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Abstract. network load [4]. The run time performance of search algorithms on
The efficiency of Distributed Constraints satisfaction algorithmsDisCSPs has traditionally been measured by the number of computa-
must be measured by concurrent performance measures. In Previctisn cycles or steps (cf. [9]). In order to take into account the effort an
studies we have proposed the count of non concurrent logical stegent makes during its local assignment the computational effort can
as an asynchronous measure. This measure is independent of the spe-measured by the number of constraints checks that agents per-
cific implementation and is not affected by the level of concurrencyform. However, care must be taken to measurente-concurrent
of the performing algorithm. The method of counting non-concurrentconstraints checks. In other words, count computational effort of
constraints-checks (NCCCs) was later extended to the case of sysencurrently running agentsnly onceduring each concurrent run-
tems with message delays. The method inherently assumes that eatihg instance ([5, 7, 14]). Measuring the network load poses a much
message received by an agent triggers some computation. simpler problem. Network load is generally measured by counting
In some DisCSP algorithms, such a8V C and ABT_DO, the total number of messages sent during search [4].
agents receive assignment messages from lower priority agents The first attempts to compare run times of distributed search al-
which do not cause a computation. The present paper proposes a gegyorithms on DisCSPs used a synchronous simulator and instanta-
eralization of the method of counting non-concurrent logical stepsieous message arrival. During one step of computation (cycle) of the
as run-time measure for distributed search algorithms. Logical timsimulator, all messages of all agents are delivered and all resulting
counters carried by messages do not immediately update the receivemputations by the receiving agents are completed [9]. The hum-
ing agent’s logical counter. Instead, the agent stores the data carridxer of these synchronous steps of computation in a standard sim-
by the message and tags it with the logical time carried by the mesilator served to measure the non-concurrent run-time of a DisCSP
sage. Only when the agent uses the stored information for the firstlgorithm [9]. It is clear that the comparison of asynchronous search
time, the logical counter of the delivering message is considered. algorithms by synchronizing them to run on a simulator is not satis-
The proposed method ensures that the reported solution does nfatctory. In fact, comparing concurrent run-times of distributed com-
include logical computation steps that could have been performegutations must involve some type of asynchronous time considera-
concurrently. The proposed general method is presented in detations [3, 5, 14].
demonstrated on the relevant DisCSP algorithms and its correctnessIn an asynchronous environment, the task of measuring the run-

is proven. time of an algorithm becomes more complicated. In order to deter-
Key words: Distributed Constraint Satisfaction, Search, Dis- mine the length of the sequence of consecutive constraints checks
tributed Al. which were performed, the measurement method must determine

which of the logical stepsould not have been performed concur-
rently. A method for measuring non-concurrent logical computation
steps was proposed in [5], for the case of optimal communication
(i.e. no message delays) between agents. This measure was gener-

Distributed constraints satisfaction problenisCSR) are com- alized in two later studies to the case of imperfect communication
posed of agents, each holding its local constraints network, that arf@etworks [14, 13] in order to study its effect on different distributed
connected by constraints among variables of different agents. Agengarch algorithms.
assign values to variables, attempting to generate a locally consistent In both of the methods proposed above, which are based on Lam-
assignment that is also consistent with all constraints between ager§'t's clock synchronizing algorithm [3], each message carries the
(cf. [9, 8]). Agents check the value assignments to their variabledogical of its sending. The receiver of each message advances its log-
for local consistency and exchange messages among them, to chd6Rl clock to the clock carried by the message if it is larger than its
consistency of their proposed assignments against constraints wifwn current clock. This method ensures that concurrently performed
variables that belong to different agents [9, 1]. logical steps are not counted more than once [3, 5]. However, both
Search algorithms on DisCSPs are run concurrently by all agent8f the methods assume thatery message must trigger a non-empty
and their performance must be measured in terms of distributed con§eduence of logic stepShis assumption is compatible with most
putation. Two measures are commonly used to evaluate distributel?sC'SP search algorithms (cf. [9, 10, 6]). In the general algorith-

algorithms - run time, which measures the computational effort andnic case, agents are allowed to send messages that do not necessar-
ily trigger computation. In such a case, the methods presented in [5]
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1 Introduction




non-concurrent logical steps for measuring run-time of distributede upon receiving messagensg:
search algorithms. In order to ensure that the reported count does not1. LTC <+ max(LTC, msg.LTC)
include logical computation steps that could have been performed 2. delay<— choose_delay
concurrently, the logical time counters carried by agents are not 3. msgdelivery_time < msg.LTC + delay
updated indiscriminately by the receiving agent. Instead, the agent 4. outgoing_queue.add(msg)
stores the data carried by the message and tags it with the logical 5. deliver_messages
time carried by the message. Only when the agegisthe stored e when there are no incoming messages and all agents are idle
information for the first time, the logical counter carried by the de- 1. LTC < outgoing_queue.firstmsg.LTC
livering message is considered and in case its value is larger than the 2. deliver_messages
agent’s counter, the agent increments its counter. e deliver_messages
The plan of the paper is as follows. Distributed constraint satis- 1. foreach (message m in outgoing queue)
faction problems DisC S Ps) are presented in Section 2. The exist- 2. if (m.delivery_time < LTC)
ing methods for measuring non-concurrent computation, including 3. deliver(m)
the method for perfect communication and the asynchronous mes-
sage delay simulatorAM DS), are presented in Section 3. Sec-
tion 4 presents the general method for counting non-concurrent log- Figure 1. The Mailer algorithm
ical steps. A demonstration of the cases in which the existing meth-
ods fail to report non-concurrent time is given, followed by a de-
tailed description of the method and its compatibility to a variety of . .
cases. Section 5 presents a correctness proof for the proposed genesal Measuring performance of DisCSP search

method. Our conclusions are in section 6. algorithms
L . . ] The standard model of Distributed Constraints Satisfaction Problems
2 Distributed Constraint Satisfaction has agents that are autonomous asynchronous entities. The actions of

A distributed constraints network (or a distributed constraints sat? gents are triggered by messages tha_t are passed among them. In real
. . . . world systems, messages do not arrive instantaneously but are de-
isfaction problem -DisCSP is composed of a set of agents

Aq, Ag, ..., Ax. Each agentd; contains a set of constrained vari- layed due to r_let\/yorks_ prop(_ernes. Delays can vary from network to
. . network (or with time, in a single network) due to networks topolo-
ablesX;, , Xi,, ..., X;, . Constraints orelations R are subsets of . . ;
: i . . . ies, different hardware and different protocols used.
the Cartesian product of the domains of the constrained variables [2f. L .
A binary constraint R.. between any two variablek: and X, is Non-concurrent steps of computation, in systems with no mes-
y * y J ! sage delay, can be counted by a method similar to that of [3, 5]. Ev-

defined asR;; C D; x D;. In a distributed constraint satisfaction - C
ery agent holds a counter of computation steps which it increments

problemDisCSR the agents are connected by constraints between N . .
each time it performs a step of computation. Every message carries

variables that belong to different agents (cf. [9, 8]). In addition, eacr} . , .
) ) ; . he value of the sending agent’s counter. When an agent receives a
agent has a set of constrained variables, ilcal constraint net- . . .
work message it updates its counter to the largest value between its own
. . . counter and the counter value carried by the message. By reporting
An assignment (or a label) is a pair var,val >, wherevar
the cost of the search as the largest counter held by some agent at

is a variable of some agent and! is a value fromvar’'s domain .
. . . ; . . the end of the search, a non-concurrent measure of search effort is
that is assigned to it. partial assignmenfor a compound label) is .
achieved (see [3]).

a set of assignments of values to a set of variablesoltion to : T .
) ) : . . On systems with message delays, the situation is different. To in-
a DisCSPis an assignment that includes all variables of all agents S
troduce the problems of counting in the presence of message de-

that is consistent with all constraints. Following all former work on . ) . )
. - . lays, let us start with the simplest possible algorithm. Synchronous
DisCSH, agents check assignments of values against non-local cop- ; . .
- L . . acktracking § BT') performs assignments sequentially, one by one
straints by communicating with other agents through sending an :
nd no two assignments are performed concurrently. Consequently,

receiving m . An agent can send m ny one of .
oirf:r aggemse?;]ages agent can send messages to any one o 8 effect of message delay is very clear. The number of computa-

The delay in delivering a message is assumed to be finite [g]tlon steps is not affected by message delay and the delay in every

. . . : Step of computation is the delay on the message that triggered it.
One simple protocol for checking constraints, that appears in man¥perefore the total time of the algorithm run can be calculated as

distributed search algorithms, is to send a proposed as&gnmep_‘e total computation time, plus the total delay time of messages. In

< war,val >, of one agent to another agent. The receiving agen . .
- . L he presence of concurrent computation, the time of message delays
checks the compatibility of the proposed assignment with its own . . .
. - . . X must be added to the run-time of the algoritbmly if no computa-
assignments and with the domains of its variables and returns ﬁi

. . . tlon was performed concurrentljo achieve this goal, the simulator
message that either acknowledges or rejects the proposed assign- . ;
%ounts message delays in terms of computation steps and adds them

ment. The following assumptions are routinely made in studies o : o
. : 0 the accumulated run-time. Such additions are performed only for
DisCSPs and are assumed to hold in the present study [9, 1]. . S
instances when no computation is performed. In other words, when

1. All agents hold exactly one variable. the delay of a message causes all agents to wait, performing no com-
2. The amount of time that passes between the sending of a messagétation.
to its reception is finite. In order to simulate message delays, all messages are passed by
3. Messages sent by agef to agentA; are received byl; in the a dedicatedM ailer thread. The mailer holds a counter of non-
order they were sent. concurrent computation steps performed by agents in the system.

4. Every agent can access the constraints in which it is involved antthis counter represents the logical time of the system and we re-
check consistency against assignments of other agents. fer to it as theLogical Time Counte(LT'C). Every message deliv-



ered by the mailer to an agent, carries #EC value of its deliv-
ery to the receiving agent. An agent that receives a message upda
its counter to the maximum value between the receil&d” and

its own value. Next, it performs the computation step, and sends it
outgoing messages with the value of its counter, incremented by :
The same mechanism can be used for computing computational €
fort, by counting non-concurrent constraints checks. Agents add t
the counter values in outgoing messages the number of constrain
checks performed in the current step of computation.

The mailer simulates message delays in terms of non-concurrel
computation steps. To do so it uses fHEC, according to the algo-
rithm presented in figure 1. Let us go over the details ofitheiler
algorithm, in order to understand the measurements performed by tt
simulator during run time.

When the mailer receives a message, it first checks iffthe”
value that is carried by the message is larger than its own value. |

so, it increments the value of tHeI'C' (line 1). In line 2 a delay for [0,1]
the message (in number of steps) is selected. Here, different types X,=0=>X;#0
selection mechanisms can be used, from fixed delays, through ral X =0=>X;#1

dom delays, to delays that depend on the actual load of the con.

munication network. To achieve delays that simulate dependency on

network load, for example, one can assign message delays that are

proportional to the size of the outgoing message queue. Figure 2. An example of the failure of a non generic method
Each message is assignedi@ivery_time which is the sum

of the value of the message’dTC' and the selected delay

(in steps), and placed in theutgoing_queue (lines 3,4). The L .

outgoing queue is a priority queue in which the messages are sortedVNich is not triggered or followed by a message.

by delivery_time, so that the first message is the message with

the |0westdelivery,time. In Order to presel’ve the thll’d assump- 4 A generlc method for Countlng non_concurrent

tion from section 2, messages from agehtto agentA; cannot logical steps
be placed in the outgoing queue before messages which are al-
ready in the outgoing queue which were also sent frdmto A;. In order to understand why the methods presented in the previous

This property is essential to asynchronous backtracking which isection are not sufficient for every search algorithm, we first give
not correct without it (cf. [1]). The last line of th&/ailer’'s code  an example of how additional messages may cause logical steps
calls methodieliver_messages, which delivers all messages with which could have been performed concurrently to be counted as non-
delivery_time less or equal to the mailer’'s curreh’C value, to  concurrent logical steps.
their destination agents.

When there are no incoming messages, and all agents are idle
the outgoing_queue is not empty (otherwise the system is idle and

a solution has been found) the mailerincreases the value &ffie€  copsider the following example. Each of the agents in the DisCSP
to the value of thelelivery_time of the first message in the outgo- presented in figure 2 holds exactly one variable. The domain of each
ing queue and calldeliver_messages. This is a crucial step of the ¢ the variables includes two value)-and 1. The agents are or-
simulation algorithm. Consider the run of a synchronous search alggygreq according to their indices. Agekit does not have a consis-
rithm. ForSynchronous Backtracking BT) [9], every delay needs  iant assignment when agekit assigng). AgentX; does not have a

the mechanism of updating the Mailefs/'C’ (line 1 of the second  ¢onsistent assignment when agekisand X both assigr to their
function of the code in figure 1). This is because only one agent i§5iaples.

computing at any given instance, in synchronous backtrack search. e algorithm performed by the agents is standad@7" [9, 1]
The non-concurrent run time reported by the algorithm, is theyith 4 small change. Nogood messages are sent to all the agents
largest LT'C value that is held by any agent at the end of the a"whose assignments are included in tNegood (as in AWC [9])

gorithm's run. By incrementing th&7'C’ only when messages carry gng not just to the agent with the lowest priority whose assignment
LTCs with values larger than the mailer’sT'C' value, steps that g included in theVogood. The algorithm runs as follows:

were performed concurrently are not counted twice. This is an ex-

tension of Lamport's logical clocks algorithm [3], as proposed forq X, assigns its variable the value 0, and send¥4@nd X; a cor-

DisCSPs by [5], and extended for message delays in [14]. respondingok? message. Th&T'C' on both messages (ssince
A similar description holds for evaluating the algorithm run in i has not performed ang/C's.

non-concurrent constraints checks. In this case the agents need2§oX2 assigns its variable the value 0, and send e correspond-

extend the value of the£T'C's by the number of constraints checks ing ok? messageLTC = 0.

they actually performed in each step. This enables a concurrent pey- X receives botiok? messages from¥; and Xo.

formance measure that incorporates the computational cost of the afier trying to assign both values(s sends toX; and X, the

local step, which might be different in different algorithms. It also Nogood X; = 0 = X5 # 0. LTC = 4. (In standard ABT this
enables to evaluate algorithms in which agents perform computation nogood would have been sent onlyXa).

if .
21.1 Demonstration



5. After trying to assign both values(s sends toX; the Nogood Logic Time CounteLT'C') of logic steps (steps of computation,

X1 #£0.LTC = 2. constraints checks,...). The counter is incremented whenever an agent
6. X, receives both Nogoods frofi, and X3, increments it 7C performs the logic step. Each message carie£ €' of the sending

to 4, replaces its assignment with 1 and sendXtoand X3 a agent. The receiver of a message, instead of comparingyfliécar-

correspondin@k? message. ried by the message with its own and updating its IdCalC' to the
7. X, receives theok? message fromX;. performs twoCC's ,re- largest among the two (as done in [5, 14]), stores the received data
places its assignment to 1 and send®k? message td(s with together with the receiveBT'C. When the agent uses the stored data
LTC =6 for the first time, it performs the comparison and updating of the local
8. X3 receives bottok? messages fronX; and X5. It updates its  LT'C compared with the storefiT’C attached to the stored data.

LTC to be6. Then it performs twa@'C's and assign8. Its LTC In standard DisCSP algorithms, the suggested method would give
value is8. exactly the same results as the methods of [5, 11]. That is be-
9. X5 receives thenogoodfrom X3 which is discarded since it is cause each message in standard DisCSP algorithms triggers com-

obsolete. putation which evaluates the data received. Therefore using the sug-

gested general method, the agents would immediately use the stored
data and update their loc&lT'C' with the largest between the re-
ceived LT'C' and their own. In algorithms such a&iWC' [9], and

ABT _DO [12] messages which carry data which is not used in the
following computation performed by the receiving agent will not ef-
fect the counting method until it is used.

At the end of the run of this example thel'C's of the agents
are 4,6 and 8 respectively. This means that the number of non-
concurrent constraints checks reported.itiowever, a closer look
at the steps of the algorithm run would reveal thatrtbgoodsent by
X3 to X at stept and received at stefpdid not trigger computation
and its data was not used B . It did however cause; to incre-
ment itsLT'C to 4. If X, would have ignored thisogoodmessage,
the cost of the algorithm run wais 5 Correctness of the General Measure method

The error in the counting method presented above was caused
by a message which did not trigger computation and carried am order to prove the validity of the proposed general measurement
LTC which was higher than th&T'C of the receiving agent, and method we first prove that in the case that all messages trigger im-
incremented its counter. This message, which the algorithm couléhediate computation the method reports the same measures as the
have done without, did not affect the amount of computation stepsnethods presented in [5, 14] and therefore the correctness proofs
of the algorithm but did affect their counting. In standatdT, presented there hold. This fact is immediate.
such a message would not have been sent and therefore the run-Second, we prove that for a message carrying data which is not
time results reported by the non-concurrent method of [5] wouldused by the receiving agent, the general method is correct. Since the
have been correct. The above example may seam not relevant in thigta is not used, the results should not be affected by the message
case of standard BT but it becomes very relevant when dynamic sent. In fact, the desired measure in this case is the one that we would
agent ordering is used in asynchronous backtracking algorithms. Iget if the algorithm would run without this message being sent. Since
asynchronous backtracking with dynamic agent ordering [9, 12] then the proposed method counters are only taken into consideration
agents hold in theiAgent Viewsassignments of both higher and when the data carried by the message is used, that is precisely the
lower priority agents. The agents check their current assignment onlesulting measure.
against assignments of agents with higher priority according to the Last, we consider the case of a messagevhich was received
current order. However, since the priority order is dynamic, an aspy an agent when it§ 7C was equal ta; and the data carried by
signment of a lower priority agent which is currently irrelevant, may m was first used when the agenf§’C was equal td,. Since the
become relevant as a result of a change in the order of prioritiesdata carried byn was only used at, this means that although
thus it is not discarded from the agenggent View When running  was received at local logical timg, the same computation would
ABT with dynamic ordering A BT DO [12]), agents send their as- have been performed if the message would have arrived at any time
signments to all their neighbors (and not only to their current lowerbetweert; andt.. In other words, the logical steps performed by the
priority neighbors) for the same reason [9, 12]. sender ofm in order to produce the data carried by, could have

Messages which carry the assignments of lower priority agents t@een performed concurrently with the logical steps performed by the

higher priority agents do not trigger immediate computation sincereceiving agent between andt,. This contradicts the possibility of
the received assignment cannot rule out the local assignment evendbunting these steps as non-concurfgnt
they are in conflict.

4.2 A general Distributed Measurement Method 6 Discussion

In order to construct a generic method for counting non-concurrentWhen measuring the run-time performance of distributed algorithms
logic steps the existing methods of [5, 14] should be adjusted to deahe concurrency of agents must be taken into consideration. A gen-
with messages which do not trigger immediate computation and theieral method for measuring distributed performance must use an asyn-
data is stored for later use. In order to preserve the concamrof ~ chronous simulator, to simulate a real distributed system. Since the
concurrentlogic steps, for every message received, before updatingpgical steps in different simulating systems can be performed in
the locallogic time counter(LT'C) the agent must make sure that many different scenarios, one must measure the longest sequence of
the computation performed in order to produce the data carried biogical steps which could not have been performed concurrently dur-
the messageould not have been performedncurrently with the ing the run of the algorithm. The proposed general method in this
steps of computation it is about to perform. paper actually reports the longest among all of the non-concurrent
In the alternative general method we suggest in this paper, likgshortest) sequences of logical steps performed by the algorithm.
in the previous suggested methods of [5, 14], each agent holds Ehe method was demonstrated and proven to be correct for any dis-



tributed search algorithm and for two nonconcurrent measures - num-
ber of steps of computation and numbedf'CC's.
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