial state. If a new

link appears fromi to j, i < j, the entropy associated withj decreases
since the contribution ofi in init, log2 d, goes to zero insol.

• ABT-2ph/1ph. Let us consider agentsi andk, constrained withj, i <
j < k. Agent j knows the values ofi andk, so it has no uncertainty
about their values. Therefore, their contribution to entropy is zero. This
argument applies for any agent constrained withj, so the first and third
terms of (2) are zero. Therefore, the entropy associated with j restricted
to assignments in thesol state is,

H
ABT−2ph/1ph
j (sol) = 0 +

∑

k>j,k 6∈Γ+
j

log2 d + 0 +
∑

k<j,k 6∈Γ−
j

log2 d

• DisFC-2ph/1ph. Let us consider agentsi and k, constrained withj,
i < j < k. Agent j does not know their values, but since they form
a solution, their values must be consistent with the value ofj in the
partial constraintscj(i) and cj(k) (the argument used for ABT applies
here). Assuming that there arenj(k) values consistent withvalj in cj(k),
the entropy associated withj restricted to assignments in thesol state
is,

H
DisF C−2ph/1ph
j (sol) =

∑

k∈Γ+

j

log2 nj(k)+
∑

k>j,k 6∈Γ+

j

log2 d+
∑

k∈Γ−

j

log2 nj(k)+
∑

k<j,k 6∈Γ−

j

log2 d

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.25

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26

where the second and fourth terms of (2) remain unchanged.

These results allow us to rank these algorithms with respectto assignment
privacy.

PROPOSITION 3.Regarding assignment privacy for ABT, ABT-2ph/1ph and
DsFC-2ph/1ph, assuming that the setsΓ−

j and Γ+
j are equal for the three

algorithms in thesol state,

• the privacy loss of ABT-2ph/1ph is higher than or equal to theprivacy
loss of ABT,

• the privacy loss of ABT is higher than or equal to the privacy loss of
DisFC-2ph/1ph.

Proof. Since these algorithms are complete, they will finish their execution
finding a solution or proving that no solution exists. In caseof no solution,
there is no global assignment so it is meaningless to talk about assignment
privacy. In case of solution, this proposition follows directly from the above
results on entropy on these algorithms. Since entropy of theinitial state is the
same for the three algorithms (2), we can compare the entropyof thesol state
for the three algorithms (Sha63). Thus, we have,

HABT
j (sol)−H

ABT−2ph/1p
j (sol) =

∑

k∈Γ+
j

log2 nj(k) ≥ 0

H
DisFC−2ph/1p
j (sol)−HABT

j (sol) =
∑

k∈Γ−
j

log2 nj(k) ≥ 0

where subtraction is easily done because setsΓ−
j andΓ+

j are the same for the
three algorithms. From these expressions, we see that the entropy in thesol
state of agentj is higher (or equal to in the limit case) when using ABT than
when using ABT-2ph/1ph, and similar result occur between DisFC-2ph/1ph
and ABT. Since this is computed for any agentj, we conclude that theassign-
mentprivacy loss of ABT-2ph/1ph is higher than or equal to theassignment
privacy loss of ABT, and theassignmentprivacy loss of ABT is higher than
or equal to theassignmentprivacy loss of DisFC-2ph/1ph. 2

7.2. CONSTRAINT PRIVACY

To measure constraint privacy we use entropy limited to the constraints in-
volving j and other agents. In the initial state defined above (init state),

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.26

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

27

the entropy associated with agentj is (using the additive property of en-
tropy (CT06)),

Hj(init) = −
n∑

k=1,k 6=j

∑

i

pi log2 pi = −
∑

k∈Γ+
j

∑

i

pi log2 pi−
∑

k∈Γ−
j

∑

i

pi log2 pi

where the contribution of agents not constrained withj is zero (they are con-
nected withj by the universal constraint that allows every tuple, so there is no
uncertainty associated with these constraints). We are interested in knowing
what agentj can infer aboutcjk. Agentj knows that every zero entry (pair
of incompatible values) incj(k) will be a zero entry incjk. The number of

matrices representing constraintcjk compatible withcj(k) is 2d2−zj(k) , where
zj(k) is the number of zero entries in the matrix corresponding tocj(k). The
probability for each of the possible states of agentk, with respect to its con-
straints with agentj, is constant and equals 1

2
d2−zj(k)

. Since the number of

possible states for agentk is 2d2−zj(k) , the fixed probability can be taken out
of the sum of the entropy for agentk and is summed up to 1. The contribution
of each agentk is,

−
∑

i

pi log2 pi = −2d2−zj(k)
1

2d2−zj(k)
log2

1

2d2−zj(k)
= log2 2d2−zj(k) = d2−zj(k)

and the entropy of theinit state associated withj is,

Hj(init) =
∑

k∈Γ+
j

d2 − zj(k) +
∑

k∈Γ−
j

d2 − zj(k) (3)

When the solving process finishes, no matter whether a solution has been
found or not, the system is in theend state. The entropy decrement depends
on the solving algorithm, as follows.

• ABT. Let us consider an agentk abovej and constrained with it. In
order to run ABT agentj has toknow completelycij , so there is no
uncertainty about it. Since this argument applies to any agent abovej
and constrained with it, the second term of (3) becomes zero.Then, the
entropy is,

HABT
j (end) =

∑

k∈Γ+
j

d2 − zj(k)

How much iszj(k)? This depends on the particular problem considered.
We have evaluated the entropy of theend state empirically, in Section 8.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.27

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28

• ABT-2ph. Both terms of (3) depend on the execution of the particular
algorithm. In ABT-2ph, an agenti abovej may reveal toj some entries
in ci(j). Combining this information withcj(i), j knowse′ij entries ofcij ,
e′ij ≥ zj(i). Analogously with agentk belowj. After execution agentj
may knowe′′jk entries ofcjk, e′′jk ≥ zj(k). Then, the entropy is,

HABT−2ph
j (end) =

∑

k∈Γ−
j

d2 − e′jk +
∑

k∈Γ+
j

d2 − e′′jk

e′jk and e′′jk depend on particular executions, so we do not have their
analytical expressions. We have evaluated the entropy of the end state
empirically, in Section 8.

• ABT-1ph. The first term of (3) depends on the particular algorithm ex-
ecution, in the same way of ABT-2ph. However, with agentk below j,
after execution agentj cannot infer further entries incjk. Therefore, the
entropy is,

HABT−1ph
j (end) =

∑

k∈Γ−
j

d2 − e′jk +
∑

k∈Γ+
j

d2 − zj(k)

e′jk depends on particular executions, so we do not have its analytical
expression. We have evaluated the entropy of theend state empirically,
in the Section 8.

• DisFC-2ph/1ph. Here it is a bit more complex to compute the entropy
associated with theend state. Let us consider agenti abovej and con-
strained with it. We have to compute#mci(j), the number of matrices
which are compatible with the information exchanged between i and
j during the solving process. One of these matrices isci(j). Combining
this information withcj(i), agentj can obtain the matrixcij . The entropy
corresponding to the uncertainty ofci(j) is,

−
∑

i

pi log2 pi = −#mci(j)
1

#mci(j)
log2

1

#mci(j)
= log2 #mci(j)

and the entropy of theend state is,

H
DisFC−2ph/1ph
j (end) =

∑

i∈Γ−∪Γ+

log2 #mci(j)

Again, we do not have an analytical expression for#mci(j). The entropy
expression is evaluated experimentally in Section 8.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.28

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

29

Parameterse′jk, e
′′
jk and#mci(j), appearing in the previous expressions, are

computed as follows:

• e′jk, e
′′
jk(ABT-2ph/1ph), (agentsi < j < k):

- Explicit nogood in ABT-2ph/1ph. If j receives an explicitngd mes-
sage from an agenti, then j may deduce that the entry corre-
sponding to the combination of current values ofi andj in ci(j)

is forbidden, and therefore,j may deduce that this entry incij is
also forbidden.

- Explicit good in ABT-2ph. If during the second phase of ABT-2ph,
j does not receive an explicitngd message from an agenti, then
j may deduce that the entry corresponding to the combination of
current values ofi andj in ci(j) is permitted, and therefore,j may
deduce that this entry incij is equal to this entry inc(i)j .

- Explicit good in ABT-2ph. If during the second phase of ABT-2ph,
j receives anok? message from an agentk, thenj may deduce the
entry corresponding to the combination of current values ofj and
k in c(j)k is permitted, and therefore,j may deduce that this entry
in cjk is equal to this entry incj(k).

• #mci(j) (DisFC-2ph/1ph). Let us consider a constraint as ad × d, 0/1
matrix. In DisFC-2ph/1ph, agenti sends rows ofci(j) to j; at the endj
has a subset of rows without knowing their position inci(j). In addition,
some search episodes (information exchanged by agents in phase II in
DisFC-2ph, nogood messages from high to low priority agentsin DisFC-
1ph) may reduce the number of acceptable positions for a particular
row. To assess the amount of information revealed, we compute the
number of matrices that are compatible with the exchanged rows. With
this aim, we construct a CSP instance where the variables arethe rows,
their domains are the acceptable positions, under the constraints that two
different rows cannot go to the same position and every row must get a
position. Computing all solutions of this instance (an NP-hard task) we
obtain all compatible matrices. One of these matrices representsci(j).

Figure 6 presents an example of DisFC-1ph execution that illustrates
when and what kind of information about constraints that agents can
infer after message reception. The example consists of two agentsi and
j, each having one variable with domain:{a, b, c, d, e}. We look at each
constraint as a matrix in which every entry represents the compatibility
of two values, assuming that values are lexicographically ordered. An
entry with 0 or 1 indicates that the corresponding value pairis forbidden
or permitted, respectively.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.29

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30

Agent j

Agent i

ok?(from=i, to=j, sni=10,

domain=[a, b, d])

xj = b

xi = c

Agent j

Agent i

ok?(from=j, to=i, snj=23,

domain=[a, b, d])

xj = b

xi = c

Agent j

Agent i

ngd(from=i, to=j,

sni=10 snj=23)

xj = ?

xi = c

(a) (b) (c)

xi has value value c

or e and the row

corresponding to

value c or e in ci(j) has

the form: [1 1 0 1 1].

Figure 6. Information deduced by a DisFC-1ph agent after receiving angd message from a
higher priority agent.

The example starts when agenti sends anok? message to agentj saying
that agenti’s current value is compatible only with the values{a, b,
d} of agentj’s domain (Figure 6.a). From this message, agentj may
deduce that there is a row inci(j) with the form: [11010]. However, with
this information agentj cannot infer the position of this row inci(j).
After receiving theok? message, agentj takes a new value and sends an
ok? message to agenti saying that the only permitted values for agent
i are in the domain{a, b, d} (Figure 6.b). Similar to agentj, agenti
may deduce thatc(i)j has a row with the form [11010]. When agenti
receives theok? message fromj, it discovers that the received message
is incompatible with its own value and sends angd to agentj (Figure
6.c). From this message, agentj can deduce that agenti’s current value
is not included in the compatible domain thatj just sent toi. Therefore,
the current value of agenti is eitherc or e. Thus, agentj may deduce
that the row corresponding toc or e in ci(j) has the form [11010] (i.e.
the valuec or e for agenti are compatible only witha, b andd for agent
j). Next, agentj changes its value and sends a newok? message, with
the compatible values{a, b, e}. Agent i answers with angd message,
and agentj discovers thatci(j) has a row with the form [11010] that
corresponds to valuec or d.

In the above example, the CSP that agentj constructs includes two vari-
ablesx1 andx2, one for each time the row [11010] has been discovered.
The domains of these variables are:{c, e} and{c, d}, respectively. There
exists a constraint between variables to avoid that both rows be associ-
ated to valuec. The CSP has 4 solutions:s1 = {x1 = x2 = c}; s2 =
{x1 = c, x2 = d}; s3 = {x1 = e, x2 = c}; s4 = {x1 = e, x2 = d}.
The number of consistent matrices withc(i)j is: 2(25−5) + 2(25−10) +

2(25−10) +2(25−10)−rep = 2(25−5) +3×2(25−10)−rep. Each term ex-

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.30

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

31

presses the number of consistent matrices related to each solution of the
CSP. The first representss1; the second,s2 and so on. The interpretation
of s1 is that both identical rows correspond to the same valuec. That is to
say, only one row ofc(i)j has been revealed (5 entries out of 25) and the
rest have not (25 - 5 entries out of 25). Then, there exist225−5 matrices
consistent with the information derived froms1. Following the same
analysis, one can obtain the terms of the formula related to the solutions
s2, s3 ands4, where 10 entries out of 25 are revealed. By substracting the
termrep from the first four terms, one avoids counting one matrix more
than once. This,rep = 2(25−5)+2×2(25−10), because the matrices fors2

ands3 are included in the matrices fors1, and as well as matrices fors1

are included in the matrices fors4. Hence, according to the information
thatj has at the end of the search, the originalci(j) could be one of those
215 = 32768 matrices.

In DisFC-2ph, the process that agentj follows to reconstructci(j) is the
almost same as for DisFC-1ph with some minor differences. Similar to
ABT-2ph, all inferences are done inphase II. When agentj receives
a ngd message from a higher priority agent, the process is the sameas
for DisFC-1ph. In addition, if after agentj has sent anok? message
to a higher priority agenti, agentj does not receive angd message
from i, this means thati’s value appears in the domains sent byj to i in
the ok? message. Thus, the rows previously sent from agenti to agent
j correspond to one of the values that appear in the domain thatwas
included in theok? message sent from agentj to agenti.

In any case, after agentj resolves the associated CSP and it identifies the
matrices that are consistent withci(j), it must combine each of them with
the matrix that representsc(i)j following Equation 1 (Subsection 4.1), to
compute the matrices that are consistent with the total constraint cij .

The above results allow us to rank ABT and ABT-1ph with respect to con-
straint privacy (the other algorithms are not ranked because they depend on
parameterse′jk, e

′′
jk, #mci(j) which are not comparable withzj(k)).

PROPOSITION 4.The privacy loss of ABT-1ph is lower than or equal to the
privacy loss of ABT.

Proof. Analogous to the proof of Proposition 3 but replacing thesol state by
theend state and performing substraction betweenHABT−1ph

j andHABT
j .2

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.31

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

32

8. Experimental Evaluation

The common approach in evaluating the efficiency performance of distributed
algorithms is to compute two independent measures: search effort, in terms
of computation steps (Lyn97; YH00), and communication load, in terms of
the total number of exchanged messages (msg) (Lyn97).

Non concurrent steps of computation are counted by a method similar to
the logical clocks of Lamport (Lam78). Every agent holds a counter of com-
putation steps. Each message carries the value of the sending agent’s counter.
When an agent receives a message it stores the data received together with
the corresponding counter. When the agent first uses the received message, it
updates its counter to the largest value between its own counter and the stored
counter value which was carried by the message (ZM06b). By reporting the
cost of the search as the largest counter held by some agent atthe end of the
search, a measure of non-concurrent search effort that is close to Lamport’s
logical time is achieved (Lam78). If instead of steps of computation, the
number of constraint checks is counted, then the local computational effort
of agents is measured as the number of non-concurrent constraint checks
(NCCCs) (MRKZ02; ZM06b).

In this study, besides efficiency, we are interested in empirically evaluat-
ing the assignment and constraint privacy that ABT and the proposed PKC
algorithms achieve. As we have discussed in Section 7, we usethe entropy
of agents to measure each privacy type. Since each agent’s entropy in the
init state is the same for every algorithm, we restrict the privacy analysis to
compare the algorithms according to the entropies that agents have in thesol
andend states as measures of assignment and constraint privacy, respectively.
In the experiments, we report for each algorithm and privacytype aglobal en-
tropyvalue, which simply is the sum of entropy values of the agentswhen the
algorithm ends. Larger values of global entropy correspondto higher privacy
and lower privacy loss.

Experiments are performed on random constraint networks ofn variables,
k values in each domain, a constraint densityp1 and tightness of each con-
straint p2 (which are commonly used in experimental evaluations of CSP
algorithms (Smi96; Pro96)). The generated constraint networks included 15
agents (n = 15) each holding one variable, 10 values for each variable
(k = 10) and two values of constraints densityp1 = 0.4 and p1 = 0.7.
The tightnessp2 varies between 0.1 and 0.9, to cover all ranges of problem
difficulty. For each pair of density and tightness (p1, p2), 100 different in-
stances are solved by each algorithm and results are averaged over these 100
runs.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.32

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

33

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
C
C
C

p2

Solving <n = 15, m = 10, p1 = 0.40>

ABT
ABT-1ph
ABT-2ph

DisFC-1ph
DisFC-2ph

0

100000

200000

300000

400000

500000

600000

700000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
m
s
g

p2

Solving <n = 15, m = 10, p1 = 0.40>

ABT
ABT-1ph
ABT-2ph

DisFC-1ph
DisFC-2ph

Figure 7. Number of non concurrent constraints checks (top) and exchanged messages (bot-
tom) performed by ABT, ABT-1ph, ABT-2ph, DisFC-1ph and DisFC-2ph when solving PKC
DisCSPs withp1 = 0.4.

8.1. EFFICIENCY EVALUATION

Figure 7 (top) presents the number of non concurrent constraints checks to
find a solution for ABT, ABT-1ph, ABT-2ph, DisFC-1ph and DisFC-2ph on
random instances withp1 = 0.4. The less efficient algorithms are DisFC-1ph
and DisFC-2ph, algorithms that achieve some kind of assignment privacy.
Considering ABT-2ph and ABT-1ph, they both run more than twice slower
than standard ABT. An interesting difference is between thetwo-phase and
single-phase version. For problems in the phase transitionregion, the single-
phase version outperforms the double phase version. On instances with high
tightness, the single-phase version behaves like the standard algorithm (i.e.
the difference between the algorithms is constant) while the performance of
the two-phase version deteriorates. To understand this behavior one must keep
in mind that the problem solved by the first phase in the two-phase algorithm
is actually less tight than the problem solved by the single-phase algorithm.
Therefore when the single-phase algorithm detects that theproblem is too
tight to be solved, the two-phase algorithm works hard to solve a problem
with lower tightness.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.33

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

34

Considering DisFC-2ph and DisFC-1ph, we observe that DisFC-1ph is
more than twice slower than DisFC-2ph for problems close to the complexity
peak. However, DisFC-2ph is worse than DisFC-1ph for tighter problems
(p2 ≥ 0.7). These results differ from those obtained for ABT versionswhere
ABT-1ph is faster than ABT-2ph for instances close to the complexity peak.
This is explained by the following fact. Before sending anok? message, a
DisFC-1ph agent has to check consistency with each value in the domain
of every agent constrained with it. Conversely, a DisFC-2phagent has to
check consistency with every lower priority agent constrained with it, which
generates a lower number of constraint checks.

Figure 7 (bottom) presents the results for the total number of exchanged
messages among agents during algorithm execution. Again, DisFC algorithms
require a number of messages substantially larger than the other algorithms.
In contrast to the run-time measure, for low tightness instances, the number of
messages sent by ABT-2ph is smaller than for ABT-1ph. This isbecause the
agents in the single-phase algorithm sendok? messages to all their neighbors
while in the two-phase algorithm in each phase the agents send ok? mes-
sages only in one direction. However, for tighter problems,the single-phase
algorithm sends less messages than the two-phase algorithmwhen solving
instances to the right of the complexity peak. Considering DisFC versions,
the relative ordering of algorithms is, mainly, the same as that shown in the
ABT versions. DisFC-1ph agents exchange more messages thanDisFC-2ph
for problems with constraint tightness lower than 0.6 (p2 ≤ 0.6). Although,
DisFC-2ph is more costly than DisFC-1ph for the rest of the problems (p2 ≥
0.7).

Comparing these results with the ABT-2ph/1ph, we see that DisFC algo-
rithms are much slower. Similarly, agents in DisFC algorithms send more
messages. This inefficiency of DisFC algorithms can be explained. Regard-
ing NCCC, in ABT-2ph/1ph as in standard ABT, assignments are sent to
neighboring agents which concurrently check their consistency with the local
assignments. In DisFC, in order to keep the assignments private, agents must
perform the consistency checks of their proposed assignments sequentially,
checking the entire domains of their neighboring agents. This increases the
non-concurrent effort of DisFC algorithms. Regardingmsg, we observe that
DisFC algorithms are more costly than ABT versions basically because two
facts. First, DisFC agents exchange sequence numbers instead of their as-
signments. Sequence numbers are used to detect the obsolescence of nogoods
messages. Since two different sequence numbers used by an agent may rep-
resent the same variable valuation, DisFC algorithms may temporally discard
nogood messages as obsolete that are actually valid if considering the agents’
assignments (like it happens in ABT versions). Second, anok? message may
contain several conflicts in DisFC while at most one in ABT algorithms. Thus,
some updated conflicts may be discarded in DisFC due to storage limitation

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.34

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

35

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
C
C
C

p2

Solving <n = 15, m = 10, p1 = 0.70>

ABT
ABT-1ph
ABT-2ph

DisFC-1ph
DisFC-2ph

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
m
s
g

p2

Solving <n = 15, m = 10, p1 = 0.70>

ABT
ABT-1ph
ABT-2ph

DisFC-1ph
DisFC-2ph

Figure 8. Number of non concurrent constraints checks (top) and exchanged messages (bot-
tom) performed by ABT, ABT-1ph, ABT-2ph, DisFC-1ph and DisFC-2ph when solving PKC
DisCSPs withp1 = 0.7.

of nogoods (one conflict as justification of each forbidden value in all the
considered algorithms) before they have been resolved. In such case, DisFC
algorithms will rediscover and resent these conflicts, which results in an in-
crease in the number of exchanged messages. The combinationof the above
two facts causes DisFC algorithms to exchange more messagesthan ABT
versions.

In Figure 8 we report the number of non-concurrent constraint checks
(top) and exchanged messages (bottom) for ABT, ABT-1ph, ABT-2ph DisFC-
1ph and DisFC-2ph when solving high density problems. Similar results to
those of low density instances appear here. The PKC algorithms are much
more costly than ABT. Regarding non concurrent constraint checks, ABT-2ph
is much worse than ABT-1ph on the right of the peak (the same phenomenon
already observed for low density instances occurs here). The relative order
of algorithms remains unchanged for the total number of exchanged mes-
sages: ABT-1ph sends more messages than ABT-2ph for low tightness in-
stances, while it sends less messages for high tightness instances. Considering
DisFC versions, the relative order in the algorithmic performance remains
unchanged for both parameters. DisFC-1ph is almost four times slower and
sends more messages than DisFC-2ph for harder problems (i.e. close to the

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.35

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

36

200

400

600

800

1000

1200

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

A
s
s
i
g
n
m
e
n
t

G
l
o
b
a
l

E
n
t
r
o
p
y

p2

Solving <n = 15, m = 10, p1 = 0.40>

ABT
ABT-1ph
ABT-2ph

DisFC-1ph
DisFC-2ph

800

1000

1200

1400

1600

1800

2000

0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
s
s
i
g
n
m
e
n
t

G
l
o
b
a
l

E
n
t
r
o
p
y

p2

Solving <n = 15, m = 10, p1 = 0.70>

ABT
ABT-1ph
ABT-2ph

DisFC-1ph
DisFC-2ph

Figure 9. Assignment privacy in terms of entropy for ABT, ABT-2ph/1ph, DisFC-2ph/1ph for
p1 = 0.4 (left) andp1 = 0.7 (right).

complexity peak). However, DisFC-1ph outperforms DisFC-2ph, mainly in
communication cost, for problems on the right of the complexity peak (i.e.
unsolvable problems). Comparing these algorithms with ABT-2ph/1ph, the
DisFC algorithms have to perform a much larger number of constraint checks
(because they send filtered domains, not just single values)and exchange
more messages (as consequence of exchanging of sequence numbers instead
of assignments) than the latter, which justify these results.

8.2. PRIVACY EVALUATION

In Figure 9 we present the results of assignment privacy in terms of global en-
tropy for ABT, ABT-2ph/1ph and DisFC2ph/1ph when solving low and high
density random instances. Forp1 = 0.4 (plot on the left), DisFC-2ph/1ph
and ABT-2ph/1ph show the largest and smallest values of global entropy,
respectively. In terms of privacy this means that, on solvable instances, DisFC
algorithms keep agents’ final assignments more private thanABT and ABT-
2ph/1ph. Forp1 = 0.7 (plot on the right), the results bring out the same
conclusion as for low density instances: DisFC-2ph/1ph offer higher final
assignment privacy than ABT, while ABT-2ph/1ph reveal more.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.36

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

37

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o
n
s
t
r
a
i
n
t

G
l
o
b
a
l

E
n
t
r
o
p
y

p2

Solving <n = 15, m = 10, p1 = 0.40>

ABT
ABT-1ph
ABT-2ph

DisFC-1ph
DisFC-2ph

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o
n
s
t
r
a
i
n
t

G
l
o
b
a
l

E
n
t
r
o
p
y

p2

Solving <n = 15, m = 10, p1 = 0.70>

ABT
ABT-1ph
ABT-2ph

DisFC-1ph
DisFC-2ph

Figure 10. Constraint privacy in terms of entropy for ABT, ABT-2ph/1phand DisFC-2ph/1ph
for p1 = 0.4 (left) andp1 = 0.7 (right).

Somehow, these results were advanced in Proposition 3 and they are due to
the following issues. During the search, agents in DisFC algorithms exchange
sequence numbers instead of assignments in order to hide agents’ valuations.
Thus, at the end of the search, an agent can only make inferences about other
agents’ assignments based on the information contained in the partial con-
straints that the agent knows. On the other hand, and similarto ABT, agents
in ABT-2ph/1ph explicitly reveal their assignments inok? messages. Nev-
ertheless, the number of agents that know other agents’ finalassignments in
ABT-2ph/1ph is larger than in ABT becauseok? messages goes from higher
to lower priority agents in the standard algorithm while they travel in both
directions, from higher to lower priority agents and vice versa, in the new
versions of the algorithm.

In Figure 10, we report the results of constraint privacy in terms of global
entropy for ABT, ABT-2ph/1ph and DisFC-2ph/1ph when solving low and
high density random instances. Forp1 = 0.4 (plot on the left), we observe that
ABT-1ph always has larger values of global entropy than ABT.This result is
supported by Proposition 4, where we have proven that the privacy loss of
ABT is higher than or equal to the privacy loss of ABT-1ph.

In contrast, ABT-2ph may reveal more information about total constraints
than ABT for some random instances. In the plot we observe this phenomenon

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.37

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

38

at the complexity peak (p2 = 0.6), where ABT has higher values of global
entropy than the two-phase algorithm. To understand this behavior we must
remind that agents in the two-phase algorithm reveal only explicit information
in phase II. On the left of the peak (p2 ≤ 0.5), most of the instances are
solvable and the number of times that ABT-2ph passes to phaseII is small.
On the right of the peak (p2 ≥ 0.7), most of the problems have no solution,
and, as soon asp2 increases, the first phase of ABT-2ph becomes enough
to detect inconsistency. At the complexity peak, instancesare very difficult
which makes that ABT-2ph passes to phase II (where explicit information is
exchanged) in many times, causing to reveal more information than ABT on
constraints.

Regarding DisFC algorithms, DisFC-2ph/1ph report higher global entropy
than ABT for very low tightness instances (p2 ≤ 0.3). This occurs because the
number of forbidden tuples in total constraints of these instances is too small
and therefore the filtered domains received by each DisFC-2ph/1ph agent
include large number of values. Thus, an agent is more likelyto success each
time it tries to find a consistent value, which causes DisFC-2ph/1ph agents to
reveal very few rows of their constraints. For instances with higher tightness
(p2 ≥ 0.4), the number of forbidden tuples in total constraints becomes larger
whenp2 increases. This makes that every agent tends to fail more when it tries
to find a consistent value. In DisFC-2ph/1ph the above implies that every
agent reveals a larger number of rows from its constraints, which makes that
the uncertainties of other agents about the agent’s constraints decreases. It
worth noting that the global entropy of DisFC-2ph is almost zero for values
of p2 ≥ 0.4. This represents that most of total constraints may be completely
inferred by agents.

Comparing DisFC-2ph/1ph versus ABT-2ph/1ph, the latter algorithms have
larger values of global entropy than the former ones for all the values ofp2.
From the privacy point of view, this means that ABT-2ph/1ph always maintain
total constraints more private than DisFC versions. The explanation of this is
based on the explicit information type that agents reveal ineach algorithm
type. In DisFC algorithms, when an agentj receives anok? message from an
agenti, it actually receives a complete row of partial constraintci(j), which
may allowj to deduce one of the rows ofcij . As discussed in Section 7, agent
j must find all the solutions of a CSP in order to know the possible positions
of the received rows inci(j). After the resolution of this CSP,j may identify
several rows incij . Conversely, whenj receives explicit information fromi in
ABT-2ph/1ph, it actually receives one entry ofci(j), and consequently, only
one entry incij.

Similar results for dense problems (p1 = 0.7) appear in Figure 10 (plot
on the right). The relative ordering of algorithms remains unchanged. ABT-
1ph reports the largest values of global entropy except forp2 ≥ 0.7, where
ABT-2ph has the best results. DisFC algorithms show lower values of global

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.38

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

39

0

20

40

60

80

100

120

140

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o
n
s
t
r
a
i
n
t

L
o
c
a
l

E
n
t
r
o
p
y

p2

Solving <n = 15, m = 10, p1 = 0.40>

ABT
ABT-1ph
ABT-2ph

DisFC-1ph
DisFC-2ph

0

20

40

60

80

100

120

140

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o
n
s
t
r
a
i
n
t

L
o
c
a
l

E
n
t
r
o
p
y

p2

Solving <n = 15, m = 10, p1 = 0.70>

ABT
ABT-1ph
ABT-2ph

DisFC-1ph
DisFC-2ph

Figure 11. Constraint privacy in terms of the entropy contribution of the constraint that is best
known by an agent. Median values are reported for ABT, ABT-2ph/1ph and DisFC-2ph/1ph
for p1 = 0.4 (left) andp1 = 0.7 (right).

entropy than ABT for instances withp2 > 0.2. DisFC-2ph/1ph show worse
results than ABT-2ph/1ph.

In addition to global entropy, we have evaluated the algorithms according
to the entropy contribution of the constraint that is best known by an agent.
This is computed in the following way. For each agentj, we first findminj,
which is the minimum contribution of any other agenti to Hj(end). Then,
we find the median value of all the values ofminj for all agents. The entropy
value returned by the above procedure captures how close agents have been to
completely discover one of their total constraints. In Figure 11 we report the
entropy contribution of the constraint that is best known byan agent. Median
values are reported for ABT, ABT-2ph/1ph and DisFC-2p/1ph for low and
high density problems. Regardingp1 = 0.4 (plot on the left), results demon-
strate the following. Forp2 ≥ 0.5, the local entropies of DisFC-2ph/1ph are
zero, which expresses that at least the half of the agents in DisFC algorithms
may reconstruct completely one of the total constraints in which they are
involved. As expected, the entropy of ABT is always zero because when the
algorithm ends, the half of agents know completely at least one of the total
constraints. The information revealed by ABT-2ph/1ph is not enough to allow

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.39

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

40

the half of the agents to be able to reconstruct total constraints. Very similar
results appear for dense problems on the right of Figure 11.

8.3. DISCUSSION

The results in Section 8.2 reveal a clear trade-off between efficiency and
privacy. StandardABT is both faster and makes a more economic use of the
network than the proposed PKC algorithms. However, ABT is not suitable
for the PKC model and all the information about constraints must be revealed
in advance.

ABT-2ph performs ABT multiple times on a partial problem. Therefore,
its efficiency is dependent on the properties of the partial problem. The over-
head in efficiency of multiple termination detection was notmeasured in our
experiments but should be considered. In terms of constraint privacy, agents
are aware of each phase change, so they are aware of the consistency of their
assignment with respect to their neighbors at each change. ABT-1ph sends
explicit information (ngd messages) when needed. Therefore, its privacy loss
is related to the problem’s difficulty. Like ABT it considersall constraints
in a single phase but requires more time and network load thanABT. In
terms of assignment privacy, both ABT-2ph and ABT-1ph keep agents’ final
assignments less private than ABT.

In addition to enforcing constraint privacy, DisFC-2ph andDisFC-1ph
allow agents to conceal their assignments. Both algorithmsare versions of
DisFC, an ABT-like algorithm in which, instead of exchanging assignments
with neighboring agents, agents send the list of compatiblevalues in the
neighbors domain. Similarly to the ABT versions for the PKC model, DisFC-
2ph performs DisFC multiple times on a partial problem and DisFC-1ph con-
siders all constraints in a single phase. Empirically, we observe that the cost
of preserving assignments in DisFC-2ph/1ph is high in termsof efficiency
and in terms of constraint privacy.

9. Conclusions

Privacy is one of the main motivations for solving constraint satisfaction
problems in a distributed form. The model for DisCSP solvingby ABT (the
reference algorithm) does not consider privacy as a major goal. This paper
addresses the inclusion of privacy in ABT. First, we differentiate between
privacy of constraints and privacy of assignments. Privacyof constraints is
concerned with constraints that are initially private (thePKC model) between
agents, and they remain as private as possible during the solving process.
Privacy of assignments considers that actual assigned values are not made
public in the solving process. Second, we propose two families of algorithms,

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.40

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

41

ABT-2ph/1ph and DisFC-2ph/1ph, to perform the actual solving while trying
to keep the above mentioned privacy levels. These algorithms are clear de-
scendants of ABT, they use the same kind of messages (plus some extra ones)
and keep its good properties. They were initially conceivedas two-phase al-
gorithms, although later both phases were joined into a single one. Regarding
privacy, these algorithms are not perfect and leak some information in the
solving process. When considering constraints privacy, wehave observed that
the amount of revealed information depends on constraint tightness, although
ABT-1ph always leaks less information than standard ABT. Inthe case of pri-
vacy of assignments, the ABT-2ph/1ph reveal more than standard ABT, while
DisFC-2ph/1ph reveal less. The proposed algorithms have been implemented
and evaluated on random DisCSP instances. Empirically we observe that to
achieve privacy, algorithms degrade their performance (because they have
to conceal some values, exchange more messages, etc.). To quantify privacy
(and privacy loss) we have used entropy as defined in information theory.

References

C. Bessiere, I. Brito, A. Maestre, and P. Meseguer. Asynchronous backtracking without adding
links: a new member in the abt family.Artificial Intelligence, 161(1-2):7–24, 2005.

I. Brito and P. Meseguer. Distributed forward checking.In Proc. of 8th CP, 2833:801–806,
2003.

I. Brito and P. Meseguer. Distributed stable matching problems. In Proc. of the 10th CP,
Lecture Notes in Computer Science, 3709:152–166, 2005.

K. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed
systems.ACM Trans. Computer Systems, 3(2):63–75, 1985.

T. M. Cover and J. A. Thomas.Elements of Information Theory.Wiley-Interscience, 2nd ed.
2006.

G. Solotorevskyand E. Gudes and A. Meisels. Modeling and solving distributed constraint
satisfaction problems (dcsps).In Constraint Processing-96, pages 561–562, 1996.

R. Greenstadt. Improving privacy in distributed constraint optimization.Harvard PhD Thesis.
Available from http://www.eecs.harvard.edu/ greenie/hthesis.pdf, 2007.

I.P. Gent and T. Walsh. Csplib: a benchmark library for constraints.Technical report APES-09-
1999. Available from http://csplib.cs.strath.ac.uk/. A shorter version appears in the Proc.
of the 5th CP (CP-1999), (480–481), 1999.

R. Haralick and G. Elliot. Increasing tree search efficiencyfor constraint satisfaction problems.
Artificial Intelligence, 14:263–313, 1980.

L. Lamport. Time, clocks, and the ordering of events in distributed system.Communication
of the ACM, 2:95–114, 1978.

N. A. Lynch. Distributed Algorithms.Morgan Kaufmann Series, 1997.
A. Meisels and O. Lavee. Using additional information in discsp search.In Proc. 5th workshop

on distributed constraints reasoning, DCR-04., 2004.
R. T. Maheswaran, J. P. Pearce, E. Bowring, Pardeep Varakantham, and M. Tambe. Pri-

vacy loss in distributed constraint reasoning: A quantative framework for analysis and
its applications.Autonomous Agents and Multi Agent Systems, 2006.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.41

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

42

A. Meisels, I. Razgon, E. Kaplansky, and R. Zivan. Comparingperformance of distributed
constraints processing algorithms.In Proc. 3th workshop on distributed constraints
reasoning, DCR-02 (AAMAS-2002)., pages 86–93, 2002.

P. J. Modi and Manuela Veloso. Multiagent meeting scheduling with rescheduling.In Proc.
of the Fifth Workshop on Distributed Constraint Reasoning,DCR, CP 2004, 2004.

K. Nissim and R. Zivan. Secure discsp protocols - from centralized towards distributed
solutions.In Proc. 6th workshop on Distributed Constraints Reasoning, DCR-05., 2005.

P. Prosser. An empirical study of phase transitions in binary constraint satisfaction problems.
Artificial Intelligence, 81:81–109, 1996.

C. E. Shanon.The Mathematical Theory of Communication.University of Illinois Press, 1963.
M.C. Silaghi and D. Mitra. Distributed constraint satisfaction and optimization with privacy

enforcement.In Proc. 3rd IC on Intelligence Agent Technology, pages 531–535, 2004.
B. M. Smith. Locating the phase transition in binary constraint satisfaction problems.Artificial

Intelligence, 81:155–181, 1996.
M.C. Silaghi, D. Sam-Haroud, and B. Faltings. Asynchronoussearch with aggregations.In

Proc. of the 17th. AAAI, pages 917–922, 2000.
R. J. Wallace and E. Freuder. Constraint-based multi-agentmeeting scheduling: effects of

agent heterogeneity on performance and privacy loss.In Proc. 3rd workshop on distributed
constrait reasoning, DCR-02, pages 176–182, 2002.

M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara. Distributedconstraint satisfaction for
formalizing distributed problem solving.In Proc. of the 12th. DCS, 1992.

M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfaction
problem: Formalization and algorithms.IEEE Trans. Knowledge and Data Engineering,
10:673–685, 1998.

Makoto Yokoo and Katsutoshi Hirayama. Algorithms for distributed constraint satisfaction:
A review. Autonomous Agents and Multi-Agent Systems, 3(2):185–207, 2000.

M. Yokoo, K. Suzuki, and K. Hirayama. Secure distributed constraint satisfaction: Reaching
agreement without revealing private information.Artificial Intelligence, 161(1-2):229–
246, 2005.

R. Zivan and A. Meisels. Dynamic ordering for asynchronous backtracking on discsps.
Constraints, 11(2,3):179–197, 2006.

R. Zivan and A. Meisels. Message delay and discsp search algorithms.Annals of Mathematics
and Artificial Intelligence(AMAI), (accepted for publication), 46:415–439, October 2006.

pkc-journal-minor_rev_2.tex; 12/03/2008; 14:22; p.42

