Ann Math Artif Intell (2006) 46: 415-439
DOI 10.1007/s10472-006-9033-2

Message delay and DisCSP search algorithms

Roie Zivan - Amnon Meisels

Received: 19 January 2005 / Accepted: 8 November 2005 /
Published online: 18 October 2006
© Springer Science + Business Media B.V. 2006

Abstract Distributed constraint satisfaction problems (DisCSPs) are composed of
agents, each holding its own variables, that are connected by constraints to variables
of other agents. Due to the distributed nature of the problem, message delay
can have unexpected effects on the behavior of distributed search algorithms on
DisCSPs. This has been recently shown in experimental studies of asynchronous
backtracking algorithms (Bejar et al., Artif. Intell., 161:117-148, 2005; Silaghi and
Faltings, Artif. Intell., 161:25-54, 2005). To evaluate the impact of message delay on
the run of DisCSP search algorithms, a model for distributed performance measures
is presented. The model counts the number of non concurrent constraints checks,
to arrive at a solution, as a non concurrent measure of distributed computation.
A simpler version measures distributed computation cost by the non-concurrent
number of steps of computation. An algorithm for computing these distributed
measures of computational effort is described. The realization of the model for
measuring performance of distributed search algorithms is a simulator which includes
the cost of message delays. Two families of distributed search algorithms on DisCSPs
are investigated. Algorithms that run a single search process, and multiple search
processes algorithms. The two families of algorithms are described and associated
with existing algorithms. The performance of three representative algorithms of
these two families is measured on randomly generated instances of DisCSPs with
delayed messages. The delay of messages is found to have a strong negative effect
on single search process algorithms, whether synchronous or asynchronous. Multi

R. Zivan (X)) - A. Meisels
Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, 84-105, Israel
e-mail: zivanr@cs.bgu.ac.il

A. Meisels
e-mail: am@cs.bgu.ac.il

@ Springer

416 Ann Math Artif Intell (2006) 46: 415-439

search process algorithms, on the other hand, are affected very lightly by message
delay.

Keywords distributed constraint satisfaction - search - distributed Al

1 Introduction

Distributed constraints satisfaction problems (DisCSPs) are composed of agents,
each holding its local constraints network, that are connected by constraints among
variables of different agents. Agents assign values to variables, attempting to gen-
erate a locally consistent assignment that is also consistent with all constraints
between agents (cf. [17, 18]). Agents check the value assignments to their variables
for local consistency and exchange messages among them, to check consistency of
their proposed assignments against constraints with variables that belong to different
agents [2, 18].

Search algorithms on DisCSPs are run concurrently by all agents and their
performance must be measured in terms of distributed computation. Two measures
are commonly used to evaluate distributed algorithms — run time, which measures
the computational effort and network load [8]. The time performance of search algo-
rithms on DisCSPs has traditionally been measured by the number of computation
cycles or steps (cf. [18]). In order to take into account the effort an agent makes
during its local assignment the computational effort can be measured by the number
of constraints checks that agents perform. However, care must be taken to measure
the non-concurrent constraints checks. In other words, count computational effort
of concurrently running agents only once during each concurrent running instance
[9, 13]. Measuring the network load poses a much simpler problem. Network load is
generally measured by counting the total number of messages sent during search [8].

The first attempts to compare run times of distributed search algorithms on
DisCSPs used a synchronous simulator and instantaneous message arrival. During
one step of computation (cycle) of the simulator all messages of all agents are
delivered and all resulting computations by the receiving agents are completed [18].
The number of these synchronous steps of computation in a standard simulator
served to measure the non-concurrent run-time of a DisCSP algorithm [18]. Tt
is clear that the comparison of asynchronous search algorithms by synchronizing
them to run on a simulator is not satisfactory. In fact, comparing concurrent run-
times of distributed computations must involve some type of asynchronous time
considerations [7, 9].

The need to define a non-concurrent measure of time performance arises even
for an optimal communication network, in which messages arrive with no delay.
It turns out that for ideal communication networks one can use the number of
non-concurrent constraints checks (NCCCs), for an implementation independent
measure of non-concurrent run time [9]. When messages are not instantaneous, the
problem of measuring distributed performance becomes more complex. On realistic
networks, in which there are variant message delays, the time of run cannot be
measured in steps of computation. Take for example Synchronous Backtracking
(SBT) [18]. Agents in SBT perform their assignments one after the other, in a
fixed order, simulating a simple backtrack algorithm. Since all agents are completely

@ Springer

Ann Math Artif Intell (2006) 46: 415-439 417

synchronized and no two agents compute concurrently, the number of computational
steps is not affected by message delays. However, the effect on the run time of the
algorithm is completely cumulative (delaying each and every step) and is thus large
(see Section 6 for details).

The present paper proposes a general method for measuring run time of dis-
tributed search algorithms on DisCSPs. The method is based on standard methods
of asynchronous measures of clock rates in distributed computation [7] and uses
constraints checks as a logical time unit [9]. In order to evaluate the impact of
message delays on DisCSP search algorithms, we present an Asynchronous Message
Delay Simulator (AM DS) which measures the logical time of the algorithm run.
The AMDS measures run time in non-concurrent steps of computation or in non-
concurrent constraints checks and simulates message delays accordingly. The AMDS
and its underlying asynchronous measuring algorithm for comparing concurrent
running times is described in detail in Section 3. The validity of the AMDS’ counting
algorithm, to measure concurrent logical time, is proved in Section 4. It can simulate
systems with different types of message delays. From fixed message delays, through
random message delays, to systems in which the length of the delay of each message
is dependent on the current load of the network. The delay is measured in non-
concurrent computation steps (or non-concurrent constraints checks). The final
logical time that is reported as the cost of the algorithm run, includes steps of
computation which were actually performed by some agent, and computational
steps which were added as message delay simulation while no computation step was
performed concurrently (see Section 3).

The AMDS presented in Section 3 enables a deeper exploration of the behav-
ior of different search algorithms for DisCSPs on systems with different message
delays. Message delays emphasize properties of families of algorithms which are
not apparent when the algorithms are run in a system with perfect communication.
Experimental evidence for such behavior was found recently for asynchronous
backtracking algorithms [1, 15]. The study of [1] measured run times on a multi-
machine implementation of the compared algorithms. While serving as a first attempt
to study the impact of communication delays on DisCSP algorithms, such an imple-
mentation does not enable simple duplication of experiments, for diverse algorithms
and measures, as does the present well-defined simulation algorithm.

The present study of the behavior of distributed search algorithms on DisCSPs
uses a selected set of three very different DisCSP algorithms. All search algorithms
on DisCSPs can be divided into two families. Single search process algorithms
(SPAs) and concurrent (multiple) search process algorithms (CSAs). The only for-
mer experimental study of the performance of DisCSP algorithms compared two
asynchronous single search algorithms [1].

The state of single process algorithms is defined by a single tuple of assignments,
one for each agent. When this set of assignments is complete (containing assignments
to all variables of all agents) and consistent, the SPA stops and reports a solution. A
simple representation for the state of any synchronous SPA, like SBT [18] or CBJ
[21], is a data structure that holds the current partial assignment of the search (CPA).
Single search process algorithms can be asynchronous. In asynchronous backtracking
(ABT) [2, 18], each agent holds its view of the current assignments of other agents
in a single Agent_view. When all agents are idle, all Agent_Views are consistent and
a solution is reported [2, 18].

@ Springer

418 Ann Math Artif Intell (2006) 46: 415-439

In concurrent search, multiple concurrent processes perform search on non in-
tersecting parts of the global search space of a DisCSP [6, 14, 20]. All agents in
a CSA participate in every search process, since each agent holds some variables
of the search space. Each agent holds the current domains of its variables, for
each of the search processes. Messages of CSAs carry the IDs of their related
search process and the agents use the corresponding current domains for consistent
assignments. The concurrent backtracking algorithm (ConcBT), distributes among
agents a dynamically changing number of search processes [22]. Agents generate and
terminate search processes dynamically during the run of the ConcBT algorithm [22].
The concurrent dynamic backtracking (ConcD B) algorithm incorporates dynamic
backtracking to the concurrent performing search processes. As a result, one search
procedure can reveal a dead end of another concurrent search procedure and
terminate it [23].

In interleaved asynchronous backtracking, agents participate in multiple processes
of asynchronous backtracking. Each agent keeps a separate Agent_view for each
search process in /DIBT [6]. The number of search processes is fixed by the first
agent. The performance of concurrent asynchronous backtracking [6, 14] was tested
and found to be ineffective for more than two concurrent search processes [6].

The plan of the paper is as follows. Distributed constraint satisfaction problems
(DisCSPs) are presented in Section 2. A detailed introduction of the simulator that
is used in our experiments, and of the method of evaluating the run time of DisCSP
algorithms in the presence of message delays, is presented in Section 3. Section 4
contains a proof of the validity of the simulating algorithm. Section 5 presents the two
families of DisCSP search algorithms — single process (SPAs) and concurrent search
(CSAs). This is followed by a detailed description of the compared algorithms —
synchronous SPA (CBJ), asynchronous backtracking (ABT), and concurrent search
(ConcDB). The first two algorithms have appeared in different versions in the
literature and the compared versions are the most up to date. Synchronous BT uses
backjumping [3, 21] and asynchronous BT resolves Nogoods [2]. The representative
concurrent search algorithm is ConcD B which was found to perform best in a recent
study [23]. Section 6 presents extensive experimental results, comparing all three
algorithms on randomly generated DisCSPs with different types of message delays.
A discussion of the performance and advantages of the families of algorithms, on
different DisCSP instances and communication networks, is presented in Section 7.
Our conclusions are in Section 8.

2 Distributed constraint satisfaction

A distributed constraints network (or a distributed constraints satisfaction problem—
DisCSP) is composed of a set of k agents A, Ay, ..., Ar. Each agent A; contains a
set of constrained variables Xj,, Xj,, ..., X,-"i. Constraints or relations R are subsets
of the Cartesian product of the domains of the constrained variables [4]. A binary
constraint R;; between any two variables X; and X; is defined as: R;; € Dj x D;.
In a distributed constraint satisfaction problem DisCSP, the agents are connected
by constraints between variables that belong to different agents (cf. [17, 18]). In
addition, each agent has a set of constrained variables, i.e., a local constraint network.

An assignment (or a label) is a pair < var, val >, where var is a variable of some
agent and val is a value from var’s domain that is assigned to it. A partial assignment

@ Springer

Ann Math Artif Intell (2006) 46: 415-439 419

(or a compound label) is a set of assignments of values to a set of variables. A solution
to a DisCSP is an assignment that includes all variables of all agents, that is consistent
with all constraints. Following all former work on DisCSPs, agents check assignments
of values against non-local constraints by communicating with other agents through
sending and receiving messages. An agent can send messages to any one of the other
agents [18].

The delay in delivering a message is assumed to be finite [18]. One simple protocol
for checking constraints, that appears in many distributed search algorithms, is
to send a proposed assignment < var, val >, of one agent to another agent. The
receiving agent checks the compatibility of the proposed assignment with its own
assignments and with the domains of its variables and returns a message that either
acknowledges or rejects the proposed assignment. The following assumptions are
routinely made in studies of DisCSPs and are assumed to hold in the present study
[2, 18].

1. All agents hold exactly one variable.

2. The amount of time that passes between the sending of a message to its reception
is finite.

3. Messages sent by agent A; to agent A; are received by A; in the order they
were sent.

4. Every agent can access the constraints in which it is involved and check consis-
tency against assignments of other agents.

3 Simulating search on DisCSPs

The standard model of Distributed Constraints Satisfaction Problems has agents
that are autonomous asynchronous entities. The actions of agents are triggered
by messages that are passed among them. In real world systems, messages do
not arrive instantaneously but are delayed due to networks properties. Delays
can vary from network to network (or with time, in a single network) due to
networks topologies, different hardware and different protocols used. To simulate
asynchronous agents, the simulator implements agents as Java Threads. Threads
(agents) run asynchronously, exchanging messages by using a common mailer. After
the algorithm is initiated, agents block on incoming message queues and become
active when messages are received.

Non-concurrent steps of computation, in systems with no message delay, are
counted by a method similar to that of [7, 9]. Every agent holds a counter of
computation steps which it increments each time it performs a step. Every message
carries the value of the sending agent’s counter. When an agent receives a message it
updates its counter to the largest value between its own counter and the counter value
carried by the message. By reporting the cost of the search as the largest counter held
by some agent at the end of the search, a non-concurrent measure of search effort is
achieved (see [7]).

On systems with message delays, the situation is different. To introduce the
problems of counting in the presence of message delays, let us start with the simplest
possible algorithm. Synchronous backtracking (SBT') performs assignments sequen-
tially, one by one and no two assignments are performed concurrently. Consequently,
the effect of message delay is very clear. The number of computation steps is not

@ Springer

420 Ann Math Artif Intell (2006) 46: 415-439

affected by message delay and the delay in every step of computation is the delay on
the message that triggered it. Therefore, the total time of the algorithm run can be
calculated as the total computation time, plus the total delay time of messages. In the
presence of concurrent computation, the time of message delays must be added to
the run-time of the algorithm only if no computation was performed concurrently. To
achieve this goal, the simulator counts message delays in terms of computation steps
and adds them to the accumulated run-time. Such additions are performed only for
instances when no computation is performed. In other words, when the delay of a
message causes all agents to wait, performing no computation.

In order to simulate message delays, all messages are passed by a dedicated Mailer
thread. The mailer holds a counter of non-concurrent computation steps performed
by agents in the system. This counter represents the logical time of the system
and we refer to it as the Logical Time Counter (LTC). Every message delivered
by the mailer to an agent, carries the LTC value of its delivery to the receiving
agent. An agent that receives a message updates its counter to the maximum value
between the received LTC and its own value. Next, it performs the computation
step, and sends its outgoing messages with the value of its counter, incremented
by 1. The same mechanism can be used for computing computational effort, by
counting non-concurrent constraints checks. Agents add to the counter values in
outgoing messages the number of constraints checks performed in the current step
of computation.

The mailer simulates message delays in terms of non-concurrent computation
steps. To do so it uses the LTC, according to the algorithm presented in figure 1.
Let us go over the details of the Mailer algorithm, in order to understand the
measurements performed by the simulator during run time.

When the mailer receives a message, it first checks if the LTC value that is carried
by the message is larger than its own value. If so, it increments the value of the LTC
(line 1). In line 2 a delay for the message (in number of steps) is selected. Here,
different types of selection mechanisms can be used, from fixed delays, through
random delays, to delays that depend on the actual load of the communication
network. To achieve delays that simulate dependency on network load, for example,
one can assign message delays that are proportional to the size of the outgoing
message queue.

Figure 1 The Mailer — upon receiving message msg:
algorithm. 1. LTC + max(LTC, msg.LTC)
2. delay « choose_delay
3. msg.delivery-time <« msg.LTC + delay
4. outgoing-queue.add(msg)
5. deliver_messages
when there are no incoming messages and all agents are idle
1. LTC « outgoing_queue.first_msg.LTC
2. deliver_messages
— deliver_messages
1. foreach (message m in outgoing queue)
2. if (m.delivery_time < LTC)
3. deliver(m)

@ Springer

Ann Math Artif Intell (2006) 46: 415-439 421

Each message is assigned a delivery_time which is the sum of the value of the
message’s LTC and the selected delay (in steps), and placed in the outgoing queue
(lines 3,4). The outgoing_queue is a priority queue in which the messages are
sorted by delivery_time, so that the first message is the message with the lowest
delivery_time. In order to preserve the third assumption from Section 2, messages
from agent A; to agent A; cannot be placed in the outgoing queue before messages
which are already in the outgoing queue which were also sent from A; to A;. This
property is essential to asynchronous backtracking which is not correct without it (cf.
[2])- The last line of the Mailer’s code calls method deliver_messages, which delivers
all messages with delivery_time less or equal to the mailer’s current L7C value, to
their destination agents.

When there are no incoming messages, and all agents are idle, if the
outgoing_queue is not empty (otherwise the system is idle and a solution has been
found) the mailer increases the value of the LTC to the value of the delivery_time of
the first message in the outgoing queue and calls deliver_messages. This is a crucial
step of the simulation algorithm. Consider the run of a synchronous search algorithm.
For Synchronous Backtracking (SBT) [18], every delay needs the mechanism of
updating the Mailer’s LTC (line 1 of the second function of the code in figure 1).
This is because only one agent is computing at any given instance, in synchronous
backtrack search.

The non-concurrent run time reported by the algorithm, is the largest L7TC value
that is held by any agent at the end of the algorithm’s run. By incrementing the L7TC
only when messages carry LTCs with values larger than the mailer’s LTC value,
steps that were performed concurrently are not counted twice. This is an extension of
Lamport’s logical clocks algorithm [7], as proposed for DisCSPs by [9], and extended
here for message delays.

A similar description holds for evaluating the algorithm run in non-concurrent
constraints checks. In this case the agents need to extend the value of their L7Cs by
the number of constraints checks they actually performed in each step. This enables
a concurrent performance measure that incorporates the computational cost of the
local step, which might be different in different algorithms. It also enables to evaluate
algorithms in which agents perform computation which is not triggered or followed
by a message.

4 Validity of the AMDS

The validity of the proposed simulation algorithm can be established in two steps.
First, its correspondence to runs of a Synchronous (cycle-counting) Simulator is
presented. Understanding the nature of this correspondence, enables to show that a
corresponding synchronous cycle simulator cannot measure concurrent delayed steps
and the AMDS is necessary.

In a Synchronous Cycle Simulator (SCS) [18], each agent can read all messages
that were sent to it in the previous cycle and perform a single computation step.
The computation is followed by the sending of messages (which will be received in
the next cycle). Agents can be idle in some cycles, if they do not receive a message
which triggers a computation step. The cost of the algorithm run, is the number of
synchronous cycles performed until a solution is found or a non solution is declared

@ Springer

422 Ann Math Artif Intell (2006) 46: 415-439

(see [18]). Message delay can be simulated in such a synchronous simulator by
delivering messages to agents several cycles after they were sent. Our first step is
to show the correspondence of AMDS and an SCS.

Theorem 1 Any run of AMDS can be simulated by a Synchronous Cycle Simulator
(SCS). Each cycle c; of the SCS corresponds to an LTC value of AMDS.

Proof Every message m sent by an agent A; to agent Aj, using the AMDS, can be
assigned a value d which is the largest value between the LTC carried by m in the
AMDS run and the value of the LTC held by A; when it receives m. Running a
Synchronous Cycle Simulator (SCS) and assigning each message m with the value d
calculated as described above, the message can be delivered to A; in cycle d. The
outcome of this special SCS is that every agent in every cycle ¢; receives the exact
messages as the agents in the corresponding AMDS and the histories of all these
messages are equivalent. This means that agents have the same knowledge about
the other agents as the agents performing the corresponding steps in the AMDS
run. Assuming the algorithm is deterministic, each agent will perform the same
computation and send the same messages. If the algorithm includes random choices
the run can be simulated by recording AMDS choices and forcing the same choice in
the synchronous simulator run. O

The theorem demonstrates that for measuring the number of steps of computa-
tion, the asynchronous simulator is equivalent to a standard SCS that does not wait
for all agents to complete their computation in a given cycle, in order to move to the
next cycle. Message delays are simulated simply by the SCS delivering messages in
delayed cycles.

The validity and importance of the asynchronous simulator can now be un-
derstood. Consider the important case where computational effort needs to be
measured, in terms of constraints checks for example. At each cycle agents perform
different amounts of computation, depending on the algorithm, on the arrival of
messages, etc. The SCS has no way to “guess” the amount of computation performed
by each agent in any given step or cycle. It therefore cannot deliver the resulting
message in the correct cycle (one that matches the correct amount of computation
and waiting). The natural way to incorporate the computational cost into the
performance measure is to “clock” the simulator by CCs (for example). But this is
equivalent to using the AMDS as proposed in Section 3.

5 Families of DisCSP search algorithms

Algorithms for solving DisCSPs can be divided into two families: single search
process algorithms (SPAs) and multiple search process algorithms (MPAs). The
general model of DisCSPs has variables owned by agents, who assign them values.
The distinction between the two families of algorithms is in the number of concurrent
assignments that agents maintain. In SPAs each agent can have no more than one

@ Springer

Ann Math Artif Intell (2006) 46: 415-439 423

assignment to its variable, at any single instance. In multiple process algorithms
(MPAs), on the other hand, agents maintain multiple concurrent assignments to their
variable. To give an example, synchronous backtracking (SBT) is a single process
algorithm. During search, a single CPA carries the assignments of some of the agents.
The other agents which are waiting for the message with assignments to arrive, are
still unassigned. Therefore, each agent, in every step of the search, has either one
assignment or none [18]. Asynchronous backtracking (ABT) is also a SPA. All the
variables in ABT have exactly one assignment at each instant of its run [2].

To maintain two concurrent assignments in a DisCSP, think of the first agent as
assigning two of its values to its variable. It then puts each assignment on a different
message and initializes a backtracking process for each one. Each backtrack process
traverses all agents, not necessarily at the same order, to accumulate assignments
to all variables of all agents. All agents receive eventually two messages. One
message has the first assignment for the first agent and the other has the second
assignment that the first agent performed. Agents that receive a message either add
their compatible assignment to the partial assignment already on the message, or
backtrack by sending the message back. All agents use a different current domain
for each of the messages. It is easy to see that all agents react to the two messages
in exactly the same way, assigning their variable on it or backtracking. This process
stops when one of the messages accumulates a complete assignment and reports a
solution, or when both messages return to the first agent and find no more values to
assign. In this case the two-process algorithm reports failure.

Several single process DisCSP search algorithms have appeared in the literature
in the last decade. Synchronous algorithms like synchronous backtrack (SBT) and
conflict-based backjumping (CBJ) [18, 21]. Asynchronous algorithms like asynchro-
nous backtracking (A BT), asynchronous aggregations search (A AS) and asynchro-
nous forward-checking (AFC) [2, 10, 15]. In contrast, only few multiple process
DisCSP search algorithms appear in the literature [6, 14,22]. The concurrent dynamic
backtracking algorithm (ConcD B), with dynamic splitting of search processes, will be
the representative of this family in the present study. ConcD B incorporates dynamic
splitting, generating a variable number of search processes. Furthermore, the search
processes cooperate inorder to detect and terminate invalid active search processes
[23]. Multiple search process versions of asynchronous backtracking were found not
to improve for more than two concurrent processes [6].

In the following subsections three representative algorithms of the above two
families are described. Two single-process algorithms, one synchronous (CBJ) and
one asynchronous (ABT), and one multiple-process algorithm — concurrent dynamic
backtracking (ConcDB). The performance of the three representative algorithms is
evaluated in Section 6 and the impact of delayed messages on their performance is
presented. The impact of delayed messages on each of the algorithms is found to
be related to the properties of the algorithm’s family and will be explained in the
discussion (Section 7).

5.1 Conflict based backjumping

The Synchronous Backtrack algorithm (SBT) [18], is a distributed version of chrono-
logical backtrack [11]. SBT has a total order among all agents. Agents exchange
a partial solution that we term Current Partial Assignment (CPA) which carries a

@ Springer

424 Ann Math Artif Intell (2006) 46: 415-439

consistent tuple of the assignments of the agents it passed so far. The first agent
initializes the search by creating a CPA and assigning its variable on it. Every agent
that receives the CPA tries to assign its variable without violating constraints with
the assignments on the CPA. If the agent succeeds to find such an assignment to
its variable, it appends the assignment to the tuple on the CPA and sends it to
the next agent. Agents that cannot extend the consistent assignment on the CPA,
send the CPA back to the previous agent to change its assignment, thus perform
a chronological backtrack. An agent that receives a CPA in a backtrack message
removes the assignment of its variable and tries to reassign it with a consistent
value. The algorithm ends successfully if the last agent manages to find a consistent
assignment for its variable. The algorithm ends unsuccessfully if the first agent
encounters an empty domain [18].

The synchronous (distributed) version of Conflict Based Backjumping (CBJ)
improves on simple synchronous backtrack (SBT) by using a method based on
dynamic backtracking [5]. In the improved version, when an agent removes a value
from its variable’s domain, it stores the eliminating explanation (Nogood), i.e.,
the subset of the CPA that caused the removal. When a backtrack operation is
performed, the agent resolves its Nogoods creating a conflict set which is used to
determine the culprit agent to which the backtrack message will be sent. The resulting
synchronous algorithm has the backjumping property (i.e., CBJ) [5]. When the CPA
is received again, values whose eliminating Nogoods are no longer consistent with
the partial assignment on the CPA are returned to the agents’ domain.

The CBJ algorithm is presented in figure 2. In the main function, the first agent
initializes the search by creating a CPA, assigning and sending it by using the function
assign_CPA (lines 2-4). Lines 5-10 describe how agents respond to one of three
types of messages:

1. stop: indicating that the search has ended.
2. CPA: carrying a CPA forward.
3. backtrack: carrying a CPA backwards, with an inconsistent assignment.

Upon the reception of a stop message the agent simply stops the search by exiting
the loop. When a CPA moving forward is received, the agent first calls function
refresh_domain. This returns to the agent’s current_domain values whose explana-
tion is not included in the received CPA. Next, the agent calls function assign_ CPA,
attempting to assign its variable.

When a backtrack message is received, the agent calls function remove_last_
assignment which removes the value assignment of the agent in the inconsistent CPA
from its current_domain. It then stores it with the received CPA in the form of a
Nogood. Finally, it replaces the CPA with a copy of the last CPA it sent, which
holds the assignment it will try to extend and send forward. This takes place in
the function assign_CPA that is called immediately after remove_last_assignment.
When the agent fails to extend a CPA it calls function backtrack whose first line
resolves the inconsistent subset of the CPA (line 1). Then, a check is made whether
the Nogood created is empty which will indicate the DisCSP has no solution (lines
2-4). If the Nogood found is not empty, it is sent to the agent with the lowest priority

@ Springer

Ann Math Artif Intell (2006) 46: 415-439 425

- CBI:
1.done « false
2.if(first_agent)
3. CPA « create_CPA
4. assign_.CPA
5. while(not done)
6. switch msg.type
7 stop:done «— true
8 backtrack: remove_last_assignment

9. assign_CPA
10. C P A:refresh_domain
11. assign_CPA

- assign_CPA:

1. CPA « assign_local
2. if(is_consistent(CPA))

3. if(is_full(CPA))
4. report_solution
5. stop
6. else
7. send(CPA, next)
8. else
9. backtrack
— backtrack:

1. CPA « resolve_nogoods
2. if(is_empty(CPA))
3 CPA «+ no_solution
4. stop
5. else
6 send(backtrack, C P A.last_asignee)
— remove_last_assignment:
1. store(CPA.last_assignment,CPA)
2. CPA — {last_sent.C'PA} \ {last.assignment}
3. current_domain « {current.domain} \ {last_assignment}
— refresh_domain:
1. for each stored Nogood sn
2. if(not consistent(CPA,sn))
3. current_domain < {current_domain} U {sn.last_assignment}
— stop:
1. send(stop, all_other_agents)
2. done « true

Figure 2 The distributed CBJ algorithm.

whose assignment is included in the Nogood (lines 6). This is standard dynamic back-
tracking [5].

5.2 Asynchronous backtracking

The Asynchronous Backtrack algorithm (ABT) was presented in several versions
over the last decade and is described here in accordance with the more recent

@ Springer

426 Ann Math Artif Intell (2006) 46: 415-439

papers [2, 18]. In the ABT algorithm, agents hold an assignment for their variables
at all times, which is consistent with their view of the state of the system (i.e.,
their Agent view). When the agent cannot find an assignment consistent with its
Agent_view, it changes its view by eliminating a conflicting assignment from its
Agent_view data structure and sends back a Nogood.

The ABT algorithm [18], has a total order of priorities among agents. Agents hold
a data structure called Agent_view which contains the most recent assignments re-
ceived from agents with higher priority. The algorithm starts by each agent assigning
its variable, and sending the assignment to neighboring agents with lower priority.
When an agent receives a message containing an assignment (an ok? message [18]), it
updates its Agent_view with the received assignment and if needed, replaces its own
assignment, to achieve consistency. Agents that re-assign their variable, inform their
lower priority neighbors by sending them ok? messages. Agents that cannot find a
consistent assignment, send the inconsistent tuple in their Agent_view in a backtrack
message (a Nogood message [18]). The Nogood is sent to the lowest priority agent in
the inconsistent tuple, and its assignment is removed from their Agent_view. Every
agent that sends a Nogood message, makes another attempt to assign its variable
with an assignment consistent with its updated Agent_view.

Agents that receive a Nogood, check its relevance against the content of their
Agent_view. If the Nogood is relevant, the agent stores it and tries to find a consistent
assignment. In any case, if the agent receiving the Nogood keeps its assignment, it
informs the Nogood sender by re-sending it an ok? message with its assignment. An
agent A; which receives a Nogood containing an assignment of agent A; which is not
included in its Agent_view, adds the assignment of A; to its Agent_view and sends a
message to A; asking it to add a link between them. In other words, A; is requested
to inform A; about all assignment changes it performs in the future [2, 18].

The performance of ABT can be strongly improved by requiring agents to read
all messages they receive before performing computation [18]. A formal protocol for
such an algorithm was not published. The idea is not to re-assign the variable until all
the messages in the agent’s ‘mailbox’ are read and the Agent_view is updated. This
technique was found to improve the performance of ABT on the harder instances
of randomly generated DisCSPs by a factor of 4 [21]. However, this property makes
the efficiency of ABT dependent on the contents of the agent’s mailbox in each step,
i.e., on message delays (see Section 6). The consistency of the Agent_view held by
an agent with the actual state of the system before it begins the assignment attempt
is affected directly by the number and relevance of the messages it received up to
this step.

Another improvement to the performance of ABT can be achieved by using the
method for resolving inconsistent subsets of the Agent_view, based on methods of
dynamic backtracking. A version of ABT that uses this method was presented in
[2]. In [21] the improvement of ABT using this method over ABT sending its full
Agent_view as a Nogood was found to be minor. In all the experiments in this paper
a version of ABT which includes both of the above improvements is used. Agents
read all incoming messages that were received before performing computation and
Nogoods are resolved, using the dynamic backtracking method [2].

The ABT algorithm is presented in figure 3 [18]. The first procedure is performed
when an ok? message is received. The agent adds the received assignment to its
Agent_view and calls procedure check_agent_view.

@ Springer

Ann Math Artif Intell (2006) 46: 415-439 427

— when received (ok?, (z;,d;)) do
1. add (zj,d;) to agent_view;
2. check_agent_view;end_do;

— when received (nogood, x;, nogood) do

1. add nogood to nogood list;
2. when nogood contains an agent x, that is not its neighbor do
3 request zj, to add x; as a neighbor,
4 and add (z, di) to agent_view; end-do;
5. old_value < current_value; check_agent_view;
6. when old_value = current_value do
7 send (0k?, (z;, current_value)) to x; ; end- do; end_do;
procedure check_agent_view
1. when agent_view and current_value are not consistent do
2. if no value in D; is consistent with agent_view then backtrack;
3 else select d € D; where agent_view and d are consistent;

4, current_value < d,

5 send (ok?,(x;, d)) to low_priority_neighbors; end_if;end_do;
procedure backtrack

1. nogood «— resolve_Nogoods;

2. when nogood is an empty set do

3 broadcast to other agents that there is no solution;

4 terminate this algorithm; end_do;

5. select (x;, d;) where x; has the lowest priority in nogood;

6. send (nogood, x;, nogood) to x;;

7. remove (z;,d;) from agent_view; end_do;

8. check_agent_view

Figure 3 The ABT algorithm.

The second procedure is performed when a Nogood is received. The Nogood is
stored (line 1), and a check is made whether it contains an assignment of a non
neighboring agent. If so, the agent sends a message to the unlinked agent in order
to establish a link between them and adds its assignment to its Agent_view (lines 2—
4). Before calling procedure check_agent_view, the current value is stored (line 5).
If for any reason the current value remains the same after calling check_agent_view,
an ok? message carrying this assignment is sent to the agent from whom the Nogood
was received (lines 6,7).

In procedure check_agent_view if the current value is not consistent with the
Agent_view the agent searches its domain for a consistent value. If it does not find
one, it calls procedure backtrack (line 2). If there is a consistent value in its domain,
it is placed as the current_value and ok? messages are sent through all outgoing links
(lines 3-5).

In procedure backtrack the agent resolves its stored Nogoods and chooses the
Nogood to be sent (line 1). If the Nogood selected is empty, the algorithm is
terminated unsuccessfully (lines 2-4). In other cases the agent sends the Nogood
to the agent with the lowest priority whose assignment is included in the Nogood,
removes that assignment from the Agent_view and calls check_agent_view.

@ Springer

428 Ann Math Artif Intell (2006) 46: 415-439

5.3 Concurrent dynamic backtracking

In order to present concurrent dynamic backtracking a simpler more general version,
ConcBT is first presented, followed by the changes in order to add dynamic back-
tracking to the algorithm. The ConcBT algorithm [22] performs multiple concurrent
backtrack searches on disjoint parts of the DisCSP search-space. Each agent holds
the data relevant to its state on each sub-search-space in a separate data structure
which is termed Search Process (SP). Agents in the ConcBT algorithm pass their
assignments to other agents on a CPA (Current Partial Assignment) data structure.
Each CPA represents one search process, and holds the agents current assignments
in the corresponding search process. An agent that receives a CPA tries to assign its
local variable with values that are consistent with the assignments on the CPA, using
the current domain in the SP related to the received CPA. The uniqueness of the
CPA for every search space ensures that assignments are not done concurrently in a
single sub-search-space [22].

Exhaustive search processes which scan heavily backtracked search-spaces, can be
split dynamically. Each agent can generate a set of CPAs that split the search space
of a CPA that passed through that agent, by splitting the domain of its variable.
Agents can perform splits independently and keep the resulting data structures
(SPs) privately. All other agents need not be aware of the split, they process all
CPAs in exactly the same manner (see [22] for a detailed explanation). CPAs are
created either by the Initializing Agent (/A) at the beginning of the algorithm run, or
dynamically by any agent that splits an active search-space during the algorithm run.
A heuristic of counting the number of times agents pass the CPA in a sub-search-
space (without finding a solution), is used to determine the need for re-splitting of
that sub-search-space. This generates a mechanism of load balancing, creating more
search processes on heavily backtracked search spaces.

A backtrack operation is performed by an agent which fails to find a consistent
assignment in the search-space corresponding to the partial assignment on the
CPA. Agents that have performed dynamic splitting, have to collect all of the re-
turning CPAs, of the relevant SP, before performing a backtrack operation. In the
description of the ConcBT algorithm the following terminology is used:

— CPA_generator: every CPA carries the ID of the agent that created it.

— steps_limit: the number of steps (from one agent to the next) that will trigger a
split, if the CPA does not find a solution, or return to its generator.

— split_set: the set of SP-1Ds, stored in each SP, including the IDs of the active SPs
that were split from the SP by the agent holding the split_set.

— origin_SP: an agent that performs a dynamic split, holds in each of the new SPs
the ID of the SP it was split from (i.e., of origin_SP). An analogous definition
holds for origin_C P A. The origin_S P of an SP that was not created in a dynamic
split operation is its own ID.

The messages exchanged by agents in ConcBT are:

— CPA —aregular CPA message.

— backtrack — a CPA sent in a backtrack operation.

— stop — a message indicating the end of the search.

— split — a message that is sent in order to trigger a split operation. Contains the ID
of the SP to be split.

@ Springer

Ann Math Artif Intell (2006) 46: 415-439 429

— ConcBT: — backtrack:

1. done « false

2. if(IA) then initialize_SPs

3. while(not done)

4. switch msg.type

5 split: perform_split

6. stop: done «— true

7 CPA: receive_CPA

8 backtrack: receive_.CPA

initialize_SPs:

. fori«— 1 to domain_size

create_SP(i)

SP[i].domain «+— domain.vall[i]

CPA « create_CPA(i)

assign-CPA

receive_CPA:

1. CPA «— msg.CPA

2. if(first_received(CPA_ID))

3. create_.SP(CPA_ID)

if(C PA_generator =1D)
CPA_steps «<— 0

else
CPA_steps ++
if(C P A_steps = steps_limit)

9. send(split, C PA_generator)

10. if(msg.type = backtrack)

11. remove_last_assignment

12. assign-CPA

assign_CPA:

1. CPA « assign_local

2. if(is_consistent(CPA))

e

P NN

3. if(is_full(CPA))

4. report_solution

5. stop

6. else

7. send(CPA, next_agent)
8. else

9. backtrack

Figure 4 The ConcBT algorithm.

1. delete(current_CPA from origin_split_set)
2. if(origin_split_set is_empty)

3. if(dA)
4. CPA < no_solution
5. if(no_active_CPAs)
6. report_no_solution
7. stop
8. else
9. send(backtrack, last_assignee)
10. else
11. mark_fail(current.CPA)
— perform_split:
1. if(not_backtracked(C P A))
2. var « select_split_var
3 if(var is_not null)
4 create_split_SP(var)
5 create_split_.CPA(SP_ID)
6. add(SP_ID to origin_split_set)
7 assign-CPA
8 else
9 send(split, next_agent)
— stop:

1. send(stop, all_other_agents)
2. done « true

The ConcBT algorithm is presented in figure 4 and the detailed description of its

different functions is as follows.

The main function ConcBT, initializes the search if it is run by the initializing
agent (IA). It initializes the algorithm by creating multiple SPs, assigning each
SP with one of the first variable’s values. After initialization, it loops forever,

waiting for messages to arrive.

receive_CPA first checks if the agent holds a SP with the ID of the current_CPA
and if not, creates a new SP (lines 2,3). If the CPA is received by its generator, it
changes the value of the steps counter (CP A_steps) to 0 (lines 4,5). This prevents
unnecessary splitting. Otherwise, it checks whether the CPA has reached the

@ Springer

430 Ann Math Artif Intell (2006) 46: 415-439

steps_limit and a split must be initialized (lines 7-9). Before assigning the CPA a
check is made whether the CPA was received in a backtrack, if so the previous
assignment of the agent which is the last assignment made on the CPA is
removed, before assign_CPA is called (lines 10,11).

— assign_CPA tries to find an assignment for the local variables of the agent, which
is consistent with the assignments on the current_CPA. If it succeeds, the agent
sends the CPA to the selected next_agent (line 7). If not, it calls the backtrack
method (line 9).

— The backtrack method is called when a consistent assignment cannot be found
in a SP. Since a split might have been performed by the current agent, a check
is made, whether all the CPAs that were split from the current_C P A have also
failed (line 2). When all split CPAs have returned unsuccessfully, a backtrack
message is sent carrying the ID of the origin_CPA. In case of an /A, the
origin_SP is marked as a failure (lines 3,4). If all other SPs are marked as failures,
the search is ended unsuccessfully (line 6).

— The perform_split method tries to find in the SP specified in the split_message,
a variable with a non-empty current_domain. It first checks that the CPA to be
split has not been sent back already, in a backtrack message (line 1). If it does
not find a variable for splitting, it sends a split_message to next_agent (lines 8.9).
If it finds a variable to split, it creates a new SP and CPA, and calls assign_CPA
to initialize the new search (lines 3-5). The ID of the generated CPA is added to
the split set of the divided SP’s origin_S P (line 6).

The best version of concurrent backtracking search uses methods of backjumping
that are based on Dynamic Backtracking [5]. Each agent that removes a value from
its current domain stores the partial assignment that caused the removal of the value.
This stored partial assignment is called an eliminating explanation by [5]. When
the current domain of an agent empties, the agent constructs a backtrack message
from the union of all assignments in its stored removal explanations. The union of
all removal explanations is an inconsistent partial assignment, or a Nogood [5, 18].
The backtrack message is sent to the agent which is the owner of the most recently
assigned variable in the inconsistent partial assignment. This version of concurrent
search is called Concurrent Dynamic Backtracking (ConcDB).

In concurrent dynamic backtracking, a short Nogood can rule out multiple sub-
search-spaces, all of which contain no solution and are thus unsolvable. In order to
terminate the corresponding search processes, an agent that receives a backtrack
message performs the following procedure:

— Detect the SP to which the received (backtrack) CPA either belongs or was split
from.

— Check if the CPA corresponding to the detected SP was split down its path.

- Ifit was:

a. Send an unsolvable message to the next_agent of the related SP, thus
generating a series of messages along the path of the CPA.

b. Choose a new unique ID for the CPA received and its related SP.

c. Continue the search using the SP and CPA with the new ID.

@ Springer

Ann Math Artif Intell (2006) 46: 415-439 431

— Check if there are other SPs which contain the received inconsistent partial
assignment (by calling function check_SPs). Send corresponding unsolvable
messages and resume the search on them with new generated CPAs.

The unsolvable message used by the ConcDB algorithm, is a message not used in
Concurrent Backtracking (ConcBT), which indicates an unsolvable sub-search-space.
An agent that receives an unsolvab le message performs the following operations for
the unsolvable SP and each of the SPs split from it:

— Mark the SP as unsolvable.
— Send an unsolvable message which carries the ID of the SP to the agent to whom
the related CPA was last sent.

The change of ID makes the resumed search process independent of the process
of terminating unsolvable search spaces. If the agents would have resumed the search
using the ID of the original SP or of the received CPA, a race condition would
arise since there is no synchronization between the process of terminating unsolvable
search procedures to the resumed valid search procedure. In such a case, an agent
that received an unsolvable message might have marked an active search space as
unsolvable.

Figure 5 presents the methods ConcDB, receive_CPA and backtrack, that were
changed from the general description of Concurrent Search in figure 4, followed
by two additional methods needed for adding Dynamic Backtracking to concurrent
search. Let us look at the differences in code. In method receive_CPA a check is

ConcDB: backtrack:

" 9. backtrack-msg «—

9. unsolvable: mark_unsolvable(msg.SP) inconsistent_assignment
10. send(backtrack-msg,

receive_CPA: lowest_priority_assignee)

1. CPA «— msg.CPA 1. else

2. if(unsolvable SP) 12. mark_fail(current_.CPA)

3. terminate CPA

4. else mark_unsolvable(SP)

1. mark SP unsolvable
2. send(unsolvable, SP.next_agent)
. 3. for each split_SP in SP.origin.split_set
14. if(msg.type = backtrack) 4
15. check_SPs(CPA.inconsistent_assignment) 5
16. last_sent_CPA.remove_last_assignment
17. CPA « last_sent.CPA check_SPs(inconsistent_assignment)
18. if(SP_split_ahead) 1. for each spin {SPs\ current_.SP}
19. send(unsolvable, SP.next_agent) 2 if(sp.contains(inconsistent_assignment))
20. rename_SP 3. send(unsolvable, sp.next_agent)
21. assign.CPA 4. last_sent_CPA.remove_last_assignment
5
6
7

mark split_SP unsolvable
send(unsolvable, split_SP.next_agent)

CPA « last_sent_CPA
sp.rename_SP
assign_.CPA
Figure 5 Methods for Dynamic Backtracking of ConcD B.
@ Springer

432 Ann Math Artif Intell (2006) 46: 415-439

made in lines 3,4 whether the SP related to the received CPA is marked unsolvable.
In such a case the CPA is not assigned and the related SP is terminated. For a
backtracking CPA (lines 14-20) a check is made whether there are other SPs which
can be declared unsolvable. This can happen when the head (or prefix) of their partial
assignment (their common head i.e., CH) contains the received inconsistent partial
assignment. For such a case, procedure check_SPs is called, which for every such SP
found, initiates the termination of the search process on the unsolvable sub-search-
space and resumes the search with a newly generated CPA. Then a check is made
whether the SP was split by agents who received the CPA after this agent (line
18). If so, the termination of the unsolvable SP is initiated by sending an unsolvable
message. A new ID is assigned to the received CPA and to its related SP (line 20).

In method backtrack, the agent inserts the culprit inconsistent partial assignment
into the backtrack message (line 9) before sending it back in line 10. This is the only
difference from the standard backtrack method in figure 4.

As described above, method mark_unsolvable is part of the mechanism for
terminating SPs on unsolvable search spaces. The agent marks the SP related to
the message received, and any SP split from it, as unsolvable and sends unsolvable
messages to the agents to whom the corresponding CPAs were sent.

6 Experimental evaluation

The network of constraints, in each of the experiments, is generated randomly by
selecting the probability p; of a constraint among any pair of variables and the
probability p,, for the occurrence of a violation among two assignments of values
to a constrained pair of variables. Such uniform random constraints networks of n

Figure 6 Non-concurrent
constraint checks with no
message delays (p; = 0.4).

NCCCs

01 02 03 04 05 06 07 08 09

Figure 7 Total number of 45000 —e—CBJ
messages with no message 40000 /R

delays (p; = 0.4). 35000 1 /
30000 1 2 ---m--ConcDB

\‘ - - —ABT

MSGs

01 02 03 04 05 06 07 08 09
p2

@ Springer

Ann Math Artif Intell (2006) 46: 415-439 433

Figure 8 Non-concurrent 90000 - —e—CBJ
constraint checks with no ggggg 1
m 1 =0.7). 1

essage delays (p; = 0.7) 50000 |
50000 -
40000 -
30000 -
20000 -
10000 A

D <+ e —

01 02 03 04 05 06 07 08 09

p2

- -« —-ABT
---m--ConcDB

NCCCs

variables, k values in each domain, a constraints density of p; and tightness p,, are
commonly used in experimental evaluations of CSP algorithms (cf. [12, 16]). The
experiments were conducted on networks with 15 Agents (n = 15) and 10 values
(k = 10). Two density parameters were used, p; = 0.4 and p; = 0.7. The value of
p> was varied between 0.1-0.9. This creates problems that cover a wide range of
difficulty, from easy problem instances to instances that take several CPU minutes
to solve. For every pair (p;,pz) in the experiments we present the average over 50
randomly generated instances.

In order to evaluate the algorithms, two measures of search effort are used.
One counts the number of non-concurrent constraint checks (NCCCs) [9, 23], to
measure computational cost. This measures the combined path of computation, from
beginning to end, in terms of constraint checks. The other measure used is the
communication load, in the form of the total number of messages sent [8]. In order to
evaluate the number of non-concurrent CCs including message delays, the simulator
described in Section 3 is used.

In the first set of experiments the three algorithms are compared without any
message delay. The results presented in figures 6 and 8 show that the numbers of
non-concurrent constraint checks that the three algorithms perform are very similar,
on systems with no message delays. ABT performs slightly less steps than CBJ and
ConcDB performs slightly better than ABT. When it comes to network load, the
results in figures 7 and 9 show that for the harder problem instances, agents in ABT
send between four to five times more messages than sent by agents running CBJ and
ConcDB. All four figures: figures 6, 7, 8 and 9 show clearly the presence of a phase
transition [19].

In the second set of experiments, messages were delayed randomly for 50-100
non-concurrent constraint checks (as described in Section 3). Figure 10 presents

Figure 9 Total number of 120000 - ——CBJ
messages with no message 100000 4 * L
delays (p; = 0.7). FAS - —ABT

8 80000 - !, \ ..-m--ConcDB

& 60000 A

b3

40000 -
20000 A

01 02 03 04 05 06 07 08 09
p2

@ Springer

434 Ann Math Artif Intell (2006) 46: 415-439

Figure 10 Non-concurrent 900000 - —e—CBJ
constraint checks with random 800000 -
message delays (p; = 0.4). 700000 - - & —ABT

600000 A --m--ConcDB
500000 A
400000 -
300000 A
200000 A
100000 -

0 — b=

01 02 03 04 05 06 07 08 09
p2

NCCCs

Figure 11 A closer look at 120000
NCCCs performed by ABT 100000 - a
and ConcDB, with random / Y

message delays (p; = 0.4). 80000 A , A ---m--- ConcDB
60000 - A \
40000 - P
20000 - A

0 +a—rmppe? 3’

- & —ABT

NCCCs

.

| ZX

01 02 03 04 05 06 0.7 08 08
p2

the number of non concurrent constraint checks performed by the three algorithms
running on sparse DisCSPs with random message delays. The most obvious result
of figure 10 is that CBJ is affected most by message delay. This could have been
expected. Since CBJ performs no concurrent computation the total amount of
message delay is added to the runtime of the algorithm. This gives a large effect
on the run-time results. Figure 11 presents a closer look at the results of ABT and
ConcDB in this run. While ConcDB performed about 40% more NCCCs than the
number of NCCCS it performed with no message delays, ABT performs three times
more NCCCs than it does for perfect communication.

Figure 12 presents the total number of messages sent by the three algorithms
with random message delays. It is interesting to see that while the total number of
messages sent by CBJ and ConcDB are not affected by message delay, the number
of messages sent by ABT grows by a factor of 2.

Figures 13, 14 and 15 show similar results for denser DisCSPs (p; = 0.7).

The third set of experiments investigates the impact of the size and range of the
random delays on the different algorithms. The effect of varying the delay size on a

Figure 12 Total number of 80000 - —e—CBJ
messages with random 70000 4 ,A
message delays (p; = 0.4). 60000 4 i\ - -ABT
50000 A / v ---m--ConcDB
40000 - ’ \
30000 A / \
20000 - / N
10000 - Jowe A
1 - e B
01 02 03 04 05 06 07 08 09
p2

MSGs

@ Springer

Ann Math Artif Intell (2006) 46: 415-439 435

Figure 13 Non-concurrent 1400000 - —e—CBJ
constraint checks with random 1200000 4
message delays (p; = 0.7). 1000000 = -ABT
@ g
S 800000 - = ConcDB
€ 600000 A
400000
200000
0 4 . o —
01 02 03 04 05 06 07 08 08
p2
Figure 14 A closer look on 300000 s _ABT
the NCCCs performed by of 250000 4
ABT and ConcDB, with r
random message delays 3 200000 + F ---w-- ConcDB
A
(p1 =0.7). g 150000 1 PN
< 100000 / \\
]
50000 - N Uy
NN
P IPE: AR TS
01 02 03 04 05 06 0.7 08 08
p2

sequential assignment (synchronous) single search algorithm is easy to understand.
In order to investigate the behavior of algorithms which perform concurrent compu-
tation, in the presence of message delays of different sizes and range, experiments
were performed for the harder problem instances. The algorithms were run with an
increasing amount and range of message delay, on the hardest problem instances
(tightness p, = 0.6 for p; = 0.4 and p, = 0.4 for p; = 0.7). The impact of random
delays on the different algorithms is presented in figures 16 and 17. The number
of non-concurrent constraint checks of the single search algorithm (ABT) grows
with the size of message delay. In contrast, larger delays have a small impact on
the number of non-concurrent constraint checks performed by concurrent search
(ConcDB).

Figure 15 Total number of 120000 —e—CBJ
messages with random 100000 4 [y
message delays (p; = 0.7). FA e —ABT
6 80000 + ,’ \\ ---m-- ConcDB
@ 60000 oy
b3 / \
40000 - ! a

01 02 03 04 05 06 07 08 09
p2

@ Springer

436 Ann Math Artif Intell (2006) 46: 415-439

Figure 16 Number of) 300000 — - —ABT
non-concurrent CCs vs. size 250000 Lok
of random message delays ® 200000 o e m-- ConcDB
(p1=04). Q &

g 150000 e

< 100000 e R

& ceeemt
-7 et [
50002 o an

0 25 50- 75 100- 125- 150-
60 100 150 200 260 300
delay

7 Discussion

Three sets of experiments to investigate the effect of message delays on the per-
formance of DisCSP search algorithms were performed. Distributed search algo-
rithms on DisCSPs fall into two distinct families — single search process algorithms
and concurrent search algorithms. The experiments compared three representative
search algorithms of these two families — Synchronous BT; Asynchronous BT; and
Concurrent DB.

In order to simulate message delays and include their impact in the experimental
results, an asynchronous simulator which delivers messages to agents according
to a logical time counter (LTC) of non-concurrent steps of computation (or non-
concurrent constraints checks) was introduced. When computing logical time, the
addition of message delay to the total cost occurs only when no concurrent computa-
tion is performed.

While in systems with perfect communication, where there are no message delays,
the number of synchronous steps of computation (on a synchronous simulator) is
a good measure of the time of the algorithm run, the case is different on realistic
systems with message delays. The number of non-concurrent constraints checks has
to take delays into account. When the number of non-concurrent CCs is calculated,
it reveals a large impact of message delay on the performance of single process
algorithms. In other words, the actual time it would take CBJ to report a solution
(including the delays of messages) is much longer than that of ConcDB or ABT.

In asynchronous backtracking, agents perform assignments asynchronously. As a
result of random message delays, some of their computation can be irrelevant due to
inconsistent Agent_views while the updating message is delayed. This can explain the

Figure 17 Number of 700000 — - —ABT
non-concurrent CCs vs. size of 600000 A
random message delays » 900000 rad - -m--ConcDB
(p1=0.7). S 400000 e
€ 300000 el
&
200000 o
100000 i - . I - e e]
0+ T |

0 25- 50- 75- 100- 125- 180-
50 100 1580 200 250 300
delay

@ Springer

Ann Math Artif Intell (2006) 46: 415-439 437

Figure 18 Number of 70000 ——CBJ
A=A

non-concurrent CCs actually 60000 et — s —ABT
performed vs. size of random » 50000 &
message delays (p; = 0.4). S 40000 " ---m-- ConcDB

2 30000 .

20000 el o
0+ T T T T T v |
0 2550 80- 75- 100- 125- 180

100 1580 200 250 300
delay

large impact of message delays on the computation performed by ABT (cf. [1, 15]).
The impact is not as strong as in synchronous CBJ (figures 10, 12, 13 and 15).

In order to further investigate the behaviour of the algorithms in the presence
of message delay the simple method for counting non-concurrent constraint checks
of [9] (see Section 3) can be performed concurrently during the run of the AMDS
simulator. This would give us the number of NCCCs which were actually performed
without the addition of message delays to the final result. Figures 18 and 19 present
the actual count of non-concurrent constraints checks (without adding delays) per-
formed by the agents during the algorithm run. As expected, CBJ performs exactly
the same number of NCCCs as with no delays. The number of NCCCs performed
by ABT in the presence of delays, grows by a factor of 2. This illuminates an
important feature of the standard simulation of runs of DisCSP algorithms. Based
on instantaneous arrival of messages, ABT reads multiple messages at each step.
With random message delays, agents are more likely to respond to a single message,
instead of all the messages sent in the former (ideal) cycle of computation. Messages
in asynchronous backtracking are many times conflicting. As a result, agents perform
more unnecessary computation steps when responding to fewer messages in each
cycle. The improvement that results from reading all incoming messages in each
step [18], is no longer useful when messages have random delays. This can explain a
similar result for ABT, on a different set of problems [1]. As can be seen in figures 18
and 19, for a multiple search process algorithm, like ConcD B, the number of actual
non-concurrent CCs is not affected and even decreases by the delay of messages.

To illuminate the robustness of ConcDB to message delay imagine the following
example. Consider the case where ConcDB splits the search space multiple times
and the number of CPAs is larger than the number of agents. In systems with no
message delays this would mean that some of the CPAs are waiting in incoming

Figure 19 Number of 250000 —e—CBJ
non-concurrent CCs actually 200000 ———a e —ABT
performed vs. size of random e
message delays (p; = 0.7). é 150000 -t ---m--- ConcDB
£ 100000 -
g > ° > * .
50000 { m...
B SEEEEE - ------ - [EEEEE [}
0+ T T T T T T 1
0 2580 50- 75- 100- 125- 150-

100 150 200 250 300
delay

@ Springer

438 Ann Math Artif Intell (2006) 46: 415-439

queues, to be processed by the agents. This delays the search on the sub-search-
spaces they represent. In systems with message delays, this potential waiting is caused
by the system. By choosing the right split_limit, agents can be kept busy at all
times, performing computation against consistent partial assignments. The results in
Section 6 demonstrate that the above claim can be achieved.

In terms of network load, the results of Section 6 show that asynchronous
backtracking puts a heavy load on the network, which doubles in the case of message
delays. The number of messages sent in concurrent search algorithms, is always much
smaller and is affected very lightly by message delays.

8 Conclusions

A study of the impact of message delay on the performance of DisCSP search algo-
rithms was presented. A method for simulating logical time, in logical units such as
non-concurrent steps of computation or non-concurrent constraint checks, has been
introduced. The number of non-concurrent constraints checks takes into account the
impact of message delays on the actual runtime of DisCSP algorithms. Two families
of DisCSP search algorithms have been presented and investigated. Single process
algorithms (SPAs) and multiple process algorithms (MPAs or concurrent search).
The results imply that, single process algorithms (SPAs), are much more affected
by message delays, than concurrent search. The number of NCCCs grows linearly
with message delay for completely synchronous algorithms like CBJ. The impact on
asynchronous backtracking, (ABT), is large. Both the computational effort and the
load on the network grow by a large factor, although the effect on runtime is smaller
than that of CBJ. This strengthens the results of [1, 15].

The concurrent search algorithm ConcDB shows the highest robustness to mes-
sage delays. This is connected to the fact that in ConcDB agents always perform
computation against consistent partial assignments. Computation performed in one
sub-search-space while others are delayed is not wasted as in asynchronous back-
tracking. The effect of message delay on concurrent search is minor in terms of non
concurrent constraint checks as well as on its network load.

References

1. Bejar, R., Domshlak, C., Fernandez, C., Gomes, K., Krishnamachari, B., Selman, B., Valls, M.:
Sensor networks and distributed csp: communication, computation and complexity. Artif. Intell.
161(1-2), 117-148 (2005)

2. Bessiere, C., Maestre, A., Brito, 1., Meseguer, P.: Asynchronous backtracking without adding
links: A new member in the abt family. Artif. Intell. 161(1-2), 7-24 (2005)

3. Brito, L., Meseguer, P.: Synchronous, asnchronous and hybrid algorithms for discsp. In: Work-
shop on Distributed Constraints Reasoning(DCR-04) CP-2004, Toronto, September 2004

4. Dechter, R.: Constraints Processing. Morgan Kaufman, San Mateo, California (2003)

5. Ginsberg, M.L.: Dynamic backtracking. J. Artif. Intell. Res. 1, 25-46 (1993)

6. Hamadi, Y.: Interleaved backtracking in distributed constraint networks. Int. J. Artif. Intell.
Tools 11, 167-188 (2002)

7. Lamport, L.: Time, clocks and the ordering of events in distributed system. Commun. ACM 2,
95-114 (1978)

8. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Mateo, California (1997)

@ Springer

Ann Math Artif Intell (2006) 46: 415-439 439

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Meisels, A., Razgon, 1., Kaplansky, E., Zivan, R.: Comparing performance of distributed
constraints processing algorithms. In: Proceedings of AAMAS-2002 Workshop on Distributed
Constraint Reasoning DCR, Bologna, pp. 86-93, July 2002

Meisels, A., Zivan, R.: Asynchronous forward-checking for distributed csps. In: Zhang, W. (ed.)
Frontiers in Artificial Intelligence and Applications. IOS, Amsterdam, The Netherlands (2003)
Prosser, P.: Hybrid algorithms for the constraint satisfaction problem. Comput. Intell. 9, 268-299
(1993)

Prosser, P.: An empirical study of phase transitions in binary constraint satisfaction problems.
Artif. Intell. 81, 81-109 (1996)

Silaghi, M.C.: Asynchronously solving problems with privacy requirements. PhD thesis, Swiss
Federal Institute of Technology (EPFL) (2002)

Silaghi, M.C., Faltings, B.: Parallel proposals in asynchronous search. Technical Report 01/#371,
EPFL, August 2001. http:/liawww.epfl.ch/cgi-bin/Pubs/recherche

Silaghi, M.C., Faltings, B.: Asynchronous aggregation and consistency in distributed constraint
satisfaction. Artif. Intell. 161(1-2), 25-54 (2005)

Smith, B.M.: Locating the phase transition in binary constraint satisfaction problems. Artif. Intell.
81, 155-181 (1996)

Solotorevsky, G., Gudes, E., Meisels, A.: Modeling and solving distributed constraint satisfaction
problems(dcsps). In: Constraint Processing-96, pp. 561-562, New Hamphshire, October 1996
Yokoo, M.: Algorithms for distributed constraint satisfaction problems: A review. Auton. Agents
Multi-Agent Syst. 3, 198-212 (2000)

Yokoo, M., Hirayama, K., Sycara, K.: The phase transition in distributed constraint satisfaction
problems: first results. In: Proceedings of CP-2000, pp. 515-519, Singapore (2000)

Zivan, R., Meisels, A.: Parallel backtrack search on discsps. In: Proceedings of Workshop on
Distributed Constraint Reasoning DCR-02, Bologna, July 2002

Zivan, R., Meisels, A.: Synchronous vs asynchronous search on discsps. In: Proceedings of the
1st European Workshop on Multi Agent System, EUMAS, Oxford, December 2003

Zivan, R., Meisels, A.: Concurrent backtrack search for discsps. In: Proceedings of FLAIRS-04,
pp. 776781, Miami Florida, May 2004

Zivan, R., Meisels, A.: Concurrent dynamic backtracking for distributed csps. Artificial Intelli-
gence Journal 170, 440-461 (2006)

@ Springer

http://liawww.epfl.ch/cgi-bin/Pubs/recherche

	Message delay and DisCSP search algorithms
	Abstract
	Introduction
	Distributed constraint satisfaction
	Simulating search on DisCSPs
	Validity of the AMDS
	Families of DisCSP search algorithms
	Conflict based backjumping
	Asynchronous backtracking
	Concurrent dynamic backtracking

	Experimental evaluation
	Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialUnicodeMS
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

