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Abstract

A team of mobile sensors can be used for coverage
of targets in different environments. The dynamic nature
of such an application requires the team of agents to
adjust their locations with respect to changes which occur.
The dynamic nature is caused by environment changes,
changes in the agents’ tasks and by technology failures.

A new model for representing problems of mobile sensor
teams based on Distributed Constraint Optimization Prob-
lems (DCOP), is proposed. The proposed model, needs to
handle a dynamic problem in which the alternative assign-
ments for agents and set of neighbors, derive from their
physical location which is dynamic. DCOP MST enables
representation of variant dynamic elements which a team
of mobile sensing agents face. A reputation model is used
to determine the credibility of agents. By representing the
dynamic sensing coverage requirements in the same scale
as the agents’ credibility, the deployment of sensors in the
area can be evaluated and adjusted with correspondence
to dynamic changes. In order to solve a DCOP MST, a
local (incomplete) search algorithm (MGM MST) based
on the MGM algorithm is proposed and combined with
various exploration methods. While existing exploration
methods are evidently not effective in DCOP MSTs, new
exploration methods which are designed for these special
applications are found to be successful in our experimental
study.

1. Introduction

Some of the most challenging applications of multi
agent systems include a team of mobile agents with
sensing abilities which are required to cover a given
area to achieve a common goal. Various examples are a
network of sensors tracking enemy targets, rescue teams
searching for survivors and teams of unmanned vehicles
(UVs) searching an unfamiliar terrain.

A common feature of the above applications is that
the agents need to perform in a dynamic environment.
There can be a number of reasons that cause the dynamic
nature of such applications. One popular scenario which
is considered in many studies is a change in the quality of
information coming from agents/sensors [5] (throughout
this paper we assume that each agent resides on a mobile
sensor and use the terms sensor and agent interchange-
ably). Agents can pass incorrect reports as a result of
technology failures or due to activities of malicious parties.
However, there can be other dynamic elements in such an
application. For example, intelligence reports that indicate
a change of priorities in covering of different parts of
the area, movements of units (which can be expected in

military and rescue applications), and changes of tasks
given by the operating authority.

Previous attempts to cope with the dynamic properties
of mobile sensors have focused on a specific element
of the problem. One example (mentioned above) is the
detection of failing (or malicious) agents and avoidance of
interaction with them [5]. Although in the case of failure
of agents, detection is a first and important step towards
the generation of a robust network, detection alone may
not be enough. First, the indications for a failure might not
be conclusive. Second, a change in the environment can
cause the position of the agent to be no longer adequate.
Thus, it would probably be more effective to relocate the
agent than to avoid interactions with it. Third, in case of
an agent’s failure in an area with high importance, it is not
enough to avoid interactions with it. The goal of the team
is to maintain high level coverage on such delicate areas,
thus, other functioning sensing agents should be moved in
that direction.

Another example is the deployment of sensors in an area
in order to achieve maximal coverage [8], [16]. In these
studies agents make use of virtual potential fields in order
to maintain an adequate distance from one another and
thus, maximize the area they cover. In our work, a wider
range of problems and tasks of mobile sensor teams is
considered which include areas of high importance which
require overlapping coverage, sensors with different level
of credibility etc. We note that the max-coverage problem
(e.g. cover the largest area) is a specific case of the
problems which our proposed model applies to.

The present paper proposes a model and corresponding
algorithms that makes a large team of mobile sensing
agents robust to changes in the problem they face. The
proposed model is an extension of the well known Dis-
tributed Constraint Optimization Problems (DCOP) model.
In the proposed DCOP model for Mobile Sensing agent
Teams (DCOP MST), agents will adjust their position in
order to adapt to the dynamically changing environment
and the dynamic changes in the quality of information
reported by sensors in the team.

Although DCOP is a general model that can be used to
represent many real world problems as Meeting Schedul-
ing [12], [6] and Supply Chain Management [2], its
general design is static [10], [13], [15], [21], [7]. The
study of DCOP algorithms in dynamic environments is
in a preliminary stage [11], [9]. Our presented study is
a step in the direction of the general and challenging
goal to represent dynamic problems as DCOPs and design
algorithms for solving them.

A mobile sensing agent team problem introduces a
number of challenges which are not met by the stan-
dard DCOP model. The physical nature of the problem



requires that an agent will have a position. In addition,
technology limitations result in bounded ranges of sensing
and mobility. These ranges make the sets of relevant
alternative positions and the set of agents which can be
affected by an agent’s movement, dependent on its current
position. Therefore, the content of the domain and the
set of neighbors of an agent may change when the agent
moves. The DCOP MST model allows agents to maintain
dynamic sets of neighbors and dynamic domains.

One of the most challenging adaptations required in the
design of DCOP MST is the generation of a goal function
which represents both the dynamic nature of the envi-
ronment and the dynamic quality in agents’ reports (e.g.
their credibility). The credibility of agents is calculated
using a reputation model. The use of a reputation model
to detect malfunctioning or malicious agents in multi agent
systems in general and in sensor networks specifically is
widely used [20], [17], [4]. In the proposed DCOP MST
model, the importance of coverage (or the requirement)
for each point in the given area is represented by the total
sum of agents’ credibility which is required in order to
cover it. The model’s goal function will be to minimize
the difference between the credibility of the agents which
are covering the area and the coverage requirements.

The agents in the proposed adaptive framework perform
a distributed constraint optimization algorithm in order
to select their position in the given area. Due to the
dynamic nature of the problem and the large number
of possible assignments, a complete algorithm would not
be practical for solving DCOP MSTs. In contrast, most
existing incomplete (local) search algorithms for DCOPs
can be adjusted to solve a DCOP MST and some of them
are also compatible to cope with the dynamic nature of
such problems.

The basic local distributed algorithm proposed in order
to solve DCOP MST is a distributed self adjusting al-
gorithm based on the Maximum Gain Message (MGM)
algorithm [10], [14] which is a distributed (message
passing) local search algorithm. The quick convergence
of the MGM algorithm is an essential property in an
environment with intensive changes. Furthermore, MGM
is monotonic and thus, is expected to avoid redundant
expensive movements of sensors. However, the drawback
of the MGM algorithm, being monotonic and incomplete,
is the convergence to a local minima which in this ap-
plication might cause the failure to recognize targets in
the area. Our investigation of existing exploration methods
to escape local minima reveals their inability to cope
with the special requirements of the DCOP MST model.
We propose two exploration methods which allow the
mobile agents to explore the area for new targets while
maintaining a high level of coverage on the targets which
were previously detected.

Our empirical study investigates the performance of
MGM MST with respect to the mobility and sensing
limitations of the agents. Existing algorithms which per-
form exploration were implemented and compared with
the proposed exploration methods. Both of the proposed
methods outperform the state of the art algorithms by a
large factor.

2. Model Description

For lack of space we present only the components of
the standard DCOP model. For a full and formal definition

the reader is referred to [13].
A DCOP is a tuple < A,X ,D,R >. A is a finite

set of agents A1, A2, ..., An. X is a finite set of variables
X1,X2,...,Xm. Each variable is held by a single agent (an
agent may hold more than one variable). D is a set of
domains D1, D2,...,Dm. Each domain Di contains the
finite set of values which can be assigned to variable
Xi. R is a set of relations (constraints). Each constraint
C ∈ R defines a non-negative cost for every possible value
combination of a set of variables.

In order to present the DCOP MST model, a number
of concepts (which are not used in the standard DCOP
model) need to be defined. The first is the position of
an agent. We denote the current position of agent Ai

by cur posi. The position of the agent is its current
assignment but in DCOP MST it is a physical position
in the area (which can be represented by coordinates).

Second, we define two ranges which are essential
in DCOP MST. The first is the Sensing Range(SR) of
agents. The sensing range is the effective coverage range
of the agent, i.e., agent Ai can detect and cover all the
targets that are within its sensing range from cur posi.
The Mobility Range (MR) is the range that an agent can
move in a single iteration of the algorithm. We denote the
sensing range and the mobility range of agent Ai by SRi

and MRi respectively.
After defining these concepts we can redefine the set

D. A domain Di of agent Ai includes all the alternative
positions which are within MRi from cur posi. The
resulting domain is a dynamic set 1.

For each agent Ai a credibility variable Credi is
defined. The credibility variable is a real positive number
which is calculated by a reputation model.

We further define an environmental requirement func-
tion ER. This function expresses for each point in the
area, the required joint credibility amount (the sum of the
credibility variables) of agents with appropriate sensing
range so that the given point can be adequately sensed
(i.e. covered). Function Cur DIFF calculates for each
point in the area the difference between the current value
of the ER function and the sum of the credibility variables
of the agents which are currently covering it. Formally, if
we denote the set of agents within sensing range from
point p by SRp then:
Cur DIFF (p) = ER(p)−

∑
Ai∈SRp

Credi

The global goal of the agents in DCOP MST is to cover all
the area according to ER (i.e. to reduce the largest value
of Cur DIFF to zero). Since this goal cannot always
be achieved, we define a more general goal which is to
minimize the largest value of the Cur DIFF function
over all points in the area.

A set E includes all types of events. Each event can
have an influence on the credibility of the agents involved
in the event and/or on the function ER. A reputation
model is used to define the influence for each event ej ∈ E
on the credibility of the agents involved. An ordered set
OE includes the events which occur according to their
chronological order. Each member of the ordered set OE
includes the type of event, the time of occurrence (iteration
index), and its location (in case of an environmental event)
or the agents involved (in case of an event which affects

1. An alternative definition would be that all the possible positions are
included in an agent’s domain but it only considers the ones with in its
mobility range. However these two definitions are equivalent.



agents’ credibility).
As in the standard DCOP model, each agent can send

a message to each of the other agents. We assume that
each agent is aware of the current position and credibility
of each of the other agents. As in standard DCOPs
neighboring agents are the agents that can be influenced by
an assignment change (e.g. constrained agents). Thus, in
DCOP MST, two agents are considered neighbors, if after
they both move towards each other, their sensing ranges
overlap. Formally, the set of neighbors of agent Ai is
denoted by cur neii. An agent Aj is included in cur neii
iff the distance between cur posi and cur posj is less
than MRi + MRj + SRi + SRj . Like in the case of
the domains, since agents change their current position,
the meaning of this definition is that the set of an agent’s
neighbors is dynamic.

3. Solving algorithm for DCOP MST

After defining a model for representing mobile sensing
agents team problems, the next step is to propose algo-
rithms that the agents in the DCOP MST model will use
in order to select their position.

The choice of local search for solving problems of the
DCOP MST model is supported by the common standard
considerations for selecting local over complete search
which are time limitations and the limit on the size of
problems for which complete algorithms are practical. In
addition, the special properties of a mobile sensing agent
team problem also encourage the choice of a local search
algorithm:

1) Exploring the entire search space as required for
complete search, would mean that agents take each
and every possible position. This does not seem
practical for sensors with limited mobility on a large
area.

2) The expected dynamic changes limit the expected
time agents will have to perform a complete algo-
rithm. In such a dynamic environment, the algorithm
is expected to maintain reasonable coverage while
adjusting to the changes in the problem [11].

The simplicity of the framework of local search algo-
rithms makes it compatible with a dynamic environment.
Many local search algorithms (as MGM and DSA [14],
[21]) evaluate only the current state in each iteration,
while in complete algorithms, agents consider information
which was inferred in previous steps of the algorithm (like
Nogoods for example [18]). This information might not be
valid after the problem changes.

Among the existing local search algorithms, MGM was
selected for its fast convergence and its simplicity. In
addition, MGM is monotonic, thus, it would avoid costly
redundant movements by agents. We note that the same
adjustments we present for MGM are also applicable for
many other local DCOP algorithms with a synchronous
greedy structure.

The general design of the state of the art local search
algorithms for DCOPs is synchronous. In each step of the
algorithm an agent sends its assignment to all its neighbors
in the constraint network and receives the assignment of
all its neighbors. The MGM algorithm is a simpler version
of the DBA algorithm [19], [21]. After receiving the
assignments of all its neighbors, the agent computes the
maximal improvement (reduction in cost) to its local state

it can achieve by replacing its assignment and sends this
proposed reduction to its neighbors. After collecting the
proposed reductions from its neighbors, an agent changes
its assignment only if its proposed reduction is greater than
the reductions proposed by all of its neighbors.

The adjustments required to apply MGM to solve
DCOP MSTs are as follow: First, as a self adjusting
algorithm, the algorithm should run infinitely, i.e. after
the algorithm converges to a solution it remains active
in order to be sensitive to changes [3]. Second, the most
delicate matter is the definition of the quality of each of
the positions an agent can reach, so that it would serve the
global goal. The global goal, as defined in Section 2 is to
minimize the largest value of the Cur DIFF function.
The selection of the agents’ positions must serve this
goal. An immediate trivial choice would be a position
which covers the point with the highest Curr DIFF .
However, in case there are a number of positions which
enable coverage of this point, we would expect the agent
to choose the most effective one, i.e., the position which
enables coverage of additional points with a smaller
Curr DIFF . Therefore, an agent selects its position
according to the following recursive method (its code is
presented in Figure 1, method select pos):

1) Each time the recursive method is called it is given a
set of possible positions and a function that defines
a value to each point in the sensing range of all
the possible positions. In the first call, the set will
include all the positions within the agent’s mobil-
ity range MRself and the function Temp DIFF
which is the current difference function without the
current coverage of the agent performing the calcu-
lation (Aself ). Formally, Temp DIFF is defined
as follow:
For each point not currently covered by Aself ,
Temp DIFF = CUR DIFF .
For each point currently covered by Aself ,
Temp DIFF = CUR DIFF + Credself .

2) Next, a set (target set) which holds the points with
the largest function value in the sensing range of all
of the agent’s possible positions is generated.

3) Two termination conditions are checked:
a) If there is only one possible position, then it is

selected.
b) If the largest function value is equal to zero

(i.e. the target set is empty). In this case any
possible position can be selected.

4) If none of the termination conditions is met, the
agent recalls the recursive method. The new set of
possible positions which is passed in the recursive
call includes all the positions in the current set
of possible positions which are within the sensing
range of all points in the target set. The function
that is passed to the recursive method is the current
function, only without the values of the points in
the area which is within the sensing range of all
positions in the new generated possible positions set.
In other words, only areas which are not covered by
the agent from each of the possible positions need
to be considered.

Figure 1 presents the code of the MGM MST algo-
rithm. The main loop of the algorithm remains almost
unchanged from standard MGM [10], [14] (the standard
algorithm was left out for lack of space). The agents send



MGM MST
1. value← SelectedValue()
2. while (true)
3. send cur pos to each Ai ∈ cur neiself

4. collect positions of each Ai ∈ cur neiself

5. LR← BestPossibleLocalReduction()
6. Send LR to each Ai ∈ cur neiself

7. Collect LRs from each Ai ∈ cur neiself

8. if (LR > 0)
9. if (LR > LRs of each Ai ∈ cur neiself

(ties broken using indexes))
10. cur pos← the position that gives LR

BestPossibleLocalReduction()
11. possible pos← positions within MRself from cur pos
12. Temp Diff ← Cur Diff \ self coverage
13. new pos← select pos(possible pos , Temp Diff )
14. cur cov ← highest Temp Diff among points within SRself

from cur pos and not within SRself from new pos
15. new cov ← highest Temp Diff among points not within

SRself from cur pos and within SRself from new pos
16. return min(cur cov − new cov, Credself )

select pos(pos set , func)
17. if (‖pos set‖ = 1)
18. return pos set.content
19. target set←points within SRself from some pos ∈ pos set

with largest func value (must be larger than zero)
20. if (target set is empty)
21. return some pos ∈ pos set
22. if (no pos ∈ pos set is within SRself from all the points in

target set)
23. target set← largest subset of target set within SRself

from some pos ∈ pos set
24. possible pos← all positions in pos set which are within

SRself from all points in target set
25. intersect area← area within SRself from all

pos ∈ possible pos
26. new func← func \ func.intersect area
27. return select pos(possible pos , new func)

Figure 1. MGM MST.
their assignments (current positions) to the agents which
are currently their neighbors. Notice that according to the
assumptions in Section 2 the agent sends the accurate
position 2.

Method BestPossibleLocalReduction calls method se-
lect pos to find the best alternative position. After it is
found, the method returns the improvement that would be
achieved by changing to the selected alternative position.
This improvement (or ”reduction”) is the difference be-
tween the highest Cur Diff values, not including the
credibility variable of Aself (Temp DIFF ), which are
covered by the agent when it is located in one of the two
positions (the current and the new) and uncovered when
it is located in the other (lines 13 - 15). The possible
improvement can’t be larger than the agent’s credibility
variable, Credself , since that is the agent’s maximal
contribution to the coverage of any point in the area (line
16).

Method select pos is a recursive method that is first
called with the set of all positions within the mobility
range of the agent and function Temp DIFF . First,
the two termination conditions (as described above) are
checked (lines 17 - 21). In the process, a set called
target set is generated which includes all the points with

2. This is a reasonable assumption considering that GPSs are used. We
assume that the technology allows an agent to detect the agents which
their ranges overlap with its own as defined in Section 2 and update
its set of current neighbors. If not, agents would need to inform all
other agents when they change position so they can update their set of
neighbors accordingly.

the (same) highest value of the received function func,
which are covered from at least one of the positions in the
received set of possible positions (line 19). If all points
in target set cannot be covered from a single position,
then only the largest subset of target set which can be
covered from a single position is left in target set (lines
22,23). Next, a set is generated which includes all the
positions in pos set which enable coverage of all the
points in target set (line 24). In addition, a new function
is generated which is equal to func except for the values
of the points in the area which is covered from all the
positions in the new generated set (intersection area)
(line 25,26). Finlay, the recursive method is called with
the new generated set and function.

3.1. Runtime example

Figures 2 to 4 present an example of a DCOP MST
solved by the MGM MST algorithm. The team includes
five mobile sensors. The dashed lines circling each of the
sensors present their sensing range. The mobility range
for each agent is considered to be two times the sensing
range (this range was left out of the figures in order to
simplify the presentation). The agents are required to cover
a number of target areas which are depicted by complete
circles each containing a number. The number represents
the environmental requirement function ER. In the initial
state of this example depicted on the left hand side (LHS)
of Figure 2 there are three target areas with ER = 3
and one with ER = 10. The initial credibility assigned
to each agent is 5 (it is depicted as a framed digit above
each dashed circle). In the initial state presented on the
LHS of Figure 2 all targets are covered as required. The
ordered set of events OE includes two events. The right
hand side (RHS) of Figure 2 presents the state after the
first event, possibly a conflict in the report, that triggered a
decrease in the credibility of sensors 1 and 2. As a result,
the difference between the requirements on the target and
the sum of the credibility of agents 1 and 2 is 4. Agent
5 is currently covering a target with ER value of 3.
Thus, it moves to a position where it covers the target
which is considered more important. The resulting state is
presented on the LHS of Figure 3. Agent 4 can improve its
local state by moving to a position in which it covers the
target it covered before and the target which agent 5 left
uncovered (resulting in the state presented on the RHS of
Figure 3). Notice, that agent 4 moves although it is already
covering an area with ER = 3 since even though it is
covering the point with the largest current Cur DIFF
value in its range, the recursive function requires it to
keep considering the different positions which cover this
point and possibly additional points with a similar or less
Cur DIFF value. The LHS of Figure 4 presents the state
after an environmental change (the second event in OE). A
new target area was added with ER = 3. Agent 1 changes
its position since its contribution to the coverage of the
target it is currently covering is less than its contribution
when covering the new target. The final state is presented
on the RHS of Figure 4.

4. Theoretical properties and bounds

The first bound that needs to be established is that the
local method performed by each agent in each iteration is



Figure 2. LHS initial state. RHS credibility change for
some of the sensors.

Figure 3. LHS first step of adjustment. RHS second
step of adjustment.

efficient. Otherwise, it is not realistic to assume that agents
can complete the computation of the optimal alternative
position in a single iteration of the algorithm. 3. The
optimality of the local method is essential to insure that
the maximal possible gains of agents are indeed exchanged
by agents. Otherwise, the algorithm is not guaranteed to
converge to a local optimum.

Lemma 1: Assuming the maximal number of possible
positions in the MR of an agent is m, the number of calls
to method select pos this agent will make at the most in
a single iteration of the algorithm is m + 1 (linear).
proof: When method select pos is called for the first
time, the set of possible positions includes m members
at the most. Since in each call to the method the values of
points which are covered from all possible positions (the
intersection area) are not included in the function (lines
25,26 of Figure 1) the points which will be entered into
the next generated target set cannot be in sensing range
from all possible positions. Since only positions which
are in sensing range from all the points in target set are
entered into the next generated set of possible positions
(line 24), in every recursive call, after the first call, the
set of possible positions is smaller. Thus, the function can
be called m + 1 times at the most. Notice that the set is
never empty according to the second termination condition
(lines 20,21). �

Lemma 2: Assuming the maximal number of possible
positions in the SR of an agent from any target point is s,
the number of calls to method select pos this agent will
make in a single iteration of the algorithm is s+1 (linear).
proof: In each call of method select pos a target set is
generated. Only positions within sensing range from all the
points in the target set are considered when the function
will be called again. Therefore, after the first call, the set
of possible positions generated cannot be larger than the
number of positions in SR from the points in the target set.
The rest of the proof is similar to the proof of Lemma 1.
�

3. In our proof we assume that there are no plateaus (continuous areas
with the same ER value) and that the number of points of the same
(highest) value can be found efficiently. If plateaus do exist, the proof is
still valid only there is a need to use geometric computation in order to
evaluate areas instead of points.

Figure 4. LHS environmental change. RHS final
adjustment.

The conclusion from Lemma 1 is that in the worst
case, the runtime complexity of a single iteration is:
m2 ∗ ‖target set‖ (m is defined as in Lemma 1) , since
in each recursive call, each possible position is checked
whether it enables coverage of the target set. Further-
more, the conclusion from Lemma 2 is that the runtime
complexity of a single iteration is (m+s2)∗‖target set‖
at the most ((m and s are defined as in Lemmas 1 and 2).
Thus, the runtime of a single iteration is the minimal
among the two 4.

Next, the (local) optimality of the method for selecting
an agent’s position is established (it is optimal if only the
actions of a single agent are considered). As mentioned
above, the local optimal selection of position by the agents
is essential to ensure the maximal gain property in the
MGM algorithm:

Lemma 3: In each recursive call of the select pos
method, the set of possible positions includes the optimal
position with respect to minimizing the largest value of
the Cur DIFF function, within the sensing range of all
the positions that are in the mobility range of the agent.
proof: Assume that the selection of possible positions in
the i’th call to the recursive method select pos by agent
Aj is the first which does not include the optimal position.
We differentiate between two cases:

1) There exists at least one possible position in the
possible positions set of the i−1 call which is within
the sensing range of all the points in the target set
generated in the i− 1 iteration.

2) No possible position in the possible positions set of
the i−1 call is within the sensing range of all points
in the target set generated in the i− 1 iteration.

The consequence of the first case is that there exists an
optimal position pos′ which was included in the possible
positions of the i−1 call and is not selected to be included
in the new set of possible positions. This means that
pos′ is not within SRj of all points in the target set
(line 24 of Figure 1) . However, the goal is to minimize
the Cur Diff function and the target set includes the
points with the largest Curr Diff values not within
sensing range from all possible positions found in the i−1
iteration. Thus, the fact that there exists a position which
enables coverage of all points in target set contradicts
the optimality of pos′.

For the second case, any selection of position will give
the same largest difference. Thus, any selection is locally
optimal and the choice of selecting the position which
covers the largest number of points in the target set is

4. In contrast to the assumptions made, in case the initial possible
position set or target set are too large and the method cannot be completed
in reasonable time, the method can be stopped and one of the positions
in target set can be selected. However, in this case local optimality is
not guaranteed.



a heuristic which hopefully would help in most cases to
achieve the global goal. �

Since the select pos method returns either a position
which was left last in the possible positions set or one
position from a set of positions from which the agent
does not have any coverage differences, this selection is
optimal with respect to the position selection of a single
agent. However, we note that (as expected of a local search
algorithm) MGM MST is not guaranteed to reach a
global optimal state.

5. Exploration methods

Classic local search combines exploitation methods in
order to converge to local optima and exploration methods
in order to escape them [22]. The proposed MGM MST
algorithm is strictly exploitive (monotone). While it ben-
efits from quick convergence and avoids costly moves by
the sensors, once a target is beyond the agent’s range it
remains uncovered. Algorithms which implement explo-
ration methods were proposed for standard DCOPs [10],
[21], [14]. However, some of the methods which are most
effective in standard DCOP are not expected to be effective
for DCOP MST.

For standard DCOPs, a K-opt [14] algorithm gives an
upper bound on the distance from the optimal solution.
This guarantee is achieved by agents considering all of
the problem’s constraints (by groups of size K) in every
iteration of the algorithm. In DCOP MST, if a target is
not in the range of any agent it will not be considered.
Therefore, a K-opt algorithm is expected to allow agents to
converge to a deployment which results in better coverage
of the targets in range but it cannot offer the same
guarantees as in standard DCOPs when there are targets
beyond the agents’ ranges.

Another method which is most effective for standard
DCOPs is the anytime framework proposed in [23]. In
this framework, agents are storing the best solution which
was explored in memory and this solution is reported
when the algorithm is terminated. In DCOP MST, agents
change their physical position and are expected to maintain
coverage of targets which were detected. Changing to the
best solution can require agents to travel a long distance
and at the same time leave targets uncovered. In addition,
the method is effective only for static problems since there
are no guarantees on the quality of the solution when the
problem changes. Thus, holding the best position found
so far in memory while exploring for new targets is not
expected to be effective for DCOP MST.

In order to explore the area for new targets while
maintaining coverage of targets which were previously
detected we propose two simple but powerful exploration
methods which can be combined with the MGM MST
algorithm. These two methods change the parameters of
the algorithm temporarily in order to escape local minima.
This approach was found successful for local search in
DisCSPs [1].

1) MGM WR MST simply allows an agent to con-
sider points within a larger (double) range than their
MR for a small number of iterations (WR represents
Wide Range). This method assumes that a wider
range is possible even though it is slower. Therefore
the agents consider a wider range only in a small
percentage of the algorithm’s iterations which repeat

periodically (in our experiments for example, we
allowed two iterations of a wider, double, range
every ten regular iterations).

2) The MGM RC MST algorithm allows agents in
some iterations to move to a position which results
in an increase of the Curr Diff function up to
some number c. More specifically, line 8 of the
algorithm is changed in these iterations to:
8. if (LR + c > 0)
Again, this reduced condition (RC) is only tempo-
rary and is applied periodically. This would mean
that for a small number of iterations the importance
(coverage requirement) of targets in the area is
reduced.

In both of the proposed methods, agents are not ex-
pected to leave targets with high importance in order to
search for new targets. In MGM WR MST it is obvi-
ous since like in the case of MGM MST, only moves
which result with a gain are performed. In the case of
MGM RC MST, the c parameter defines the reduced
importance of the targets which are already covered. Thus,
c is a bound on the increase to the Cur Diff function that
the method can create.

6. Experimental evaluation

The proposed DCOP MST model was evaluated using
a simulator representing a mobile sensors team problem.
The problem simulated is of an area in which the possible
positions are a 200 over 200 grid. Each of the points
in the area has an ER value between 0 and 100. The
ER function initially included 10 random points with
maximal requirement (of 100). The credibility of an agent
varies between zero (for an agent with no credibility) and
100 for an agent with maximal credibility. The credibility
variable was initially set to 30. The reputation model used
in our experiments was inspired by SPORAS [20]. As in
SPORAS, all agents are initiated with similar credibility
(or ”reputation value” [20]) 5 and the effect of the events
on the credibility of agents is with respect to their current
level of credibility . The set E included three types of
events:

1) An environmental event which increases a point in
the area to a maximum ER value. This event can
represent an intelligence report that some enemy
activity is about to happen in a specific point.

2) The credibility of two neighboring agents decreases
by 25% (to 75% of what they had before the event).
This event can represent a conflict in the reports of
the two neighboring agents.

3) The credibility of a single agent decreases by 50%.
This event represents an agent which its reports
indicate that it is suffering from some technical
problem.

Figure 5 demonstrates the effect of the technology,
more specifically, the sensing and mobility ranges on the
quality of the algorithm. Both sides of the figure show
the results of the MGM MST algorithm after 15 random
events. The results depicted are an average over 50 runs
of the algorithm. On the LHS of Figure 5 the sensing
range is fixed and limited and the mobility range varies.

5. In contrast to SPORAS the initial credibility is not zero since in
MSTs we are not concerned with agents using different pseudonyms



Figure 5. Current Difference for varying ranges.

Figure 6. Current Difference for exploration methods.

Figure 7. Total amount of difference for exploration
methods.

On the RHS of Figure 5 the mobility range is fixed
and the sensing range varies. It is clear from these two
figures that in order for the MGM MST algorithm to
perform well, at least one of the parameters, either the
MR or the SR should be high. Otherwise, the algorithm
cannot handle events beyond the agents’ ranges and the
current difference value remains high. In other words, in
order to benefit from the nice properties of the MGM
algorithm, e.g. quick convergence and monotonicity, the
agents must be equipped with technology that enables
either a large sensing range or a large mobility range.
When the technology is limited exploration methods are
required in order to overcome this drawback.

In order to cope with the limitations of the mono-
tonic algorithm, four different exploration methods were
implemented and compared with MGM MST. The first
two methods are versions of the DSA and DBA algo-
rithms [21]. In the first, DSA MST, agents do not collect

Figure 8. Comparison with the standard model (cur-
rent difference).

Figure 9. Comparison with the standard model (total
amount).

the best reductions from their neighbors. Instead, an agent
changes its position to a best alternative that offers a
positive reduction according to some probability variable
p. In our experiments p = 0.6. In the second, DBA MST,
agents which detect that they are in a quasi local minima
(i.e., their LR is negative and so is the LR of their
neighbors) change the ER function by reducing the value
of all the points in their sensing range by one. The
other two exploration methods were the proposed methods
described in Section 5.

In this set of experiments, the ranges for all agents were
SR = 15 and MR = 10. The results in Figure 6 present
the current difference function for all four exploration
methods and the MGM MST algorithm. In this set of
experiments, after each of the 15 events, the algorithms
ran for 50 iterations and the results presented are the
current difference at the end of these 50 iterations. Each
point represents an average over 20 runs of the algorithm.
These results demonstrate the success of the proposed
exploration methods over the classic exploration methods.
In order to verify that the success of the proposed methods
is not only in the extreme highest difference in the area, a
second metric is presented. In Figure 7 the results present
the total sum of the current difference function over all the
points in the area for the five versions of the algorithm.
In this graph, the large improvement of the proposed
exploration methods is even more apparent.

In the last set of experiments the importance of the
dynamic domains and dynamic sets of neighbors (con-
straints network) in the proposed model was evaluated.
Figures 8 and 9 compare the MGM MST algorithm and
the two exploration methods which were found successful
in the experiments of the proposed model (presented in



Figures 6 and 7) with the same algorithm and exploration
methods, only using the standard model with a fixed
constraints network and fixed domains. The results are
very conclusive. When the standard model, with the fixed
domains and fixed constraints network is used (in our
figures we refer to them as the ’limited’ algorithms), the
exploration methods are not effective. In fact, both the
standard MGM and the algorithms with the exploration
methods produce the same results. It is clear that the
dynamic elements in the proposed model enable efficient
exploration.

7. Conclusions

A new model based on DCOP for solving a dynamic
problem was proposed. The proposed model, DCOP MST,
represents a dynamic application of a team of mobile
sensing agents which is expected to be robust to changes
in the environment in which the sensors operate, changes
in the teams tasks and technology failures. DCOP MST
enables representation of dynamic coverage requirements
and the dynamic variability in the quality of agents’
reports which can be caused by technology limitations and
malicious actions.

A local search algorithm based on MGM was designed
to solve problems represented in the proposed model.
Agents in the MGM MST algorithm make an efficient
selection of the locally optimal position with respect to
the goal function. As an incomplete search algorithm,
MGM MST does not guarantee to converge to a globally
optimal solution. However, it converges fast to a local
optima and its monotonic property insures that agents
avoid redundant movements. The same adjustments which
were applied to MGM can be used to adjust other local
search algorithms with a similar synchronous structure,
in order to solve DCOP MSTs. Two existing algorithms
which perform exploration were implemented and were
found to be not effective for the presented model in
our experimental study. Two new exploration methods
which follow a periodic structure, enable the detection of
new targets while maintaining acceptable coverage on the
targets which were previously detected.
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