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1. Introduction

Distributed constraint satisfaction problems (DisCSPstamposed of agents,
each holding its local constraint network, which are cotegdy constraints
among variables of different agents. Agents assign valoesitiables, at-
tempting to generate a locally consistent assignment shatsb consistent
with all constraints between agents (YHOO; GM96). To aohiévis goal,
agents check the value assignments of their variablesdal tmnsistency and
exchange messages with other agents, to check consistetheirgproposed

assignments against constraints with variables ownedfeyeit agents (BBMMO5).

DisCSP is an elegant model for many every day combinator@lpms
that are distributed by nature. Take for example the mestihgduling prob-
lem in whichn agents attempt to schedutemeetings. In each meeting, a
sub-group of the: agents participate (WF02; MV04; ML04; GW99). Arrival
constraints define the time that must differentiate mestwgh common
participants.

Standard search algorithms for DisCSPs, like AsynchroBacktracking
(ABT) (YDIK92; YDIK98), assume a static priority order amgll agents.
Higher priority agents perform assignments and send themmeéssages to
lower priority agents. ABT assumes that every inter-agenistraint can be
checked by the lower priority agent that is involved in thesteaint, i.e. the
lower priority agent must hold the entire constraint (YHO®)dynamic or-
dering ABT (ZM06a), each assignment is checked for consistaccording
to the order at the time it is performed. Since both agentsved in a binary
constraint can be with lower priority at the time the assigniris checked,
both agents are required to hold the entire constraint.

In many real world problems the above assumptions are toogsttn the
meeting scheduling example, people are usually not wiltmgeveal their
private schedule which imposes constraints on the scheduieetings they
participate in. A more suitable model for a realistic DisCSRhe Partially
Known Constraint§PKC) model, where each inter-agent constraint is com-
posed of two parts, each held by one of the two constrainiegtag BMO03).
When agents hold parts of the constraint privately, checkim consistency
has to be performed by both of the constrained agents besanse value
combinations may be seen as permitted by one agent and derbioy the
other.

In (SSHF00) an algorithm which keeps the constraints of tgprivate
was presenteddsynchronous Aggregations Seaf@tAS) enables the filter-
ing of a global assignment by agents according to their f@icanstraints.
Unlike the common definition of DisCSP where variables argrithuted
among agents, AAS considers the dual case where constaaitstributed
and controlled by a single agent. The use of AAS may causdhbatroblem
to be solved has to be translated into a new one. This tranatan could be
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inadequate in many naturally distributed problems wheedrikial problem
structure must remain unchanged. Furthermore, in AAS tlsen® privacy
of domains i.e. all agents hold the domains for all variablgss property
makes AAS unsuitable for many real world problems that aneemed with
privacy.

A number of secured protocols for DisCSPs which use crypfagc tools
in order to preserve privacy were proposed in recent yedv{SYSHO5;
NZ05). All of these studies propose secured protocols wbéchsolve asym-
metric constraints. However, the overhead in communinagiod computa-
tion in all of these protocols is very large.

In this paper we differentiate between two types of privguyvacy of
constraints and privacy of assignments. Regarding prighcpnstraints we
assume the PKC model of DisCSPs, where each binary consgalivided
between the two constraining agents. A value tuple is alibiwe the con-
straint if it is allowed by each part separately. To solverttgulting DisCSP,
two asynchronous backtracking algorithms are proposedri-2gh, a two-
phase algorithm and ABT-1ph a single-phase one. Similarbgdndard ABT,
a static order of priorities is defined among all agents irhkagorithms.
In the first phase of ABT-2ph, an asynchronous backtrackiggrishm is
performed, in which only the constraints held by the lowedonity agents
are examined. In other words, only one of the two constrgirdgents in
each binary constraint checks for consistency. When aisolig reached, a
second phase is performed in which the consistency of thicolis checked
again, according to the constraints held by the higher ipyiagents in each
binary constraint. If no constraint is violated, a solutisireported. If there
are violated constraints, the first phase is resumed afterdbessary nogoods
are recorded.

The first and immediate drawback of a two-phase algorithrhaseffort
of producing solutions in each first phase. Since consgdmtthe oppo-
site direction are not examined, large parts of the searabespvhich could
have been pruned if all constraints were considered, arglmihaustively
scanned. The second drawback is the synchronized mannéidh the algo-
rithm switches between the two phases. For each such switch@phases, a
termination detection mechanism must be performed whiehciemplicated
task in asynchronous backtracking. Furthermore, all ag®nist be informed
about every switch between phases.

In order to avoid these drawbacks, a single-phase distdbsiarch algo-
rithm (ABT-1ph) is proposed. ABT-1ph checks inter-agentsteaints asyn-
chronously at both of the constraining agents. Agents sked proposed
assignments to all their neighbors in the constraints grajth both higher
and lower priority ones. Agents assign their local variatdecording to the
priority order as in standard ABT, but check the constrasit against
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the assignment of lower priority agents. Nogoods are setfit fsom lower
priority agents, as in standard ABT, and from higher to lopmority agents.

An algorithm for preserving privacy of assignments was psaal in (BM03),
called Distributed Forward CheckingDisFC). Unlike ABT, in DisFC con-
straints are checked by higher priority agents. Insteadeafli®g its own
assignment, every DisFC agent sends to each lower pricgighbor the in-
consistent subset of values of the neighboring agent whiechansistent with
its own assignment. To preserve privacy of constraints asjaments, this
paper considers two versions of DisFC: DisFC-2ph (BM03)_rsiC-1ph,
a double and a single-phase algorithm, respectively. Sindl the versions
of ABT for PKC, all constraints are simultaneously consatemn the single-
phase of DisFC-1ph while some constraints are checked ifirtigphase of
DisFC-2ph and the others in its second phase.

The evaluation of the proposed algorithms is done taking adcount
computation effort, communication cost and privacy lodse €valuation of
computation effort and communication cost in DisCSPs ifopered accord-
ing to the methods of (ZM06b). To evaluate privacy loss, thtiral measure
is the entropy (CT06). Entropy decrement, from the inittates of the search
to its final state, is taken as a measure of the privacy losmglsearch.
Regarding privacy of assignments, the loss during a comgetrch can
be evaluated theoretically. Regarding privacy of constsaiwe adjust the
method of (MPB 06) to evaluate the constraint privacy alone by measuring
the percentage of the conflicts in a constraint matrix heldibggent that are
revealed to another agent involved in a conflict. This apgitéamotivated by
the fact that both of our proposed algorithms will reveal sahthe informa-
tion that ABT would have revealed during its execution viensiardok? and
ngdmessages. However, in order to perform standard ABT, thieequart of
every binary constraint held by the higher priority agenstrhe revealed to
the lower priority agent. Our results focus on the part ofdbmestraint that is
revealed relatively to standard ABT.

The idea of entropy as privacy measure has already beendeoediin
Distributed Constraint Optimization problems, particlylan the context of
the meeting scheduling problem (MPB6; Gre07). The entropy model that
we present in this paper is an adjustment of these works tstieonts and
assignment privacy in DisCSPs, which is out of the scope ®fipus works.

The paper is organized as follows. A formal DisCSP definitqgpears
in Section 2. Section 3 contains a summary of the standard &Badrithm.
Privacy of DisCSPs and the description of the PKC model agpezection 4.
In Section 5 we present two ABT versions for the PKC model, ABh
and ABT-1ph. Following each algorithm description are itsrectness and
completeness proofs. In Section 6 we discuss an option f&sepving as-
signment privacy by sending domain subsets instead ofrassigts (DisFC).
In Section 7 we present a theoretical model for evaluatirigapy loss by
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the entropy decrement during search, considering privhagsignments and
privacy of constraints. An extensive experimental evadmatwhich demon-
strates the difference between the algorithms with resfmeperformance,
communication and loss of privacy appears in Section 8.llgjriaection 9

contains some conclusions of this work.

2. Prdiminaries

A Constraint Satisfaction ProblefCSP) involves a finite set of variables,
each one taking a value in a finite domain. Variables areeglaty con-
straints that impose restrictions on the combinations tfesthat subsets
of variables can take. Aolution is an assignment of values to variables
which satisfies every constraint. Formally, a finite CSP finéd by a triple
(X,D,C), where

o X ={x1,...,x,}Iis asetofn variables;

e D={D(x1),...,D(z,)}Iis acollection of finite domaind)(z;) is the
initial set of possible values fat;;

e (is aset of constraints among variables. A constraimn the ordered
set of variablesar(c;) = (zi,, ..., %, ) specifies the relatioprmc;)
of the permittedcombinations of values for the variablesudar(c;). An
element ofprm(c;) is atuple(v;, , ..., v, ), vi € D(z;).

A Distributed Constraint Satisfaction ProblefDisCSP) is a CSP where
variables, domains and constraints are distributed amaotareated agents.
Formally, a finite DisCSP is defined by a 5-tugl&, D, C, A, ¢), whereX’,
D andC are as before, and

e A={1,...,p}isasetobpagents,

e ¢:X — Aisafunction that maps each variable to its agent.

Each variable belongs to one agent. The distribution ofatédes divides’
into two disjoint subsetsy;,i-q = {c;|Vr;, 2 € var(c), ¢(z;) = d(ag)},
andCinter = {ci|3xj, 1 € var(c), #(x;) # ¢(x1)}, called intra-agent and
inter-agent constraint sets, respectively. An intra-agenstraintc; is known
by the agent owner afar(c;), and it is unknown by the other agents. Usually,
it is considered that an inter-agent constrainis known by every agent that
owns a variable obar(c;) (YDIK98).

As in the centralized case, solution of a DisCSP is an assignment of
values to variables satisfying every constraint. DisCSfessalved by the
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collective and coordinated action of agemts Agents communicate by ex-
changing messages. It is assumed that the delay in detivarimessage is
finite but random. For a given pair of agents, messages aredl in the
order they were sent.

For simplicity purposes, and to emphasize the aspects wibdigon, in
the rest of this study we assume that each agent owns exaetlyaviable. We
identify the agent number with its variable indék:( € X', ¢(z;) = i). From
this assumption, all constraints are inter-agent comggasoC = Citer and
Cintra = . Furthermore, we assume that all constraints are binaryuste
the termc;; to indicate a constraint that binds agentsandz;.

We further assume that all information held by agents hasgaalém-
portance with respect to privacy (i.e. there is no part ofdbents private
information which is more important than other parts). TiBig necessary
assumption in order to be able to compute objectively a lbgsigacy (see
for example (MPB06)). This is the basis for our experimental evaluation of
privacy loss in Section 8.

3. Asynchronous Backtracking

All the algorithms proposed in this paper are based on ABTussarized
description of ABT is presented here. For details, the neadaddressed to
the original papers (YDIK92; YDIK98; YHO0O0).

Asynchronous Backtracking (ABT) (YDIK92; YDIK98; YHO0O0) vgaa
pioneering algorithm to solve DisSCSPs. ABT is an asynchusnalgorithm
executed autonomously by each agent, which makes its owisiaiex and
informs other agents about them. The algorithm computes$uticao (or de-
tects that no solution exists) in finite time; the algoritenabrrectness and
completeness have been proven.

ABT requires constraints to be directed. A constraint causdirected
link between two constrained agents: the assignmentisgnraljent, from
which the link leaves, and the constraint-evaluating ggentvhich the link
arrives. When the assignment-sending agent makes an @Esigrit informs
the constraint-evaluating agent, which then tries to findbasistent value
assignment. To make the network cycle-free, there is a totddr among
agents that corresponds to the directed links. Agdwats higher priority than
agent;j if i appears beforgin the total order.

Each ABT agent keeps its own agent view and nogood list. @erisig a
generic agentel f, the agent view ofel f is the set of values that it believes
to be assigned to agents connecteddty by incoming links. The nogood
list keeps the nogoods received ki f as justifications for the removal of
inconsistent values. Agents exchange assignments anddgo
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The algorithm starts by each agent assigning its variald, sending
the assignment to its neighboring agents with lower pgiohen an agent
receives an assignment, it updates its agent view with tbeived assign-
ment, removes inconsistent nogoods and checks the congisigits current
assignment with the updated agent view.

When receiving a nogood, it is accepted if it is consisterihwhe agent
view of sel f. Otherwise, it is discarded since it is found to be obsolate.
accepted nogood is used to update the nogood list. It makgssearch for a
new consistent value, since the received nogood is a jtdit that forbids
its current value. When an agent cannot find any value cemsistith its
agent view, either because of the original constraints cabse of the re-
ceived nogoods, new nogoods are generated from its agentmie each one
sent to the closest agent involved in it. This operation eadmscktracking.

There are several versions of ABT, depending on the way tbat mo-
goods are generated. In the simplest form of the ABT algar;tine complete
agent view is sent as a nogood (YHO0O0). The nogood is sent tdothest
priority agent whose assignment is included in the nogondtantrast, in
the version of ABT that appears in (BBMMO5), when an ageninoarfind
a consistent value, it resolves its nogoods lists follonangrocedure based
on dynamic backtracking methods. From this resolution, & negood is
generated and sent to the agent with the lowest prioritylweebin the new
nogood.

If self receives a nogood including the assignment of an agent met co
nected with it,sel f requires that a new link will be added from that agent to
sel f. From this point on, a link from the other agentstd f will exist. ABT
execution ends upon achieving quiescence in the agent ietmmeaning that
a solution has been found, or when an empty nogood is gedenatéch
indicates that the problem is unsolvable.

The ABT code appears in Figure 1. This code uses the followdiig
structures?'—, I'", my AgentView andmyN ogoodStore.I'~ containssel f's
higher priority constraining agents, wherdascontainssel f’s lower priority
constraining agents (BBMMO5). Agesi! f stores assignments of higher pri-
ority agents inny AgentView and the received nogoodsiiny N ogoodStore.
Agents exchange four different kinds of messagk®, ngd, adl andstp. An
ok? message comes from higher priority agents informéaty’ of the new
assignment for the variable of the message’s sending a§emgd message
comes from lower priority agents, and includes a nogood vhiil serve as
a justification for the removal of the value assigneddty’s variable. Anadl
message arrives from lower priority agents, requestiig to add a new link
between it and the sender. When an agent receigds message, it means
that the problem is unsolvable since an empty nogood wagifoyrat least
one agent and the search terminates.
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grocedureABT( )
myV alue «— empty;end — false; computd™, '~
CheckAgent Vi ew();
while (—end) do
msg — get Msg();
switch(msg.type)
ok? :Processl nfo(msg);
ngd :ResolveConflict (msg);
adl : Set Li nk(msg);
stp . end «+ true,

procedure Check Agent Vi ew(msg)
if mconsi st ent (myValue, myAgentView) then
myValue — ChooseVal ue() ;
if (myValue) then for each child € Tt (sel f) do sendMsg:0k?(child, myValue);
else Backt r ack();

procedurePr ocessl nf o(msg)
Updat eAgent Vi ewmmsg.Assig);
CheckAgent Vi ew);

procedureResol veConf | i ct ( msg)
if Coher ent (msg.Nogood, T~ (self) U {self}) then
CheckAddLi nk(msg);
add(msg.Nogood, myN ogoodStore);, myV alue «— empty;
CheckAgent Vi ew);
elseif Coher ent (msg.Nogood, sel f) then SendMsg:0k?(msg.sender, myValue);

procedureBackt r ack()

newNogood < sol ve(myN ogoodStore);

if (newNogood = empty)then
end — true;sendMsg:stp(system);

else
sendMsg:ngd(newNogood);
Updat eAgent Vi ewr hs (newNogood) <+ unknown);
CheckAgent Vi ew);

function ChooseVal ue()
for each v € D(self) not eliminated bynyNogoodStore do
if consi st ent (v, myAgentView[['~ (sel f)]) then return (v);

elseadd(z; = val; = sel f # v, myNogoodStore); [*v is inconsistent withz;'s value */

return (empty);

procedure Updat eAgent Vi ewm(newAssig)
add(newAssig, myAgentView);
for each ng € myNogoodStore do
if -Coher ent (I hs(ng), myAgentView) then r enove(ng, myNogoodStore);

function Coher ent (nogood, agents)
for each var € nogood U agents do
if nogood[var] # myAgentView[var| then return false;
return true;

procedure Set Li nk( msg)
add(msg.sender, ' (sel f));
sendMsg:ok?(msg.sender, myValue);

procedure Check AddLi nk( msg)
for each (var € | hs(msg.Nogood))
if (var ¢ T~ (self)) then
sendMsg:adl(var, sel f);

add(var, F (self)); Updat eAgent Vi ew(va
pkc-j oufnal-m nor “rev_2.t

Figure 1. The ABT algorithm.
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4. Privacy in ABT-like Algorithms

ABT agents exchange assignments and nogoods. Regardmagypithere are
two issues that reveal the private data of ABT agents:

e Constraints: An inter-agent constrainj is totally known by the lower
priority agent § for i < j).

e Assignments: Agents notify other agents about their vadséggaments.

This approach may be inappropriate for applications in tvipidvacy is the
main reason for distributed solving. In this case, agentg desire to hide
the actual values of their variables from other agents, idensd to be po-
tential competitors. For the same reasons, the informatmrained in the
constraints may be considered as reserved and agents rotdhg willing to

share it with other agents. In the following, we developtetygs to maintain
privacy of variable values and of inter-agent constraiatfwing agents to
share enough information to achieve a solution or deteththaolution exits.

4.1. THE PKC MODEL FORCONSTRAINT PRIVACY

ABT assumes that an inter-agent constrajnis totally knownby the agents
owning their related variables, that is, is totally known by agent and

agent;j (see Section 2.2 of (YDIK98)). In fact, it is enough for ABTath
the lower priority agent in each constraint knows the setesfyitted tuples.
To enforce constraint privacy, we introduce artially Known Constraints
(PKC) model of a DisCSP as follows. A constrain} is partially known by
its related agents. Agenknows the constraint; ;) where:

. vars(c“j)):: {xi, x;};
* c;(; is specified by three disjoint sets of value tuplesafpandz;:

- prm(cy;)), the set of tuples thatknows to be permitted;
- fbd(cy(y)), the set of tuples thatknows to be forbidden;
- unk(c;(;)), the set of tuples whose consistency is unknowri; by

e every possible tuple is included in one of the above setsigham (c;(;))U
fbd(ci(j)) U unk:(cl-(j)) = D; x Dj.

Similarly, agentj knowsc;);, wherevars(c(;);) = {zi, 75} cq;y; is specified
by the disjoint setprm(c;);), fbd(c(;);) andunk(c;);). For the model to be
truly partial, it is required that, there is at least one péiconstrained agents
1 andj that do not have the same information about the shared eamtsie.
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they differ in at least one of the three sets of tuples). Thetion between a
totally known constraint;; and its corresponding partially known constraints
Ci(5) andc(i)j is

Cij = Ci(j) ® i)
where® depends on the semantic of the constraint. The above defigiti
satisfy the following conditions:

e If the combination of value¢ and/, for z; andz; is forbidden in at
least one partial constraint, then it is forbidden in theegponding total
constraint: if (k,1) € fbd(c;)) or (k,1) € fbd(cy;)) then (k1) €
fbd(cw)

e If the combination of valueg and!, for z; andx; is permitted in both
partial constraints, then it is also permitted in the cqroesling total
constraint: if(k,1) € prm(c;;)) and(k,l) € prm(c;;)) then(k,1) €
prm(cij).

In this paper, we only consider constraints for whigtk(c(;);) = unk(c;;)) =

0 L. In this case, a partially known constrait;) is completely specified by
its permitted tuples (tuples not jnrm(c;(;)) are in fbd(c;(;)). Furthermore,

prm(ci;) = prm(ci(j)) N prm(c(;) @

For example, let us consider thepieces m-chessboaptoblem. Given a
set ofn chess pieces anda x m chessboard, the goal is to put all pieces on
the chessboard in such a way that no piece attacks any oth&is&SP, the
problem can be formulated as follows,

e Variables: one variable per piece.

e Domains: all variables share the domdin . .., m?} of chessboard po-
sitions.

e Constraints: one constraint between every pair of pieodeyfing chess
rules.

e Agents: one agent per variable.

For example, we can take= 5 with the set of piece$queen, castle, bishop,
bishop, knigh}, on a4 x 4 chessboard, with the variables,

r1 = queen, xo = castle, x3 = bishop, x4 = bishop, x5 = knight.

1 In the PKC formulation for versions of stable marriage pembin which people desire to
keep their marriage proposals (assignments) and prefetests (constraints) private during
the search of a stable matchingik(c(;);) = unk(c;(;)) # 0, see (BMO5) for more details.
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If agent 1 knows that agent 5 holds a knight, and agent 5 knoatsaigent 1
holds a queen, the result is a completely known constgaimt(c; 5 ) including
the following tuples,

prm(ci5) = {(1,8),(1,12),(1,14),(1,15),...}

With the PKC model, agent 1 does not know which piece agentldshdt
only knows how a queen attacks, from which it can develop tmsizaint,

prm(eys) = {(1,7),(1,8),(1,10),(1,12),...}

Analogously, agent 5 does not know which piece agent 1 hdldsonly
information is how a knight attacks, from which it can deyetbe constraint,

prm(cays) = {(1,2),(1,3),(1,4),(1,5),(1,6),(1,8),...}

The whole constraint; 5 is equal to the intersection of these two constraints,

prm(cis) = ci5) Neays = {(1,8),...}

In fact, prm(cy(5)) does not depend on agent 5. It codifies the way a queen

attacks, which is independent of any other piece. In thiblera, the PKC
model allows each agent to represent its constraints, amimtly of other
agents.

4.2. ASSIGNMENT PRIVACY

Agents may desire to keep the assigned values to their esigivate. To
achieve this, agents must avoid sending their assigneéwvatuother agents.
An ABT agent sends its value in two types of messages (betwee ;,
1<)

1. ok?: when agent informs low priority agents of its value assignment.
This message is used hyto find a compatible value with soj has to
know the constraint;;.

2. ngd: when agentj sends a backtrack messageitd@his message con-
tains the value assignments of tAgentView of j. It is used byi to
check whether the nogood message is obsolete, by checkiethartthe
assignments of common variables with agents of higheriprithan i,
in the agent views of andj, are the same.

The first point could be solved if, instead of sendifgycurrent value, the
ok? message contains the subset/of values that are compatible witfs
current value. From this subsétmay be consistently assigned with respect
to the constraint with.
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The second point can be solved by the use of identifiers. Weogeoto
use a sequential number over the assignments of the varkadbh variable
keeps a sequence number that starts from 1 (or some random),vahd
increases monotonically each time the variable changassignment, acting
as a unique identifier for each assignment. Messages inthedsequential
number of the assignment of the sending agent. The agentofighe re-
ceiver is composed of the sequence numbers it receivedk lnmessages
from higher priority agents. Nogoods are composed of vigghnd their
sequential numbers.

5. ABT Algorithmsfor Partially Known Constraints

We present two ABT algorithms for solving DisCSP that inavgie the PKC
model of constraints. Initially, solving algorithms hawect solving phases,
one for each partial constraint. Later, these two phaseg@rined into
one.

We emphasize that in the case of constraints privacy, batkirgbroposed
algorithms reveal the same kind of information that stadd T would have
revealed in its messages when solving the same problem. \Hovatandard
ABT requires that for every binary constraint, the entiret pAthe constraint
which is initially held by the higher priority agent will bevealed to the lower
priority agent before the algorithm starts. Our proposgdrithms attempt to
minimize this exposure of information to the minimum neeegs

5.1. TWO-PHASE STRATEGY

Inthe PKC model, if agentsand; are constrained,knowsc; ;) andj knows
C(i)j» but none knows the total constraigt;. The first method for solving
DisCSP under the PKC model appears in (BM03). It consistgtke of two
phases. In the first phase (phase I), the original probleaidased considering
only one partial constraint for each pair of constrainechégéf no solution is
found in phase I, the procedure ends returning failure gsimecsolution exists
for the whole problem. If a solution is found, it is passedh®e $econd phase
(phase Il) where it is checked against the partial congaiat considered in
phase I. If it is also a solution of phase I, then it is a satfor the whole
problem. Otherwise, one or several nogoods are generatetharsearch is
resumed in phase |. Nogoods found in phase Il are used in phasscape
from incompatible assignments.

The two-phase strategy is a generic method which implertientdetails
depend on the algorithm used to find a solution with respetigconsidered
partial constraints.
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ABT-2ph. The ABT-2ph algorithm is a combination of the ABT algorithm
with the two-phase strategy. It works as follows:

e Phase |. Constraints are directed, forming a DAG, and a cobip#otal
order of agents is selected. The standard ABT algorithm &stsution
with respect to constraints;);, where agent has higher priority thay
(the constraint;); is checked by the lower priority agen), A solution
is identified by detecting quiescence in the network. If ntutsan is
found, the process stops, reporting failure.

e Phase Il. Constraints and the order of agents are reverssdcfN, are
considered, wherghas higher priority than(e.g. in thereversedrder).
j informs of its value. If the value of is consistent; does nothing.
Otherwise,i sends angd message tg, which receives that message
and does nothing (this nogood will be used when Phase | isred)
Quiescence is detected.

Figure 2 presents the code for the ABT-2ph algorithm. In tlagnrprocedure,
the agents perform standard ABT (proced&T- | () ) to find a solution
compatible with all constraints held by lower priority agenf such a so-
lution is obtained, the agents reverse the total order bhamgingl'~ and
I'*. Then phase Il is performed (procedBT- I | () ). If it is successful
(no nogood generated during phase 1), the algorithm teatas1 Otherwise
I'" andI'" are exchanged again and phase | is resumed. Agents exchange
ABT message types, plus the messages gnn meaning quiescence in the
network aftemgd and after nangd messages, respectively.

An extra agent callegdystemis responsible for detecting network quies-
cence. Messagages andgnn are sent bysystemo the rest of agents. Net-
work quiescence state can be detectedystemusing specialized snapshot
algorithms (CL85).

5.2. ONE-PHASE STRATEGY

Instead of checking only part of the constraints in phasedlarifying the
proposed solution in phase I, all constraints can be tesitadltaneously in
a single phase. An agent has to check all its partially knommstraints with
both higher and lower priority agents. To do this, an agesttbdnform all
its neighboring agents when it assigns a new value, and ompessages can
go in both directions (from lower priority to higher prigriagents as in ABT
but, also from higher to lower). In the following, we presé¢m¢ ABT-1ph
algorithm obtained by combining ABT with the one-phasetetyg

ABT-1ph. In ABT, binary constraints are held completely by the lowgf p
ority agent involved in each constraint according to a taggnt ordering.
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procedure ABT- 2ph()
14:omputel“*, I't; myValue «— empty;end «— false;nogoods — false;
repeat
ABT- 1 ();
if (—end)
exchangd'—,I'";
ABT-11();
exchangd—, I'";
until end or —nogoods

procedure ABT- 1 ()
quiescence «— false;
CheckAgent Vi ew();
while (mend A —quiescence) do
msg <« get Msg();
switch(msg.type)

ok? : Processl nf o(msg);

ngd :Resol veConfli ct (msg);
adl : Set Li nk(msg);

stp > end «— true;

qes . quiescence «— true,

procedure ABT- 1 | ()
quiescence « false;
for each child € TF (sel f) do sendMsg:0k?(child, myValue));
while (mquiescence) do
msg < get Msg();
switch(msg.type)
ok? :if - consi st ent (myValue, msg.Value) then
sendMsg:ngd(sel f = myValue = msg.Sender # msg.Value);
ngd :add(l hs(msg.Nogood, myNogoodStore)); myValue «— empty;
ges : quiescence < true;nogoods < true; /[* quiescence with nogoods messages */
gnn  : quiescence + true;nogoods «— false; /* quiescence without nogoods messages */

Figure 2. The ABT-2ph algorithm for the PKC model. Missing proceduappear in Figure
1.

Lower priority agents check consistency of assignmentsived from higher
priority agents viaok? messages. In the PKC model, constraints are only
partially known to each of the participating agents. Consedjy, both of the
constrained agents need to check the consistency of tisgnasents against
each other. This means that checking consistency of a paipmétrained
assignments by the lower priority agent is no longer sufficie

In single-phase Asynchronous Backtracking for the PKC rm@aBT-
1ph), each agent checks its constraints with all constrgiagents (i.e. neigh-
bors on the constraint graph). This includes higher psipdas well as lower
priority constraining agents. Agents hold in theiy AgentView the assign-
ments of agents with higher and lower priorities. Valuesrfrthe domain
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of agents are eliminateohly if they violate constraints with higher priority
agents After a new assignment is found to be consistent with algassents
of higher priority agents imyAgentView (agents inl'~), the selected as-
signment is checked against the assignments of lower yriagients (agents
in T'T). If a conflict is detected, the agent keeps its assignmenhtsands a
ngd message to the lower priority agent, including its own assignt and the
conflicting assignment. An agent procesagd messages in the same way,
no matter if they come from higher or lower priority agents.

Figure 3 presents the changes in ABT to transform it into AR The
only differences ar®r ocessl nf o() andCheckAgent Vi ew() . In the
first procedure, after receiving the assignment of a lowieripy agent, if it is
not compatible withsel f current value, angd message is sent to that agent.
In the second procedure, after assigniag with a value consistent with all
assignments of agents Iit, it is sent to all agents i~ U T'". In addition,
if there are agents ifi™ with inconsistent values, mgd message is sent to
them. Although a nogood is sent, the current assignmenf{alue) is not
replaced.

5.3. FORMAL PROPERTIES

Here we prove that ABT-2ph and ABT-1ph inherit the good fdrpraperties
of ABT. The search space is defined by the variables and dentdithe
problem instance. The way this space is traversed depen(stba total or-
der among agents and (ii) the set of nogoods generated dasimghronous
search. Assuming that all algorithms follow the same agedéring, the
proof will be based on the fact that all algorithms generagesame nogoods.
This is proven in the following lemma.

LEMMA 1. A nogood can be generated by ABT-2ph/1ph iff it can be gener-
ated by ABT.

Proof. Let us differentiate between explicit and implicit nogoollsABT, an
explicit nogood is generated as a consequence ok@amessage. An implicit
nogood is generated by resolution of the set of nogoods kit all values
of a variable.

Explicit nogoodsLeti andj be two agents; < j in the total order, and let
x; = v = x; # w be anogood generated by ABT-2ph/1ph. If the gainv)
is forbidden inc(;);, this nogood will be generated jrafter receiving thek?
message containing; = v, and it will be stored iry. Otherwise, if the pair
(v, w) is permitted inc;); but forbidden inc;(;), it will be generated ir, and
it will be sent fromi to ;7 as a Nogood and stored jn In any case, if it is
forbidden by, at least, one partial constraint, the [pajr) is forbidden by
the total constraint;;. Therefore, it will be generated by ABT.
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RgocedureABT- 1ph()
myV alue «— empty;end « false; computé ™, I'~;
CheckAgent Vi ew();
while (—end) do
msg — get Msg();
switch(msg.type)
ok? :Processl nfo(msg);
ngd :ResolveConflict (msg);
adl : Set Li nk(msg);
stp . end «+ true,

procedurePr ocessl nf o(msg)
Updat eAgent Vi ewmmsg.Assig);
if =consi st ent (myValue, msg.Assig) then
if (msg.Sender € T'T) then
SendMsg:ngd(msg.Sender, sel f = myValue = msg.Sender # msg.Assig);
else CheckAgent Vi ew();

procedure Check Agent Vi ew(msg)
if -consi st ent (myValue, myAgentView[I'"]) then

myValue «— ChooseVal ue() ;

if (myValue) then
for each child € T (sel f) UT ™ (sel f) do sendMsg:0k?(child, myValue);
for each child € T" (sel f) such that~consi st ent (myValue, child.Assig) do

sendMsg:ngd(child, sel f = myValue = —child.Assig);
else Backt r ack();

Figure 3. The ABT-1ph algorithm for the PKC model. Missing proceduappear in Figure
1.

Let us assume thadb, w) is forbidden byc;;, so in ABT the nogood:; =
v = x; # w Will be generated by when it receives thek? message from
i containingz; = v. We know that the paifv,w) will be forbidden by,
at least, one of the partial constraints in the PKC modelt i$ forbidden
by c(;);, the nogood will be generated jnafter receiving theok? message
containingz; = v, and stored iny. If it is forbidden byc;;), the nogood will
be generated in after; sendsz; = v to j andj sendingz; = w to 4 (this
requires two phases in ABT-2ph but a single one in ABT-1phjsTogood
will be sent toj, and stored there. So, in both cases the nogood is generated
(and stored iry).
Implicit nogoods(Proof by induction on the number of implicit nogoods in a
sequence of backtracking steps). The first implicit nogoothe sequence
that appears in ABT-2ph/1ph is generated by resolving eixptiogoods.
Since all explicit nogoods of ABT-2ph/1ph can be generatedBT, and the
nogood resolution mechanism is the same, this first impi@good can also
be generated by ABT. Let us assume that this is true up ta-tieimplicit
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nogood generated by ABT-2ph/1ph, and let us prove that $hisei case for
then+1-th implicit nogood. Let us consider thet 1-th implicit nogood gen-
erated. It has been computed by resolving previous nogedttisy explicit or
implicit. We have already proved that explicit nogoods ckso &e generated
by ABT. All previous () implicit nogoods can be generated by ABT by the
induction step. Therefore, since the nogoods involvederréisolution can all
be generated by ABT and the resolution process is the sammggblvent no-
good could also be generated by ABT. A similar argument hivldse other
direction of the lemma, starting from ABT implicit nogoodsdaimplying
nogoods of ABT-2ph/1ph. O

PROPOSITION 1. ABT-2ph/1ph are sound, complete and terminate.

Proof. Soundnesdf ABT-2ph/1ph report a solution, it is because the net-
work has reached quiescence. In that case, every partiatraon is satis-
fied (otherwise, quiescence cannot be reached). If evetiapeonstraint is
satisfied, every total constraint is satisfied as well (bynisdn of partial
constraints, see 4.1). Therefore, the reported solutiartrige solution.
CompletenesABT-2ph/1ph perform the same kind of search as ABT: total
ordering of agents, asynchronous instantiation, resglvingoods, adding
links, etc. Their only difference is that (i) agents sendrtlssignments to
higher and lower priority agents througk? messages, and (ii) if a higher
priority agent receives one of thegk? messages with a value that is incon-
sistent with its current value, it sends a nogood messadestsander. These
points are crucial in the generation of nogoods. But we krnmwlLemma

1, that these changes do not cause any modification in thef setgoods
generated by these algorithms with respect to ABT. Consetyuthe ABT-
2ph/1ph algorithms will discard the same parts of the seapelte as ABT,
but not other parts. Since ABT is complete, ABT-2ph/1ph d&e aomplete.
Termination.An argument similar to the one used in completeness applies
here. Nogoods rule out parts of the search space. Becausetotal ordering
of agents, discarded parts accumulate, so ABT terminatasfiimite search
space (see (BBMMO5)). Since ABT-2ph/1ph generate the sageats as
ABT, and they perform the same kind of search, ABT-2ph/1gb s#rminate.
O

5.4. AN EXAMPLE

Let us consider the problem of safely locating a qu€esind a knight: on a
4 x 4 chessboard (see Subsection 4.1 for the formal definitioheohtpieces
m-chessboard problem). Each piece is handled by an indepeadent, and
none knows the identity of the other piece, so the PKC modgliephere.
There is a single constraint betwe€@randk. Initially we assume thaf) has
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higher priority thark, so the constraint is directed — k. Let us follow the
execution of ABT-2ph/1ph on this problem.

ABT-2ph works as follows. Phase | starts locating each piedbe first
position of the chessboard. Afterwardsinforms#k of its current assignment.
This causes: to take value 2, which is consistent according to its partial
constraint with the value of). Then, quiescence is reached and phase Il
starts. The constraint direction is reversed, now— Q. k informs @ of
its value.( notes that its current value is not consistent with the value
k, so it sends agd message t&. Quiescence is reached and the constraint
direction is reversed again 9 — k. Phase | starts: realizes that its value
is eliminated by theVogood contained in thexgd message received in phase
I, so k changes its value to 3. Quiescence is reached and phased! $tee
constraint direction is reversed, ndw— Q. k informs @ of its value.Q
finds that its current value is not consistent with the valuef 3 and then
sends angd message t&. Quiescence is reached and the search is resumed
in phase I. This process continues ukttakes value 8. Therk; informs @ of
the new assignmenf) checks that its assignment is consistent \kitvalue.
Quiescence is reached causing termination becausgchmessage has been
generated in phase Il.

ABT-1ph works as follows. First, each piece takes value lerig ex-
change twook? messages() informs k that it has taken value 1, and
informs @ that it has taken value 1. Whe® receives theok? message, it
sends angd message té informing that its current value it is not consistent
with the value of(Q (both pieces are in the same chessboard cell). When
receives thek? andngd messages it takes value 2 and informs this change
to Q via anok? message. Whef) receives this message it notes that its
current value is not consistent withvalue, so() sends amgd message to
k informing it to change its value. Theh,takes the value 3 and inforngg.
This process continues untiltakes value 8. Then, it inform@ of the new
assignmentq) finds that its current value is consistent with the valué,afo
it does nothing. Quiescence is reached causing termination

6. Distributed Forward Checking for Assignment Privacy

ABT-2ph/1ph reach a solution while keeping constraint griv However,
they do not achieve assignment privacy because two comsti@gents have
to exchange their value assignments, in order to verifyttigit partial con-
straints are satisfied. Therefore, when a solution is foandgent knows the
value assigned to every agent constrained with it.

To enforce assignment privacy while keeping constrainggosi in the
PKC model, we propose thBistributed Forward CheckindDisFC) algo-
rithm. It is inspired by the Forward Checking algorithm iretbentralized

pkc-journal -mnor_rev_2.tex; 12/03/2008; 14:22; p.18



O©CoO~NOUTAWNPE

19

case (HEBO0). Considering two constrained ageérdasd j, i < j, the idea
is, instead of sending its assigned value foit sends the subset d@?; that
is consistent with its assigned value. In addition, the enirvalue assigned
to each agent is replaced by the sequential number of assigarof each
variable, as indicated in Section 4.2. As for ABT, we have tweosions of
this algorithm, with two phases or a single phase, which v tBisFC-
2ph and DisFC-1ph respectively. Each of them works as ifsectve ABT
counterpart, with the two differences mentioned above.

6.1. TwO-PHASEHONE-PHASE STRATEGIES

DisFC-2ph. It works like ABT-2ph, with the already mentioned differesc
(i) instead of sending its current value assignment, ageand the subset of
D; consistent with it, and (ii) the assigned value is replacgé Isequence
number.

Let us consider DisFC-2ph and two constrained agénjsi < j. In
phase I, the partial constrainf ;) is tested byi, while in phase lic(;); is
tested byj. In ABT-2ph it happens exactly in the opposite order: in ghhas
c(i); is tested byj and in phase It; ;) is tested by. This is due to the type of
information sent (values in ABT-2ph, consistent sub-daraan DisFC-2ph)
and to the partial constraint owned by each agent, but thistia fundamental
difference.

The DisFC-2ph algorithm appears in Figure 4. Each agen¢stassign-
ments of higher priority agents imy AgentView and the received nogoods
in myNogoodStore. It uses the same types of messages as ABT-2ph.

DisFC-1ph. It works like ABT-1ph, with the already mentioned differesc
(i) instead of sending its current value, agéséends the subset @1, consis-
tent with it, and (ii) the assigned value is replaced by a sege number.
The DisFC-1ph algorithm appears in Figure 5. Beside the dutectures
of DisFC-2ph, each agent keepsrity Fliltered Domain|i] the last filtered
domain received from ageita lower priority constraining agent.

6.2. FORMAL PROPERTIES

Regarding nogoods, the only difference between ABT-2ghAmpdDisFC-

2ph/ DisFC-1ph is that actual values are replaced by sequencbersnT his
is fine, as the only role of values/sequence numbers is t@iditat an as-
signment is obsolete. However, it might occur that two défé sequence
numbers for one variable would represent the same valudidfitappens
after receiving a backtrack message, when comparing that agev of the

message with the agent view of the receiver, the messagdeviiscarded
as obsolete. But this will cause no problem. Since each thmeseéquence

number changes, ak? message is sent, if either the sender or the receiver
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rocedureDi sSFC- 2ph()
omputel ~, T'; myValue «— empty;end — false;nogoods « false;
repeat
Di sFC-1();
if (—end)
exchangd ~,I'";
Di sFC-11();
exchangd~,I'*;
until end or —nogoods

procedureDi sFC- 1 ()
quiescence «— false;
CheckAgent Vi ew);
while (—mend A —quiescence) do
msg < get Msg();
switch(msg.type)

ok? : Processl nf o(msg);

ngd :Resol veConfli ct (msg);
adl : Set Li nk(msg);

stp s end «+ true;

ges I quiescence < true,

procedure Pr ocessl nf o(msg)
Updat eAgent Vi ew(msg.Sender = msg.Seq);
Updat eDomai n(msg);
CheckAgent Vi ew();

procedure Resol veConf | i ct ( msg)
if coher ent (msg.Nogood,I'™ (sel f) U {self}) then
CheckAddLi nk(msg);
add(msg.Nogood, myN ogoodStore); myV alue — empty;
CheckAgent Vi ew);
elseif coher ent (msg.Nogood, sel f) then
SendMsg:0k?(msg.Sender,mySeq,conpat i bl e(D(msg.Sender), myValue));

procedure CheckAgent Vi ew()
if (myValue = empty V myV alue eliminated bymyNogoodStore) then
myValue — ChooseVal ue() ;
if (myValue) then
mySeq — mySeq + 1,
for each child € I'" (self) do sendMsg:ok?(child, mySeq, conpat i bl e(D(child), myV alue));
else Backt r ack();

procedure Updat eDomai n(msg)
for each v € D(self) Av ¢ msg.Domain do
add(msg.Sender = msg.Seq = self # v, myNogoodStore);

procedureDi sFC- 11 ()
quiescence «— false;
for each child € I'" (sel f) do sendMsg:ok?(child, mySeq, conpat i bl e(D(child), myV alue));
while (—quiescence) do
msg — get Msg();
switch(msg.type)
ok? :if myValue ¢ msg.Domain then
sendMsg:ngd(sel f = mySeq = msg.Sender # msg.Seq);
ngd :add(msg.Nogood, myNogoodStore); myV alue — empty;
ges : quiescence < true;nogoods «+ true; /* quiescence with nogoods messages */
gnn : quiescence < true;nogoods « false; /* quiescence without nogoods messages */

Figure 4. The DisFC-2ph algorithm for the PKC model. Missing proceduappear in Figure
1.
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procedureDi sFC- 1ph()
myV alue «— empty;end « false; computé' ™, I'~;
CheckAgent Vi ew);
while (—end) do
msg — get Msg();
switch(msg.type)
ok? :Processl nfo(msg);
ngd :ResolveConflict (msg);
adl : Set Li nk(msg);
stp . end « true,

procedurePr ocessl nf o(msg)
Updat eAgent Vi ewm(msg.Sender = msg.Seq);

if (msg.Sender € TV (sel f)) then myFiltered Domain|[msg.Sender] «— msg.Domain;

if (msg.Sender € T~ (sel f)) then Updat eDomai n(msg);
if =(myValue € msg.Domain) then
if (msg.Sender € Tt (sel f)) then
SendMsg:ngd(msg.Sender, sel f = mySeq = msg.sender # msg.Seq);
else CheckAgent Vi ew();

procedure CheckAgent Vi ew()
if (myValue = empty V myV alue eliminated bymy N ogoodStore) then
myValue — ChooseVal ue() ;
if (myValue) then
mySeq — mySeq + 1;
for each child € 1"+(5er YUT~(self) do
sendMsg:ok?(child, mySeq,conpat i bl e(D(child), myValue));
(
(

for each child € T'* (sel f) such that- (myValue € myFiltered Domain[child]) do

sendMsg:ngd(child, sel f = mySeq = child # child.Seq);
else Backt r ack();

Figure 5. The DisFC-1ph algorithm for the PKC model. Missing proceduappear in Figure
4.

of the backtrack message are not updated, it means that dsagewith the
most updated sequence number has not arrived yet, but itiis oy. After

its arrival, the backtrack message will be accepted. Afies tlarification,

we prove that the good theoretical properties of ABT-2ph/afso hold for
DisFC-2ph/1ph.

LEMMA 2. A nogood can be generated by DisFC-2ph/1ph iff it can be
generated by ABT.

Proof. Let us consider two constrained agents i < j. The only difference

with ABT-2ph/1ph is thabk ? messages may generate more than one nogood.
In fact, anok? message from to j generates as many nogoods as values
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considered inconsistent iR;. These nogoods would have been generated by
ABT if these values would have been successively assigngdTtbe rest of
the proof is equal to the one of Lemma 1. O

PROPOSITION 2.DisFC-2ph/1ph are correct, complete and terminate.
Proof. Analogous to the proof of Proposition 1 O

6.3. AN EXAMPLE

Let us consider the same problem of safely locating a qdgend a knight

k on a4 x 4 chessboard we have discussed as an example for ABT-2ph/1ph.
Each piece is handled by an independent agent, and none khewdentity

of the other piece, so the PKC model applies here. There igjfesionstraint
between andk. Initially, we assume tha®) has higher priority thak. We
show the execution of DisFC-2ph/1ph on this problem.

Considering DisFC-2ph, the algorithm execution is as fefidassuming
that values are selected lexicographically). When phasartss both pieces
take value 1@ informs k of its filtered domain with respect 1@’s assigned
value, and: changes its assigned value to 7. Quiescence is reached as& ph
Il starts. The constraint direction is reversed, now- (). k informs () of its
filtered domain with respect to its assigned val@erealizes that its current
value assignment is forbidden, so it sendsngd message té. Quiescence
is reached and the constraint direction is reversed agam(h— k. Phase |
starts .k realizes that its assigned value is eliminated by the nogoathined
in thengd message received in phase Il. Thereférehanges its assignment
to 8. Quiescence is reached and phase Il starts. The caonsiiegction is
reversed, now: — Q. k informs @ of its filtered domain with respect to its
assigned valuer) finds that its current assignment is consistent, so it does
nothing. Quiescence is reached causing termination becargyd message
has been generated in phase II.

When DisFC-1ph starts, both pieces take value 1. Agentsaggehtwo
ok? messageqsy informsk of its filtered domain with respect to its assigned
value, andk informs (Q of its filtered domain with respect to its own assign-
ment. When() receives the message, it sendsgd message té& informing
that its current value assignment is not consistent @ithassignment. When
k receives theok? and ngd messages it assigns value 7 and informs this
change toQ) via anok? message. Wher) receives this message it notes
that its current assignment is not consistent()seends amgd message to
k informing that it has to change its value assignment. Theagsigns value
8 and informsQ). @ finds that its current assignment is consistent, so it does
nothing. Quiescence is reached causing termination.
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7. Entropy asa Privacy Measure

Given a discrete random variabfewhich takes values in the discrete $tt
its entropy is defined as,

H(Z) == pilogs p;
=
where p; is the probability that” takes the valug. H(Z) measures the
amount of missing information about the possible valuesiefrandom vari-
able Z (CTO06; Sha63). If only one valuk is possible for that variable (that
is, p; = 0,Vi # k,pr = 1), there is no uncertainty about the stateZgfand
H(Z) = 0. Entropy is a non-negative magnitude.

Given a DisCSP, defined byX, D, C, A, ¢), let us consider agent The
rest of the problem can be considered as a random varialiteawliscrete set
of possible state§. Applying the concept of information entropy, we define
the entropy associated with ageras,

Hj=-> p;loga pi
i8S

and the entropy associated with the whole problem as,

H=)> H,
jEA

Let us consider two imaginary statasand 5 of the whole problem. In state
a, every agent knows nothing about the values of other agantsknows
the minimum about their constraints. In this state, privecgt maximum,
because each agent knows the minimum on the rest of the proltleappens
that entropy is also at maximum, because the missing infiiomaach agent
has about the rest of the agents is maximal. Let us now cansidies, in
which every agent knows everything about the rest of thelpnobObviously,
in this case there is no privacy at all. It happens that theopptof this state
has its minimum value (zero) because there is no uncertaimtye state of
any problem element. Given the relationship between pyiaaw entropy
(coincidence at points of maxima and minima), and the goaghgaties of
entropy (continuity, symmetry, additivity), we proposeuse entropy as a
guantitative measure of privacy.

Assuming that the initial state of a DisCSP has maximum pyiv@n-
tropy), any solving process can be seen as an entropy-d@ujeprocess.
Entropy decrement is due to two factors: (i) if a global dolutis finally
reached, the solution condition decreases the uncertaimyt the values
assigned to agents, so the entropy of the whole problemdliegrease, and
(i) in the solving process some information about valuesanstraints of
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neighboring agents is leaked, increasing the knowledgeauicplar agents;
therefore, their uncertainty (and entropy) decrease.

Following our proposal of entropy as quantitative measargfivacy, we
suggest to take the entropy decrement in the solving praaess measure
of privacy loss. This allows us to compare different alduoris with respect
to privacy. We assume that every algorithm starts from theesaitial state,
where privacy (entropy) is at maximum. Entropy decremepedds on the
solving algorithm. Comparing the entropy of the final statekieved by the
different algorithms, we can compare about their relatiggfggmance with
respect to privacy loss.

In this paper, we discuss privacy on two dimensions: assiguwrprivacy
and constraint privacy. This difference can be captureduinemtropy ap-
proach by considering that the part of the problem constesdimited to
the assignments of other agents (assignment privacy) dreio ¢onstraints
(constraint privacy). Both approaches are further devesldp the following.

7.1. ASSIGNMENTPRIVACY

To measure assignment privacy we use entropy limited to seaaments
of other agents, for each agejis. Initially, an ABT-agentj knows the total
number of agents, the relative position of any agent with respectjtpo-
sition in the ordering, the agents connected with it and abiothe ordering
I';, the agents connected with it and below in the ordefig.‘ig its own value
val; and its own partial constraints ),/ € I'; UT')". We assume a common
domain sized, and agent identifiers follow the total ordering. In theialit
state, callednit, the entropy associated with aggnis (using the additive
property of entropy (CT06)),

n d n n
. 1 1
H;(init) = — E E p;i logs p; = — E d 3 logo 7= E logs d
k=1,k£j i=1 k=1 k] k=1 k]

where we assume that thkvalues for agent have the same probability,

D = é Vi. For convenience, we rearrange this expression as follows,

Hj(init) = Z logy d + Z logy d + Z logy d + Z logs d

kerj k>j,k§ZI‘j+ kel; k<j kgl

(2)

where the first two terms correspond to agents belgaonstrained and not
constrained witly) and the last two terms correspond to agents abhdwehe
ordering (again, constrained and not constrained Witifter finding a so-
lution in the state calledol, the entropy of agent depends on the algorithm
used, as follows.
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ABT. Let us consider an agehtbelow j and directly constrained with
it. Agent j does not know the value d@f, val;, but since it belongs to a
solution, it must be consistent with its own valugl ;. Soval;, must be
consistent withval; in the partially known constraint; ;). Assuming
that there are:;(;,) values consistent withal;, the contribution ofi to
the entropy ofj in sol is loga n;(;). Therefore, the contribution of all
agents constrained withand below it in the ordering is

The second term of (2) does not change. Let us consider art agen
abovej in the ordering and constrained withAgent;j knows its value
So its contribution taf; is zero. Since this is true for any constrained
agent abovej, the third term of (2) becomes zero. The fourth term
does not change. Therefore, the entropy associatedjwitstricted to
assignments of other agents in the states is,

HPT(sol) = 3 loga mjuy+ > logad+0+ 37 logad
kert k> kel k<jkgl';

It is worth noting that new links may appear during the sajyimocess,
changing the sets; andl“j+ with respect to their initial state. If a new
link appears froni to j, i < j, the entropy associated wigjhdecreases
since the contribution afin init, logs d, goes to zero irol.

ABT-2ph/1ph. Let us consider agentandk, constrained withyj, i <

j < k. Agentj knows the values of and k, so it has no uncertainty
about their values. Therefore, their contribution to eoyrs zero. This
argument applies for any agent constrained wijtko the first and third
terms of (2) are zero. Therefore, the entropy associatdu jwistricted
to assignments in then! state is,

ABT—2ph/1ph
H; 2ph/1p (sol) =0+ Z loga d+ 0+ Z loga d
k>j,ker;r k<jkgl';

DisFC-2ph/1ph. Let us consider ageritand k, constrained withy,
i < j < k. Agentj does not know their values, but since they form
a solution, their values must be consistent with the valug of the
partial constraints:;;) andc;() (the argument used for ABT applies

here). Assuming that there arg; values consistent withal; in c; ),

the entropy associated withrestricted to assignments in thel state
is,

HjDiSFc_Qph/lph(sol) = Z loga njy+ Z logs d+ Z loga njy+ Z logs d
ieerj+ k>j,k€1";f ker; k<j kgl
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where the second and fourth terms of (2) remain unchanged.

These results allow us to rank these algorithms with resjgeassignment
privacy.

PROPOSITION 3.Regarding assignment privacy for ABT, ABT-2ph/1ph and
DsFC-2ph/1ph, assuming that the séts and I“j+ are equal for the three
algorithms in thesol state,

¢ the privacy loss of ABT-2ph/1ph is higher than or equal topteacy
loss of ABT,

e the privacy loss of ABT is higher than or equal to the privazysl of
DisFC-2ph/1ph.

Proof. Since these algorithms are complete, they will finish theécetion

finding a solution or proving that no solution exists. In cag@o solution,

there is no global assignment so it is meaningless to talkitadgsignment
privacy. In case of solution, this proposition follows ditly from the above
results on entropy on these algorithms. Since entropy dhitial state is the
same for the three algorithms (2), we can compare the entriojne sol state

for the three algorithms (Sha63). Thus, we have,

HJABT(SOZ) - HfBT_zph/lp(sol) = Z loga njxy > 0
ker'y

H]pz‘ch—2ph/1p(Sol) — H*P (s0l) = Y loga njy >0
kel

where subtraction is easily done because BgtandI'!™ are the same for the
three algorithms. From these expressions, we see that tiapgrin the sol
state of agenj is higher (or equal to in the limit case) when using ABT than
when using ABT-2ph/1ph, and similar result occur betweesHQ-2ph/1ph
and ABT. Since this is computed for any agg¢nive conclude that thassign-
mentprivacy loss of ABT-2ph/1ph is higher than or equal to #ssignment
privacy loss of ABT, and thassignmenprivacy loss of ABT is higher than
or equal to theassignmenprivacy loss of DisFC-2ph/1ph. 0

7.2. CONSTRAINT PRIVACY

To measure constraint privacy we use entropy limited to thestraints in-
volving j and other agents. In the initial state defined abovet(state),
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the entropy associated with agehis (using the additive property of en-
tropy (CT06)),

Hj(init) Z Zpl logs pi = Z Zpi loga pi— Z sz' logs pi

k=1,k#j 1 kEFj 7 kEFj_ )

where the contribution of agents not constrained with zero (they are con-
nected withj by the universal constraint that allows every tuple, sodli®no
uncertainty associated with these constraints). We aeedsited in knowing
what agentj can infer about;;,. Agent; knows that every zero entry (pair
of incompatible values) im;(;) will be a zero entry inc;;. The number of

matrices representing constraint, compatible withe; ;) is 2d2‘2.7'<k>, where
Z;k) 1s the number of zero entries in the matrix corresponding;tg. The
probability for each of the possible states of agenwith respect to its con-
straints with ageny, is constant and equal;s(ﬁ}zm. Since the number of

possible states for agehtis 2d2*za'<k>, the fixed probability can be taken out
of the sum of the entropy for agekhtand is summed up to 1. The contribution
of each agent is,

2_ .
= logy 24 7% = % — k)

_ . _ _od®—zj 1
;pz loga pi 2 7 o —2;(k) logs o=

and the entropy of thénit state associated withis,

j(init) Z d? — Zjk) T Z d? — Zj(k) 3)

kel“j kel

When the solving process finishes, no matter whether a splitas been
found or not, the system is in the.d state. The entropy decrement depends
on the solving algorithm, as follows.

e ABT. Let us consider an agefit abovej and constrained with it. In
order to run ABT ageny has toknow completely:;;, so there is no
uncertainty about it. Since this argument applies to anytagbove;
and constrained with it, the second term of (3) becomes Zdven, the
entropy is,

H]ABT end) Z d? — Zj(
kerj

How much isz;;,? This depends on the particular problem considered.
We have evaluated the entropy of thel state empirically, in Section 8.
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ABT-2ph. Both terms of (3) depend on the execution of theipaer
algorithm. In ABT-2ph, an agertabove;j may reveal tgj some entries
in ¢;(j). Combining this information witl; ;), j knowse;; entries ofc;;,
e;j > Zj()- Analogously with agent below j. After executipn agent
may knowe; entries ofc;y, €7, > z;). Then, the entropy is,

ABT—2ph 2 2
H; Pllend) = Y d* =+ > d> =€y
kel ker'f

e}, and e, depend on particular executions, so we do not have their
analyticaf expressions. We have evaluated the entropyeofitti state
empirically, in Section 8.

ABT-1ph. The first term of (3) depends on the particular dthar ex-
ecution, in the same way of ABT-2ph. However, with agkritelow j,
after execution agentcannot infer further entries in;;.. Therefore, the
entropy is,

ABT—1ph
H; Plend) = Z d? — e;-k + Z d> — Zi(k)
kel; keF;r

e;.k depends on particular executions, so we do not have its tioaly
expression. We have evaluated the entropy okthvéstate empirically,
in the Section 8.

DisFC-2ph/1ph. Here it is a bit more complex to compute theopy
associated with thend state. Let us consider agenabove; and con-
strained with it. We have to compuémc;;), the number of matrices
which are compatible with the information exchanged betweand
j during the solving process. One of these matricesjs. Combining
this information withe;;), agentj can obtain the matrix;;. The entropy

J
corresponding to the uncertainty @f;) is,

—Y " pilogs pi = —#may) = loga #mc;(j

lo
#me; () 7 Fme;(j)

and the entropy of thend state is,

DisFC—2ph/1ph
Hj is ph/1p (end) = Z loga #mci(j)
iel—ur+

Again, we do not have an analytical expression#anc; ;). The entropy
expression is evaluated experimentally in Section 8.
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Parameters’,, ¢7) and#mc;;), appearing in the previous expressions, are
computed as follows:

° e;.k,e;.’k(ABT-thllph), (agents < j < k):

- Explicit nogood in ABT-2ph/1plif j receives an explicingd mes-
sage from an agent thenj may deduce that the entry corre-
sponding to the combination of current valuesi@nd j in c;(;
is forbidden, and thereforg, may deduce that this entry i; is
also forbidden.

- Explicit good in ABT-2phif during the second phase of ABT-2ph,
j does not receive an expligitlgd message from an ageitthen

j may deduce that the entry corresponding to the combinafion o

current values of andj in ¢;; is permitted, and thereforg,may
deduce that this entry iay; is equal to this entry im;) ;.

- Explicit good in ABT-2phlif during the second phase of ABT-2ph,
j receives amk ? message from an agehtthenj may deduce the
entry corresponding to the combination of current values afd
kin ¢y, is permitted, and thereforg,may deduce that this entry
in ¢, is equal to this entry im; ;).

e #mc;; (DisFC-2ph/lph). Let us consider a constraint asxad, 0/1

matrix. In DisFC-2ph/1ph, agentsends rows of; ;) to j; at the endy

has a subset of rows without knowing their positiorzjy,. In addition,
some search episodes (information exchanged by agentsagephin
DisFC-2ph, nogood messages from high to low priority agernissFC-

1ph) may reduce the number of acceptable positions for acpkat
row. To assess the amount of information revealed, we camnthe
number of matrices that are compatible with the exchanged.ravith

this aim, we construct a CSP instance where the variablethanm®ws,
their domains are the acceptable positions, under theraimtstthat two
different rows cannot go to the same position and every rostmget a
position. Computing all solutions of this instance (an NfPehtask) we
obtain all compatible matrices. One of these matrices sgpitsc; ;.

Figure 6 presents an example of DisFC-1ph execution thatilites
when and what kind of information about constraints thatnégyean
infer after message reception. The example consists of ¢@otsi and
J, each having one variable with domalin, b, ¢, d, e}. We look at each
constraint as a matrix in which every entry represents tiepadibility
of two values, assuming that values are lexicographicaiteed. An
entry with 0 or 1 indicates that the corresponding value igdrbidden
or permitted, respectively.
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X;=¢ |
Agent i

ok?(from=i, to=j, sn;=10,
domain=[a, b, d])

Agent j
X;= b

(a)

X;=C

X;=c¢

‘ Agenti ‘

‘ Agent i ‘

ok?(from=j, to=i, sn;=23,
domain=[a, b, d])

ngd(from=i, to=j,
sn=10 = sn=23)

x; has value value ¢
or e and the row
corresponding to
value c or e in ¢;; has
the form: [1 101 1].

‘ Agent j ‘

x;=b

(b)

Figure 6. Information deduced by a DisFC-1ph agent after receivimgdmessage from a

higher priority agent.

The example starts when ageérsends ammk ? message to agefitsaying
that agenti’s current value is compatible only with the valués, b,

d} of agentj’s domain (Figure 6.a). From this message, agentay
deduce that there is a row ify ;) with the form: [11010]. However, with
this information ageny cannot infer the position of this row ig;;.
After receiving theok? message, agerjittakes a new value and sends an
ok? message to agemtsaying that the only permitted values for agent
i are in the domaif{a, b, d} (Figure 6.b). Similar to agent, agent:
may deduce that(;; has a row with the form1[1010]. When agent
receives thek? message fromj, it discovers that the received message
is incompatible with its own value and sends@d to agent; (Figure
6.c). From this message, aggntan deduce that ageiit current value

is not included in the compatible domain thgtst sent ta. Therefore,
the current value of ageritis eitherc or e. Thus, agen may deduce
that the row corresponding toor e in ¢;;) has the form 11010] (i.e.
the valuec or e for agenti are compatible only witla, b andd for agent

7). Next, agentj changes its value and sends a rak® message, with
the compatible value$a, b, e}. Agenti answers with axgd message,
and agentj discovers that;(;) has a row with the formi[1010] that
corresponds to valueor d.

In the above example, the CSP that ageobnstructs includes two vari-
ablesz; andzs, one for each time the rowt [010] has been discovered.
The domains of these variables afe:e} and{c, d}, respectively. There
exists a constraint between variables to avoid that botls tmsvassoci-
ated to value.. The CSP has 4 solutions; = {1 = z9 = c¢}; s2 =
{1 = c,x9 = d}; s3 = {x1 = e,29 = ¢}; s4 = {x1 = e,z = d}.
The number of consistent matrices with); is: 2(2°-5) 4 2(25-10) 4
2(25-10) 4 9(25-10) _ ey = 2(25-5) 4. 3 % 2(26-10) _pepy Each term ex-
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presses the number of consistent matrices related to ehtlosmf the
CSP. The first represenis; the seconds, and so on. The interpretation
of s1 is that both identical rows correspond to the same valliidat is to
say, only one row oé; ; has been revealed (5 entries out of 25) and the
rest have not (25 - 5 entries out of 25). Then, there &&5t°> matrices
consistent with the information derived from. Following the same
analysis, one can obtain the terms of the formula relateldesolutions

s9, s3 andsy, where 10 entries out of 25 are revealed. By substracting the
termrep from the first four terms, one avoids counting one matrix more
than once. This;ep = 2(25-5) 4+ 2% 2(25-10) ‘pecause the matrices for
andss are included in the matrices feg, and as well as matrices fof

are included in the matrices fej. Hence, according to the information
that; has at the end of the search, the origingl) could be one of those
215 — 32768 matrices.

In DisFC-2ph, the process that aggrfollows to reconstruct; ;) is the
almost same as for DisFC-1ph with some minor differencesil&i to
ABT-2ph, all inferences are done phase I1. When agentj receives
angd message from a higher priority agent, the process is the same
for DisFC-1ph. In addition, if after agent has sent armk? message
to a higher priority agent, agent; does not receive agd message
from 4, this means thats value appears in the domains sentjldp 7 in
the ok? message. Thus, the rows previously sent from agémtagent

j correspond to one of the values that appear in the domainsasit
included in theok? message sent from ageinto agent.

In any case, after agejptresolves the associated CSP and it identifies the
matrices that are consistent witfy;,, it must combine each of them with
the matrix that representsg; ; following Equation 1 (Subsection 4.1), to
compute the matrices that are consistent with the totaltcinsc; ;.

The above results allow us to rank ABT and ABT-1ph with respecon-
straint privacy (the other algorithms are not ranked bezdlisy depend on
parameters’, , e’ , #mc; ;) which are not comparable witty (k).

PROPOSITION 4.The privacy loss of ABT-1ph is lower than or equal to the
privacy loss of ABT.

Proof. Analogous to the proof of Proposition 3 but replacing théestate by
the end state and performing substraction betwdgn”" ~'** and HAPT .0
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8. Experimental Evaluation

The common approach in evaluating the efficiency performanfdistributed
algorithms is to compute two independent measures: seffath, @ terms
of computation steps (Lyn97; YHO0Q), and communication Jdaderms of
the total number of exchanged messagesq) (Lyn97).

Non concurrent steps of computation are counted by a meihathsto
the logical clocks of Lamport (Lam78). Every agent holds anter of com-
putation steps. Each message carries the value of the geamgimt’'s counter.
When an agent receives a message it stores the data recejetter with
the corresponding counter. When the agent first uses thvedamessage, it
updates its counter to the largest value between its owntepand the stored
counter value which was carried by the message (ZM06b). Byrtimg the
cost of the search as the largest counter held by some agiet eind of the
search, a measure of non-concurrent search effort thabse ¢d Lamport’s
logical time is achieved (Lam78). If instead of steps of camfion, the
number of constraint checks is counted, then the local ctettipnal effort
of agents is measured as the number of non-concurrent aoristhecks
(NCCCs) (MRKZ02; ZM06b).

In this study, besides efficiency, we are interested in dogbly evaluat-
ing the assignment and constraint privacy that ABT and tlpgsed PKC
algorithms achieve. As we have discussed in Section 7, wehasentropy
of agents to measure each privacy type. Since each agemtspgnn the
init state is the same for every algorithm, we restrict the pyiatalysis to
compare the algorithms according to the entropies thattadewe in thesol
andend states as measures of assignment and constraint privapgctesely.
In the experiments, we report for each algorithm and privgpg aglobal en-
tropy value, which simply is the sum of entropy values of the age#tsn the
algorithm ends. Larger values of global entropy corresgortdgher privacy
and lower privacy loss.

Experiments are performed on random constraint networksvafiables,

k values in each domain, a constraint dengityand tightness of each con-
straint p, (which are commonly used in experimental evaluations of CSP
algorithms (Smi96; Pro96)). The generated constraint oksvincluded 15
agents ¢ = 15) each holding one variable, 10 values for each variable
(k = 10) and two values of constraints densjty = 0.4 andp; = 0.7.

The tightnes®,, varies between 0.1 and 0.9, to cover all ranges of problem
difficulty. For each pair of density and tightness ,(p>), 100 different in-
stances are solved by each algorithm and results are adevagethese 100
runs.
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Solving <n = 15, m= 10, pl = 0.40>
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Figure 7. Number of non concurrent constraints checks (top) and exggthmessages (bot-
tom) performed by ABT, ABT-1ph, ABT-2ph, DisFC-1ph and D&Rph when solving PKC
DisCSPs withp; = 0.4.

8.1. EFFICIENCY EVALUATION

Figure 7 (top) presents the number of non concurrent cantrahecks to
find a solution for ABT, ABT-1ph, ABT-2ph, DisFC-1ph and DiSR2ph on
random instances withy = 0.4. The less efficient algorithms are DisFC-1ph
and DisFC-2ph, algorithms that achieve some kind of assagtrprivacy.

Considering ABT-2ph and ABT-1ph, they both run more tharceaglower

than standard ABT. An interesting difference is betweenttfephase and
single-phase version. For problems in the phase transitigion, the single-
phase version outperforms the double phase version. Cantes with high
tightness, the single-phase version behaves like the ataradgorithm (i.e.

the difference between the algorithms is constant) whigeptbrformance of
the two-phase version deteriorates. To understand thas/imtone must keep
in mind that the problem solved by the first phase in the twasphalgorithm
is actually less tight than the problem solved by the simdiase algorithm.
Therefore when the single-phase algorithm detects thaprblelem is too

tight to be solved, the two-phase algorithm works hard twes@l problem

with lower tightness.
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Considering DisFC-2ph and DisFC-1ph, we observe that DispiCis
more than twice slower than DisFC-2ph for problems closb@eéacbmplexity
peak. However, DisFC-2ph is worse than DisFC-1ph for tigipi@blems
(p2 > 0.7). These results differ from those obtained for ABT versiatere
ABT-1ph is faster than ABT-2ph for instances close to the plexity peak.
This is explained by the following fact. Before sendingak? message, a
DisFC-1ph agent has to check consistency with each valubeirdbmain
of every agent constrained with it. Conversely, a DisFC-2gent has to
check consistency with every lower priority agent consediwith it, which
generates a lower number of constraint checks.

Figure 7 (bottom) presents the results for the total numbexohanged
messages among agents during algorithm execution. AgeR(Ialgorithms
require a number of messages substantially larger thanthiee algorithms.
In contrast to the run-time measure, for low tightness imcsta, the number of
messages sent by ABT-2ph is smaller than for ABT-1ph. Thizesause the
agents in the single-phase algorithm sek@ messages to all their neighbors
while in the two-phase algorithm in each phase the agentd deh mes-
sages only in one direction. However, for tighter probleths, single-phase
algorithm sends less messages than the two-phase algosittem solving
instances to the right of the complexity peak. ConsideringFD versions,
the relative ordering of algorithms is, mainly, the samehas shown in the
ABT versions. DisFC-1ph agents exchange more message®tbBG-2ph
for problems with constraint tightness lower than 6 € 0.6). Although,
DisFC-2ph is more costly than DisFC-1ph for the rest of thabfams po >
0.7).

Comparing these results with the ABT-2ph/1ph, we see thsEDialgo-
rithms are much slower. Similarly, agents in DisFC algarithsend more
messages. This inefficiency of DisFC algorithms can be éxpth Regard-
ing NCCC, in ABT-2ph/1ph as in standard ABT, assignments are sent to
neighboring agents which concurrently check their coanist with the local
assignments. In DisFC, in order to keep the assignmentatpriggents must
perform the consistency checks of their proposed assigsnseguentially,
checking the entire domains of their neighboring agentss rtreases the
non-concurrent effort of DisFC algorithms. Regardingg, we observe that
DisFC algorithms are more costly than ABT versions basgidadicause two
facts. First, DisFC agents exchange sequence numberadnsfeheir as-
signments. Sequence numbers are used to detect the olesalesf nogoods
messages. Since two different sequence numbers used byannagy rep-
resent the same variable valuation, DisFC algorithms nmapoéeally discard
nogood messages as obsolete that are actually valid ifaemisg the agents’
assignments (like it happens in ABT versions). Seconak&message may
contain several conflicts in DisFC while at most one in ABToaidhms. Thus,
some updated conflicts may be discarded in DisFC due to stdiragation
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Figure 8. Number of non concurrent constraints checks (top) and exggthmessages (bot-
tom) performed by ABT, ABT-1ph, ABT-2ph, DisFC-1ph and D&Rph when solving PKC
DisCSPs withp; = 0.7.

of nogoods (one conflict as justification of each forbiddeluan all the
considered algorithms) before they have been resolvedidin sase, DisFC
algorithms will rediscover and resent these conflicts, Whsults in an in-
crease in the number of exchanged messages. The combintiua above
two facts causes DisFC algorithms to exchange more mestagesABT
versions.

In Figure 8 we report the number of non-concurrent condtrelirecks
(top) and exchanged messages (bottom) for ABT, ABT-1ph, ZBf DisFC-
1ph and DisFC-2ph when solving high density problems. Sinmiésults to
those of low density instances appear here. The PKC alguwsithre much
more costly than ABT. Regarding non concurrent constrdiatks, ABT-2ph
is much worse than ABT-1ph on the right of the peak (the saneag@imenon
already observed for low density instances occurs here).ré&lative order
of algorithms remains unchanged for the total number of arngkd mes-
sages: ABT-1ph sends more messages than ABT-2ph for lowndgh in-
stances, while it sends less messages for high tightnéasaes. Considering
DisFC versions, the relative order in the algorithmic perfance remains
unchanged for both parameters. DisFC-1ph is almost fouegistower and
sends more messages than DisFC-2ph for harder problemsl@se to the
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Solving <n = 15, m= 10, pl = 0.40>
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Solving <n = 15, m= 10, pl = 0.70>
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Figure 9. Assignment privacy in terms of entropy for ABT, ABT-2ph/1@isFC-2ph/1ph for
p1 = 0.4 (left) andp, = 0.7 (right).

complexity peak). However, DisFC-1ph outperforms DisHEx2mainly in

communication cost, for problems on the right of the comipjepeak (i.e.

unsolvable problems). Comparing these algorithms with ApM/1ph, the
DisFC algorithms have to perform a much larger number oftraimt checks
(because they send filtered domains, not just single valaed)exchange
more messages (as consequence of exchanging of sequeniseraunstead
of assignments) than the latter, which justify these result

8.2. FRIVACY EVALUATION

In Figure 9 we present the results of assignment privacyrimg@f global en-
tropy for ABT, ABT-2ph/1ph and DisFC2ph/1ph when solvingvland high
density random instances. Fpr = 0.4 (plot on the left), DisFC-2ph/1ph
and ABT-2ph/1ph show the largest and smallest values ofagjlebtropy,
respectively. In terms of privacy this means that, on sdévatstances, DisFC
algorithms keep agents’ final assignments more private Aigihand ABT-
2ph/1ph. Forp; = 0.7 (plot on the right), the results bring out the same
conclusion as for low density instances: DisFC-2ph/lpteroffigher final
assignment privacy than ABT, while ABT-2ph/1ph reveal more
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Solving <n = 15, m= 10, pl = 0.40>
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Solving <n = 15, m= 10, pl = 0.70>
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Figure 10. Constraint privacy in terms of entropy for ABT, ABT-2ph/1ahd DisFC-2ph/1ph
for p1 = 0.4 (left) andp, = 0.7 (right).

Somehow, these results were advanced in Proposition 3 apcith due to
the following issues. During the search, agents in DisF@ralyms exchange
sequence numbers instead of assignments in order to hidesagaluations.
Thus, at the end of the search, an agent can only make infssexthout other
agents’ assignments based on the information containegkeipartial con-
straints that the agent knows. On the other hand, and sitilABT, agents
in ABT-2ph/1ph explicitly reveal their assignmentsdk? messages. Nev-
ertheless, the number of agents that know other agents’dgsdjnments in
ABT-2ph/1ph is larger than in ABT becausk? messages goes from higher
to lower priority agents in the standard algorithm whileythieavel in both
directions, from higher to lower priority agents and vicesae in the new
versions of the algorithm.

In Figure 10, we report the results of constraint privacyeimmts of global
entropy for ABT, ABT-2ph/1ph and DisFC-2ph/1ph when solviow and
high density random instances. Fgr= 0.4 (plot on the left), we observe that
ABT-1ph always has larger values of global entropy than ARiis result is
supported by Proposition 4, where we have proven that thagqyiloss of
ABT is higher than or equal to the privacy loss of ABT-1ph.

In contrast, ABT-2ph may reveal more information aboutltotenstraints
than ABT for some random instances. In the plot we obserggtienomenon
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at the complexity peakpt, = 0.6), where ABT has higher values of global
entropy than the two-phase algorithm. To understand this\ier we must
remind that agents in the two-phase algorithm reveal orjiekinformation

in phase Il. On the left of the peako < 0.5), most of the instances are
solvable and the number of times that ABT-2ph passes to ghassmall.
On the right of the peakpf > 0.7), most of the problems have no solution,
and, as soon ag, increases, the first phase of ABT-2ph becomes enough
to detect inconsistency. At the complexity peak, instararesvery difficult
which makes that ABT-2ph passes to phase Il (where exptifitimation is
exchanged) in many times, causing to reveal more informdtian ABT on
constraints.

Regarding DisFC algorithms, DisFC-2ph/1ph report highebal entropy
than ABT for very low tightness instances (< 0.3). This occurs because the
number of forbidden tuples in total constraints of theséaimses is too small
and therefore the filtered domains received by each DisHCZ1ph agent
include large number of values. Thus, an agent is more lilkkesuiccess each
time it tries to find a consistent value, which causes DispGFPph agents to
reveal very few rows of their constraints. For instancefwigher tightness
(p2 > 0.4), the number of forbidden tuples in total constraints beestarger
whenp, increases. This makes that every agent tends to fail more ivtries
to find a consistent value. In DisFC-2ph/1ph the above imspii@t every
agent reveals a larger number of rows from its constraintsglwmakes that
the uncertainties of other agents about the agent’s camstrdecreases. It
worth noting that the global entropy of DisFC-2ph is almaestazfor values
of po > 0.4. This represents that most of total constraints may be cetelgl
inferred by agents.

Comparing DisFC-2ph/1ph versus ABT-2ph/1ph, the lattgoddhms have
larger values of global entropy than the former ones fortaltalues ofps.
From the privacy point of view, this means that ABT-2ph/1pteys maintain
total constraints more private than DisFC versions. Théamgtion of this is
based on the explicit information type that agents reveaach algorithm
type. In DisFC algorithms, when an aggneceives amk? message from an
agent;, it actually receives a complete row of partial constraipf), which
may allow; to deduce one of the rows of;. As discussed in Section 7, agent
4 must find all the solutions of a CSP in order to know the poesilasitions
of the received rows in; ;). After the resolution of this CSE,may identify
several rows im; ;. Conversely, whepj receives explicit information fromin
ABT-2ph/1ph, it actually receives one entry qf;), and consequently, only
one entry inc;;.

Similar results for dense problemg; (= 0.7) appear in Figure 10 (plot
on the right). The relative ordering of algorithms remainshanged. ABT-
1ph reports the largest values of global entropy exceppfor 0.7, where
ABT-2ph has the best results. DisFC algorithms show lowkregof global
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Solving <n = 15, m= 10, pl = 0.40>
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Figure 11. Constraint privacy in terms of the entropy contributiontod tonstraint that is best
known by an agent. Median values are reported for ABT, ABM#2ph and DisFC-2ph/1ph
for p1 = 0.4 (left) andp, = 0.7 (right).

entropy than ABT for instances with, > 0.2. DisFC-2ph/1ph show worse
results than ABT-2ph/1ph.

In addition to global entropy, we have evaluated the algoré according
to the entropy contribution of the constraint that is besivin by an agent.
This is computed in the following way. For each aggnive first findmin;,
which is the minimum contribution of any other agerib H;(end). Then,
we find the median value of all the valuesroin ; for all agents. The entropy
value returned by the above procedure captures how closgésdupeve been to
completely discover one of their total constraints. In FFéeglil we report the
entropy contribution of the constraint that is best knowrahyagent. Median
values are reported for ABT, ABT-2ph/1ph and DisFC-2p/lphléw and
high density problems. Regardipg = 0.4 (plot on the left), results demon-
strate the following. Fop, > 0.5, the local entropies of DisFC-2ph/1ph are
zero, which expresses that at least the half of the agentsFMalgorithms
may reconstruct completely one of the total constraints lviciv they are
involved. As expected, the entropy of ABT is always zero bbeeavhen the
algorithm ends, the half of agents know completely at least af the total
constraints. The information revealed by ABT-2ph/1ph iser@ugh to allow
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the half of the agents to be able to reconstruct total cangstaVery similar
results appear for dense problems on the right of Figure 11.

8.3. DiscussIiON

The results in Section 8.2 reveal a clear trade-off betwdfciemcy and

privacy. Standard\BT is both faster and makes a more economic use of the

network than the proposed PKC algorithms. However, ABT issuitable
for the PKC model and all the information about constraintstie revealed
in advance.

ABT-2ph performs ABT multiple times on a partial problem.€eF&fore,
its efficiency is dependent on the properties of the partiatblem. The over-
head in efficiency of multiple termination detection was m&asured in our
experiments but should be considered. In terms of consipaivacy, agents
are aware of each phase change, so they are aware of theteoogisf their
assignment with respect to their neighbors at each chang&-14h sends

explicit information igd messages) when needed. Therefore, its privacy loss

is related to the problem’s difficulty. Like ABT it consideadl constraints
in a single phase but requires more time and network load &Bh In

terms of assignment privacy, both ABT-2ph and ABT-1ph keggnés’ final
assignments less private than ABT.

In addition to enforcing constraint privacy, DisFC-2ph anFC-1ph
allow agents to conceal their assignments. Both algoritaresversions of
DisFC, an ABT-like algorithm in which, instead of exchangjiassignments
with neighboring agents, agents send the list of compatialees in the
neighbors domain. Similarly to the ABT versions for the PKGdal, DisFC-
2ph performs DisFC multiple times on a partial problem ansHQi-1ph con-
siders all constraints in a single phase. Empirically, weeoke that the cost
of preserving assignments in DisFC-2ph/1ph is high in teomsfficiency
and in terms of constraint privacy.

9. Conclusions

Privacy is one of the main motivations for solving constrasatisfaction

problems in a distributed form. The model for DisCSP solMiygABT (the

reference algorithm) does not consider privacy as a majal. gdis paper
addresses the inclusion of privacy in ABT. First, we diffdfate between
privacy of constraints and privacy of assignments. Privafcgonstraints is
concerned with constraints that are initially private [1€C model) between
agents, and they remain as private as possible during thngqgbrocess.
Privacy of assignments considers that actual assigne@s/ate not made
public in the solving process. Second, we propose two famdf algorithms,
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ABT-2ph/1ph and DisFC-2ph/1ph, to perform the actual sgwhile trying
to keep the above mentioned privacy levels. These algositara clear de-
scendants of ABT, they use the same kind of messages (pluesesxina ones)
and keep its good properties. They were initially concei@sdwo-phase al-
gorithms, although later both phases were joined into desimige. Regarding
privacy, these algorithms are not perfect and leak somenrdtion in the
solving process. When considering constraints privacyhawe observed that
the amount of revealed information depends on constrghtrtess, although
ABT-1ph always leaks less information than standard ABThicase of pri-
vacy of assignments, the ABT-2ph/1ph reveal more than atan8iBT, while
DisFC-2ph/1ph reveal less. The proposed algorithms hase ingplemented
and evaluated on random DisCSP instances. Empirically wsergb that to
achieve privacy, algorithms degrade their performanceabse they have
to conceal some values, exchange more messages, etc.)aftfgprivacy
(and privacy loss) we have used entropy as defined in infeom#teory.
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