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Abstract.
The efficiency of Distributed Constraints satisfaction algorithms

must be measured by concurrent performance measures. In Previous
studies we have proposed the count of non concurrent logical steps
as an asynchronous measure. This measure is independent of the spe-
cific implementation and is not affected by the level of concurrency
of the performing algorithm. The method of counting non-concurrent
constraints-checks (NCCCs) was later extended to the case of sys-
tems with message delays. The method inherently assumes that each
message received by an agent triggers some computation.

In some DisCSP algorithms, such asAWC and ABT DO,
agents receive assignment messages from lower priority agents
which do not cause a computation. The present paper proposes a gen-
eralization of the method of counting non-concurrent logical steps
as run-time measure for distributed search algorithms. Logical time
counters carried by messages do not immediately update the receiv-
ing agent’s logical counter. Instead, the agent stores the data carried
by the message and tags it with the logical time carried by the mes-
sage. Only when the agent uses the stored information for the first
time, the logical counter of the delivering message is considered.

The proposed method ensures that the reported solution does not
include logical computation steps that could have been performed
concurrently. The proposed general method is presented in detail,
demonstrated on the relevant DisCSP algorithms and its correctness
is proven.

Key words: Distributed Constraint Satisfaction, Search, Dis-
tributed AI.

1 Introduction

Distributed constraints satisfaction problems (DisCSPs) are com-
posed of agents, each holding its local constraints network, that are
connected by constraints among variables of different agents. Agents
assign values to variables, attempting to generate a locally consistent
assignment that is also consistent with all constraints between agents
(cf. [9, 8]). Agents check the value assignments to their variables
for local consistency and exchange messages among them, to check
consistency of their proposed assignments against constraints with
variables that belong to different agents [9, 1].

Search algorithms on DisCSPs are run concurrently by all agents
and their performance must be measured in terms of distributed com-
putation. Two measures are commonly used to evaluate distributed
algorithms - run time, which measures the computational effort and
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network load [4]. The run time performance of search algorithms on
DisCSPs has traditionally been measured by the number of computa-
tion cycles or steps (cf. [9]). In order to take into account the effort an
agent makes during its local assignment the computational effort can
be measured by the number of constraints checks that agents per-
form. However, care must be taken to measure thenon-concurrent
constraints checks. In other words, count computational effort of
concurrently running agentsonly onceduring each concurrent run-
ning instance ([5, 7, 14]). Measuring the network load poses a much
simpler problem. Network load is generally measured by counting
the total number of messages sent during search [4].

The first attempts to compare run times of distributed search al-
gorithms on DisCSPs used a synchronous simulator and instanta-
neous message arrival. During one step of computation (cycle) of the
simulator, all messages of all agents are delivered and all resulting
computations by the receiving agents are completed [9]. The num-
ber of these synchronous steps of computation in a standard sim-
ulator served to measure the non-concurrent run-time of a DisCSP
algorithm [9]. It is clear that the comparison of asynchronous search
algorithms by synchronizing them to run on a simulator is not satis-
factory. In fact, comparing concurrent run-times of distributed com-
putations must involve some type of asynchronous time considera-
tions [3, 5, 14].

In an asynchronous environment, the task of measuring the run-
time of an algorithm becomes more complicated. In order to deter-
mine the length of the sequence of consecutive constraints checks
which were performed, the measurement method must determine
which of the logical stepscould not have been performed concur-
rently. A method for measuring non-concurrent logical computation
steps was proposed in [5], for the case of optimal communication
(i.e. no message delays) between agents. This measure was gener-
alized in two later studies to the case of imperfect communication
networks [14, 13] in order to study its effect on different distributed
search algorithms.

In both of the methods proposed above, which are based on Lam-
port’s clock synchronizing algorithm [3], each message carries the
logical of its sending. The receiver of each message advances its log-
ical clock to the clock carried by the message if it is larger than its
own current clock. This method ensures that concurrently performed
logical steps are not counted more than once [3, 5]. However, both
of the methods assume thatevery message must trigger a non-empty
sequence of logic steps. This assumption is compatible with most
DisCSP search algorithms (cf. [9, 10, 6]). In the general algorith-
mic case, agents are allowed to send messages that do not necessar-
ily trigger computation. In such a case, the methods presented in [5]
and [11] are not adequate.

The present paper proposes a generalized method for counting



non-concurrent logical steps for measuring run-time of distributed
search algorithms. In order to ensure that the reported count does not
include logical computation steps that could have been performed
concurrently, the logical time counters carried by agents are not
updated indiscriminately by the receiving agent. Instead, the agent
stores the data carried by the message and tags it with the logical
time carried by the message. Only when the agentusesthe stored
information for the first time, the logical counter carried by the de-
livering message is considered and in case its value is larger than the
agent’s counter, the agent increments its counter.

The plan of the paper is as follows. Distributed constraint satis-
faction problems (DisCSPs) are presented in Section 2. The exist-
ing methods for measuring non-concurrent computation, including
the method for perfect communication and the asynchronous mes-
sage delay simulator (AMDS), are presented in Section 3. Sec-
tion 4 presents the general method for counting non-concurrent log-
ical steps. A demonstration of the cases in which the existing meth-
ods fail to report non-concurrent time is given, followed by a de-
tailed description of the method and its compatibility to a variety of
cases. Section 5 presents a correctness proof for the proposed general
method. Our conclusions are in section 6.

2 Distributed Constraint Satisfaction

A distributed constraints network (or a distributed constraints sat-
isfaction problem -DisCSP) is composed of a set ofk agents
A1, A2, ..., Ak. Each agentAi contains a set of constrained vari-
ablesXi1 , Xi2 , ..., Xini

. Constraints orrelations R are subsets of
the Cartesian product of the domains of the constrained variables [2].
A binary constraint Rij between any two variablesXj andXi is
defined as:Rij ⊆ Dj × Di. In a distributed constraint satisfaction
problemDisCSP, the agents are connected by constraints between
variables that belong to different agents (cf. [9, 8]). In addition, each
agent has a set of constrained variables, i.e. alocal constraint net-
work.

An assignment (or a label) is a pair< var, val >, wherevar
is a variable of some agent andval is a value fromvar’s domain
that is assigned to it. Apartial assignment(or a compound label) is
a set of assignments of values to a set of variables. Asolution to
a DisCSPis an assignment that includes all variables of all agents,
that is consistent with all constraints. Following all former work on
DisCSPs, agents check assignments of values against non-local con-
straints by communicating with other agents through sending and
receiving messages. An agent can send messages to any one of the
other agents [9].

The delay in delivering a message is assumed to be finite [9].
One simple protocol for checking constraints, that appears in many
distributed search algorithms, is to send a proposed assignment
< var, val >, of one agent to another agent. The receiving agent
checks the compatibility of the proposed assignment with its own
assignments and with the domains of its variables and returns a
message that either acknowledges or rejects the proposed assign-
ment. The following assumptions are routinely made in studies of
DisCSPs and are assumed to hold in the present study [9, 1].

1. All agents hold exactly one variable.
2. The amount of time that passes between the sending of a message

to its reception is finite.
3. Messages sent by agentAi to agentAj are received byAj in the

order they were sent.
4. Every agent can access the constraints in which it is involved and

check consistency against assignments of other agents.

• upon receiving messagemsg:
1. LTC←max(LTC, msg.LTC)
2. delay← choose delay
3. msg.delivery time←msg.LTC + delay
4. outgoing queue.add(msg)
5. deliver messages

• when there are no incoming messages and all agents are idle
1. LTC← outgoing queue.first msg.LTC
2. deliver messages

• deliver messages
1. foreach (message m in outgoing queue)
2. if (m.delivery time ≤ LTC)
3. deliver(m)

Figure 1. The Mailer algorithm

3 Measuring performance of DisCSP search
algorithms

The standard model of Distributed Constraints Satisfaction Problems
has agents that are autonomous asynchronous entities. The actions of
agents are triggered by messages that are passed among them. In real
world systems, messages do not arrive instantaneously but are de-
layed due to networks properties. Delays can vary from network to
network (or with time, in a single network) due to networks topolo-
gies, different hardware and different protocols used.

Non-concurrent steps of computation, in systems with no mes-
sage delay, can be counted by a method similar to that of [3, 5]. Ev-
ery agent holds a counter of computation steps which it increments
each time it performs a step of computation. Every message carries
the value of the sending agent’s counter. When an agent receives a
message it updates its counter to the largest value between its own
counter and the counter value carried by the message. By reporting
the cost of the search as the largest counter held by some agent at
the end of the search, a non-concurrent measure of search effort is
achieved (see [3]).

On systems with message delays, the situation is different. To in-
troduce the problems of counting in the presence of message de-
lays, let us start with the simplest possible algorithm. Synchronous
backtracking (SBT ) performs assignments sequentially, one by one
and no two assignments are performed concurrently. Consequently,
the effect of message delay is very clear. The number of computa-
tion steps is not affected by message delay and the delay in every
step of computation is the delay on the message that triggered it.
Therefore, the total time of the algorithm run can be calculated as
the total computation time, plus the total delay time of messages. In
the presence of concurrent computation, the time of message delays
must be added to the run-time of the algorithmonly if no computa-
tion was performed concurrently. To achieve this goal, the simulator
counts message delays in terms of computation steps and adds them
to the accumulated run-time. Such additions are performed only for
instances when no computation is performed. In other words, when
the delay of a message causes all agents to wait, performing no com-
putation.

In order to simulate message delays, all messages are passed by
a dedicatedMailer thread. The mailer holds a counter of non-
concurrent computation steps performed by agents in the system.
This counter represents the logical time of the system and we re-
fer to it as theLogical Time Counter(LTC). Every message deliv-



ered by the mailer to an agent, carries theLTC value of its deliv-
ery to the receiving agent. An agent that receives a message updates
its counter to the maximum value between the receivedLTC and
its own value. Next, it performs the computation step, and sends its
outgoing messages with the value of its counter, incremented by 1.
The same mechanism can be used for computing computational ef-
fort, by counting non-concurrent constraints checks. Agents add to
the counter values in outgoing messages the number of constraints
checks performed in the current step of computation.

The mailer simulates message delays in terms of non-concurrent
computation steps. To do so it uses theLTC, according to the algo-
rithm presented in figure 1. Let us go over the details of theMailer
algorithm, in order to understand the measurements performed by the
simulator during run time.

When the mailer receives a message, it first checks if theLTC
value that is carried by the message is larger than its own value. If
so, it increments the value of theLTC (line 1). In line 2 a delay for
the message (in number of steps) is selected. Here, different types of
selection mechanisms can be used, from fixed delays, through ran-
dom delays, to delays that depend on the actual load of the com-
munication network. To achieve delays that simulate dependency on
network load, for example, one can assign message delays that are
proportional to the size of the outgoing message queue.

Each message is assigned adelivery time which is the sum
of the value of the message’sLTC and the selected delay
(in steps), and placed in theoutgoing queue (lines 3,4). The
outgoing queue is a priority queue in which the messages are sorted
by delivery time, so that the first message is the message with
the lowestdelivery time. In order to preserve the third assump-
tion from section 2, messages from agentAi to agentAj cannot
be placed in the outgoing queue before messages which are al-
ready in the outgoing queue which were also sent fromAi to Aj .
This property is essential to asynchronous backtracking which is
not correct without it (cf. [1]). The last line of theMailer’s code
calls methoddeliver messages, which delivers all messages with
delivery time less or equal to the mailer’s currentLTC value, to
their destination agents.

When there are no incoming messages, and all agents are idle, if
theoutgoing queue is not empty (otherwise the system is idle and
a solution has been found) the mailer increases the value of theLTC
to the value of thedelivery time of the first message in the outgo-
ing queue and callsdeliver messages. This is a crucial step of the
simulation algorithm. Consider the run of a synchronous search algo-
rithm. ForSynchronous Backtracking(SBT ) [9], every delay needs
the mechanism of updating the Mailer’sLTC (line 1 of the second
function of the code in figure 1). This is because only one agent is
computing at any given instance, in synchronous backtrack search.

The non-concurrent run time reported by the algorithm, is the
largestLTC value that is held by any agent at the end of the al-
gorithm’s run. By incrementing theLTC only when messages carry
LTCs with values larger than the mailer’sLTC value, steps that
were performed concurrently are not counted twice. This is an ex-
tension of Lamport’s logical clocks algorithm [3], as proposed for
DisCSPs by [5], and extended for message delays in [14].

A similar description holds for evaluating the algorithm run in
non-concurrent constraints checks. In this case the agents need to
extend the value of theirLTCs by the number of constraints checks
they actually performed in each step. This enables a concurrent per-
formance measure that incorporates the computational cost of the
local step, which might be different in different algorithms. It also
enables to evaluate algorithms in which agents perform computation

Figure 2. An example of the failure of a non generic method

which is not triggered or followed by a message.

4 A generic method for counting non-concurrent
logical steps

In order to understand why the methods presented in the previous
section are not sufficient for every search algorithm, we first give
an example of how additional messages may cause logical steps
which could have been performed concurrently to be counted as non-
concurrent logical steps.

4.1 Demonstration

Consider the following example. Each of the agents in the DisCSP
presented in figure 2 holds exactly one variable. The domain of each
of the variables includes two values -0 and1. The agents are or-
dered according to their indices. AgentX2 does not have a consis-
tent assignment when agentX1 assigns0. AgentX3 does not have a
consistent assignment when agentsX1 andX2 both assign0 to their
variables.

The algorithm performed by the agents is standardABT [9, 1]
with a small change. Nogood messages are sent to all the agents
whose assignments are included in theNogood (as inAWC [9])
and not just to the agent with the lowest priority whose assignment
is included in theNogood. The algorithm runs as follows:

1. X1 assigns its variable the value 0, and sends toX2 andX3 a cor-
respondingok? message. TheLTC on both messages is0 since
it has not performed anyCCs.

2. X2 assigns its variable the value 0, and sends toX3 a correspond-
ing ok? message.LTC = 0.

3. X3 receives bothok? messages fromX1 andX2.
4. After trying to assign both values,X3 sends toX1 andX2 the

NogoodX1 = 0 ⇒ X2 6= 0. LTC = 4. (In standard ABT this
nogood would have been sent only toX2).



5. After trying to assign both values,X2 sends toX1 the Nogood
X1 6= 0. LTC = 2.

6. X1 receives both Nogoods fromX2 andX3, increments itsLTC
to 4, replaces its assignment with 1 and sends toX2 andX3 a
correspondingok? message.

7. X2 receives theok? message fromX1. performs twoCCs ,re-
places its assignment to 1 and sends anok? message toX3 with
LTC = 6

8. X3 receives bothok? messages fromX1 andX2. It updates its
LTC to be6. Then it performs twoCCs and assigns0. Its LTC
value is8.

9. X2 receives thenogood from X3 which is discarded since it is
obsolete.

At the end of the run of this example theLTCs of the agents
are 4, 6 and 8 respectively. This means that the number of non-
concurrent constraints checks reported is8. However, a closer look
at the steps of the algorithm run would reveal that thenogoodsent by
X3 to X1 at step4 and received at step6 did not trigger computation
and its data was not used byX1. It did however causeX1 to incre-
ment itsLTC to 4. If X! would have ignored thisnogoodmessage,
the cost of the algorithm run was6.

The error in the counting method presented above was caused
by a message which did not trigger computation and carried an
LTC which was higher than theLTC of the receiving agent, and
incremented its counter. This message, which the algorithm could
have done without, did not affect the amount of computation steps
of the algorithm but did affect their counting. In standardABT ,
such a message would not have been sent and therefore the run-
time results reported by the non-concurrent method of [5] would
have been correct. The above example may seam not relevant in the
case of standardABT but it becomes very relevant when dynamic
agent ordering is used in asynchronous backtracking algorithms. In
asynchronous backtracking with dynamic agent ordering [9, 12] the
agents hold in theirAgent Viewsassignments of both higher and
lower priority agents. The agents check their current assignment only
against assignments of agents with higher priority according to the
current order. However, since the priority order is dynamic, an as-
signment of a lower priority agent which is currently irrelevant, may
become relevant as a result of a change in the order of priorities,
thus it is not discarded from the agent’sAgent View. When running
ABT with dynamic ordering (ABT DO [12]), agents send their as-
signments to all their neighbors (and not only to their current lower
priority neighbors) for the same reason [9, 12].

Messages which carry the assignments of lower priority agents to
higher priority agents do not trigger immediate computation since
the received assignment cannot rule out the local assignment even if
they are in conflict.

4.2 A general Distributed Measurement Method

In order to construct a generic method for counting non-concurrent
logic steps the existing methods of [5, 14] should be adjusted to deal
with messages which do not trigger immediate computation and their
data is stored for later use. In order to preserve the concept ofnon-
concurrentlogic steps, for every message received, before updating
the local logic time counter(LTC) the agent must make sure that
the computation performed in order to produce the data carried by
the messagecould not have been performedconcurrently with the
steps of computation it is about to perform.

In the alternative general method we suggest in this paper, like
in the previous suggested methods of [5, 14], each agent holds a

Logic Time Counter(LTC) of logic steps (steps of computation,
constraints checks,...). The counter is incremented whenever an agent
performs the logic step. Each message caries theLTC of the sending
agent. The receiver of a message, instead of comparing theLTC car-
ried by the message with its own and updating its localLTC to the
largest among the two (as done in [5, 14]), stores the received data
together with the receivedLTC. When the agent uses the stored data
for the first time, it performs the comparison and updating of the local
LTC compared with the storedLTC attached to the stored data.

In standard DisCSP algorithms, the suggested method would give
exactly the same results as the methods of [5, 11]. That is be-
cause each message in standard DisCSP algorithms triggers com-
putation which evaluates the data received. Therefore using the sug-
gested general method, the agents would immediately use the stored
data and update their localLTC with the largest between the re-
ceivedLTC and their own. In algorithms such asAWC [9], and
ABT DO [12] messages which carry data which is not used in the
following computation performed by the receiving agent will not ef-
fect the counting method until it is used.

5 Correctness of the General Measure method

In order to prove the validity of the proposed general measurement
method we first prove that in the case that all messages trigger im-
mediate computation the method reports the same measures as the
methods presented in [5, 14] and therefore the correctness proofs
presented there hold. This fact is immediate.

Second, we prove that for a message carrying data which is not
used by the receiving agent, the general method is correct. Since the
data is not used, the results should not be affected by the message
sent. In fact, the desired measure in this case is the one that we would
get if the algorithm would run without this message being sent. Since
in the proposed method counters are only taken into consideration
when the data carried by the message is used, that is precisely the
resulting measure.

Last, we consider the case of a messagem which was received
by an agent when itsLTC was equal tot1 and the data carried by
m was first used when the agent’sLTC was equal tot2. Since the
data carried bym was only used att2 this means that althoughm
was received at local logical timet1, the same computation would
have been performed if the message would have arrived at any time
betweent1 andt2. In other words, the logical steps performed by the
sender ofm in order to produce the data carried bym, could have
been performed concurrently with the logical steps performed by the
receiving agent betweent1 andt2. This contradicts the possibility of
counting these steps as non-concurrent�.

6 Discussion

When measuring the run-time performance of distributed algorithms
the concurrency of agents must be taken into consideration. A gen-
eral method for measuring distributed performance must use an asyn-
chronous simulator, to simulate a real distributed system. Since the
logical steps in different simulating systems can be performed in
many different scenarios, one must measure the longest sequence of
logical steps which could not have been performed concurrently dur-
ing the run of the algorithm. The proposed general method in this
paper actually reports the longest among all of the non-concurrent
(shortest) sequences of logical steps performed by the algorithm.
The method was demonstrated and proven to be correct for any dis-



tributed search algorithm and for two nonconcurrent measures - num-
ber of steps of computation and number ofNCCCs.
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