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Abstract Minimizing envy in distributed discrete resource or task allocation, is an unusual
distributed optimization challenge, since the quality of the allocation for each of the agents
is dependent, not only on its own allocation, but on the allocation of others as well. Thus, in
order to perform distributed search for allocations with minimal envy there is a need to design
innovative algorithms that can cope with the challenging constraint structure of an envy min-
imization problem. Distributed methods for minimizing envy among agents in indivisible
resource allocation problems are presented. First, Distributed Envy Minimization Problems
(DEMP) are formulated as Distributed Constraint Reasoning problems. When the DEMPs
are large, and cannot be solved by a complete search an incomplete local search algorithm
is presented. Each transfer of a good from one agent to another involves the change of state
of more than one agent. Thus, a minimizing envy local search algorithm must build upon
actions (transfers) that include multiple agents. Since DEMPs are particularly susceptible to
local minima during local search, the paper proposes an algorithm that alternates between
two different hill climbing search phases. The first phase uses one-transfer steps while the
other exploits envy cycle elimination steps. An algorithm that minimizes envy while pre-
serving efficiency, is proposed. The proposed algorithm finds a Pareto optimal allocation
with low envy. In the context of resource allocation problems, a Pareto optimal solution is
particularly desirable since it presents a stable solution. The proposed algorithm first finds a
divisible Pareto optimal envy-free allocation using a Fisher market equilibrium. This alloca-
tion is transferred into an indivisible allocation of goods while maintaining the Pareto optimal
characteristic of the allocation and a low envy level among agents.
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1 Introduction

Consider the allocation of indivisible resources (or tasks) to multiple agents, where agents
associate their personal utilities to the allocated resources. A desirable allocation can in
principle optimize any of a number of social welfare orderings.

Inmost cases the target social state is the state thatmaximizes theUtilitarian socialwelfare,
widely known as Social Welfare, in which the goal is to maximize the sum of utilities of all
agents [24,32]. However, in many cases reaching a Fair allocation may be more desirable
than an Efficient one [15,17]. In some cases Fairness and Efficiency can be combined by
looking for a Pareto Optimal Fair allocation [25]. A key concept in the literature on Fair
Division is Envy Freeness [3,9]. An allocation is envy-free if no agent values another agent’s
bundle over its own.

A socially desirable allocation can be reached by multiple agents that use a negotiation
framework [8]. However, such approaches typically require the existence of at least one
divisible resource (money) in an adequate quantity. As a result, in the presence of money,
reaching an envy-free allocation can be addressed in a distributed negotiation framework [6].

In some cases the use of money may not be applicable. Consider the allocation of tasks to
workers in a factory, or the allocation of shifts to nurses in a hospital ward. It is reasonable to
assume that each nurse will have different preferences for shifts, and having nurses paying
money to other nurses in order to switch shifts may be unacceptable. In this example we
need all tasks to be allocated and an envy-free allocation is clearly desirable. Unfortunately,
when money is not involved, and all resources must be allocated, there is no guarantee that
an envy-free solution exists.

Though in the general case an agentmay have a valuation for any combination of resources,
for the scope of this paper we will only consider additive utility functions. That is the utility
of a bundle of resources is the sum of valuations of all resources in the bundle. Consider the
case of three agents and two resources as presented in Table 1. Denote by ui (r j ) the utility of
agent i for getting resource j . It is easy to see that in this example agent 1 is only interested
in r1, agent 3 is interested in r2 , and agent 2 has a non-zero utility for both resources. In
fact, getting both resources is valued by agent 2 more than the sum of the two single utilities.
Since we have three agents and only two resources, at least one agent will end up getting
nothing, and will necessarily be envious.

In the allocation that maximizes Social Welfare in the present example, agent 2 would get
both resources. For this allocation the sum of all utilities would be 9 (the utility of agent 2).
Alternatively allocating r1 to a1 and r2 to a2 will result in the samemaximal utility. However,
in this allocation both agent 1 and 3 envy agent 2.

Table 1 Example of utilities of
three agents, for two resources u1() = 0 u2() = 0 u3() = 0

u1(r1) = 3 u2(r1) = 3 u3(r1) = 0

u1(r2) = 0 u2(r2) = 6 u3(r2) = 4

u1(r1, r2) = 3 u2(r1, r2) = 9 u3(r1, r2) = 4
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Since in the case of indivisible goods an envy-free allocation may not exist, one can look
for the allocation that minimizes the envy between the agents. The envy of some agent ai
of another agent a j may be measured in absolute terms—the utility that agent ai associates
with the bundle allocated to a j minus the utility it associates with its own allocated bundle.
Another option is to use a relative term—the utility ai associates with the bundle allocated
to a j divided by the utility it associates with its own [6,18].

Regardless of the method for computing the envy between two agents, there may be
several global target functions for envy minimization. One may wish to minimize the number
of envious agents, or the sum of all envy in the society (Utilitarian envy minimization).
Alternatively, one may want to minimize the envy of the most envious agent (Egalitarian
envy minimization), i.e., the agent with the largest amount of envy.

Recently [27] showed that when envy between agents is measured in relative terms, and
global envy is either the maximal or the product of envy between the agents, the problems
admits a fully polynomial-time approximation scheme (FPTAS), for the case when the num-
ber of agents is not part of the input. They farther presented a polynomial-time algorithm for
the restricted case when there are as many agents as goods.

A centralizedBranch andBound algorithm for finding a fair allocation of indivisible goods
was proposed in [34]. In that work a centralized Branch and Bound algorithm was proposed
for minimizing global target functions that represent fairness, such as Max-min and Nash
bargaining.

However, due to the nature of the problem, a distributed algorithm for finding an envy-
minimizing allocation is desirable. Distributed algorithms are protocols for multi-agents to
search for somegoal,whether cooperatively or not. Chevaleyre et al. [6] designed a distributed
method for finding envy-free assignments with the use of side payments. A similar setup was
discussed at [5] in which the a structural restriction was imposed on the communication
graph.

The present paper proposes distributed search algorithms for finding allocations with low
envy. The starting point is a formulation of the envyminimization problem as an Asymmetric
Distributed Constraint Optimization Problem (ADCOP) that is presented in Sect. 3. Based
on the ADCOP formulation of the problem, a search algorithm for an optimal solution of the
optimization problem is designed.

The representation of a distributed envy-minimization problem (DEMP) as aDCOPallows
the use of existing algorithms to solve it. However, this use of the DCOP model and algo-
rithm for solving DEMPs is not straightforward. The special type of constraints that an
envy-minimization problem includes, as well as the specific way envy is calculated, require
a different method for the constraint reasoning during search. The proposed algorithm guar-
antees finding the allocation with the smallest amount of global envy.

When theDEMPs are large, includingmultiple goods and agents, a completeminimization
algorithm is unable to solve the problems in a reasonable time. For large problems one typi-
cally uses an incomplete search algorithm for minimizing the global envy. Well-established
distributed local search algorithms such as MGM [21] and DSA [39] have been shown to
perform well for DCOP problems. However, these algorithms cannot be applied directly to
solve DEMPs. This is because DEMPs algorithms need to be based on transfers of goods,
which are operations that require actions by at least two agents - the transferring agent and the
receiving agent, and not on assignments of individual agents. Therefore, in order to perform
local search, there is a need to design a new algorithm in which the atomic operation in each
iteration is a transfer that changes the state of all of the involved agents.

Furthermore, a hill climbing algorithm based on good transfers is very susceptible to
local minima. Consider a simple problem of two agents a1, a2 and two goods r1, r2. Let
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us assume a1 has a higher valuation for r1 than r2 and agent a2 the other way around. Let
us also assume that in the initial state r1 is allocated to agent a2, and r2 is allocated to a1.
Obviously, swapping goods will result in both agents getting the good they prefer, and will
lower the envy. However, an algorithm that considers only one transfer in a neighborhood in
each iteration will consider each of the transfers separately and conclude that either of them
increases the amount of envy. Thus, this swap will not be performed, i.e., this state is a local
minimum.

The proposed algorithm in Sect. 4 alternates between two hill climbing search phases,
where each of the phases uses a different type of steps. Alternating the phases results in
an algorithm that is less susceptible to get trapped in a local minimum than a single phase
algorithm, while maintaining the anytime property of a hill climbing algorithm. The first
phase uses one-transfer steps, in which at each step of the algorithm exactly one good is
transferred from one agent to another. The second phase uses a distributed extension of the
envy cycle elimination idea introduced in [18].

Combining efficiency and fairness has recently been addressed and its limitations inves-
tigated [4]. The usefulness for providing task allocations that are fair and efficient was also
recently validated [1]. In the context of self-interested agents, Pareto optimality affects the
stability of an allocation. The basic motivation for minimizing envy was to prevent situations
in which agents wish to exchange their share with others. However, by definition, if an allo-
cation in not Pareto optimal, a group of individually rational agents may choose to exchange
goods between themselves in a way that would benefit (in the weak sense) all participating
agents, even though it increases the envy among them.

Section 5 proposes a method that combines fairness with efficiency by searching for a
Pareto Optimal (PO) allocation with low envy. The polynomial complexity algorithm that
uses Fisher’s market equilibrium allocation, which is transferred into an indivisible allocation
of goodswhilemaintaining the Pareto optimal characteristic of the allocation and a low global
envy measure.

The remainder of this paper is structured as follows: Sect. 2 formally defines envy min-
imization problems for indivisible resource allocation. Section 3 offers a formulation of
indivisible resource allocation envy minimization as a DCR problem and describes a com-
plete algorithm for solving such problems. An incomplete local search approach for large
scale envy minimization problems is described in Sect. 4. Section 5 combines efficiency and
fairness demonstrating an algorithm for finding a Pareto optimal allocation with low envy
measurement. Conclusions are presented in Sect. 6.

2 Indivisible resource allocation

2.1 Basic definitions

An Indivisible Resource Allocation Problem consists of a set of agents A = {a1 . . . an}, and
a finite set of indivisible resources R = {r1 . . . rm}.

An agent bundle Ri is the set of resources allocated to agent ai . An allocation RA is a
partitioning ofR among the agents inA. Formally: RA = {R1 . . . Rn} such that Ri ∩R j = {}
for i �= j and

⋃
i∈A Ri = R

In the general case every agent ai ∈ A has a utility function ui that maps an agent bundle
Ri to a non negative utility (ui : 2R → R

+). To avoid representation issues, for the scope
of this paper we will only consider additive utility functions. So, for the scope of this paper
ui (A ∪ B) = ui (A) + ui (B) − ui (A ∩ B) for all A, B ⊆ R.
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An agent ai envies another agent a j if it values its own bundle less than the bundle of the
other agent: ui (Ri ) < ui (R j ) for i, j ∈ A. Note that the envy of an agent depends only on
the bundles and on that agent’s utility function. The utility functions of the other agents are
irrelevant for calculation of the envy of a given agent.

An allocation is envy-free if every agent values its bundle at least as much as the bundle
of any other agent. In other words, RA is envy-free iff ui (Ri ) ≥ ui (R j ) for all i, j ∈ A.

2.2 Envy minimization

It is easy to see that an envy-free allocationmay not exist for Indivisible Resource Allocation.
A simple example would be a system with two agents and one resource that has a non-zero
utility for both agents. Since the resource can only be allocated to one of the agents, the other
agent will envy. Since an envy-free allocation requires that no agent envies any other agent,
one may draw an analogy to constraint satisfaction problems in which no constraint can be
violated.

When an envy-free allocation does not exist, one may try to minimize the number of
agents that are envious. This is analogous to MaxCSP [16] in which the goal is to minimize
the number of violated constraints.

Returning to the example in Table 1, allocating both r1 and r2 to agent 2 will maximize
the social welfare, but leaves both agents a1 and a3 envious of agent a2. An allocation of
r1 to agent 1 and r2 to agent 3 may be better in terms of minimizing the number of envious
agents. In this allocation only agent 2 is envious.

The amount of envy of agent i in agent j can be measured in absolute terms as Ei j =
ui (R j ) − ui (Ri ), for all i, j ∈ A (where negative envy is truncated to 0). Another option is
to measure relative envy: Ei j = ui (R j )/ui (Ri ), for all i, j ∈ A. When an agent envies more
than one other agent, the agent’s envy is taken to be its maximum envy of all other agents:
Ei = max j (Ei j ).

Once the amount of envy of an agent is defined, one can set a global goal function for
the envy of agents, and look for an allocation that minimizes this global function. This is
analogous to a Constraint Optimization Problem. One example of such a global function
would be the Utilitarian function, in which the goal is to minimize the sum of the envy of all
agents. Another example may be the Egalitarian function, in which the goal is to minimize
the envy of the “worst off” agent, the agent whose envy is the greatest.

If one uses the absolute envy between two agents in the example in Table 1, minimizing
the sum of all envies will result in the allocation of r1 to agent a1 and r2 to agent a2. This
allocation will yield a total envy = 4 (only agent 3 is envious). Optimizing for the worst-off
agent will result in allocating r1 to agent a2 and r2 to agent a3. In this allocation themaximum
envy of a single agent is 3 (for both a1 and a2) and this is the best allocation in terms of
Egalitarian envy.

Figure 1 presents the search space for the utilities in Table 1, for absolute envy and a
global target of minimizing the sum of all envy. Each edge represents a variable, so, a1x1 is
the variable that represents allocation of resource r1 to agent a1. The leaves are the global
envy for the corresponding full allocation. An edge from a node down and right, represents
an assignment decision (the resource is allocated to this variable), in contrast, an edge from a
variable down and left represents a negative assignment decision (the resource is not allocated
to this variable). The grayed out areas are illegal parts of the search space. A part of the search
space is illegal either because it requires a resource to be allocated twice, or not to be allocated
at all.
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Fig. 1 Search space for the
example in Table 1

One can see that for this example there are only 4 legal full allocations and the solution
that minimizes the sum of agent envies allocates r1 to a1 and r2 to a2, to get a global envy of
4. The only envious agent in this optimal allocation is agent a3, which values the bundle of
a2 as 4, and its own utility in the optimal allocation is 0.

2.3 Envy minimization definition

This section extends the Indivisible Resource Allocation Problem definition in 2.1 to the
envy minimization case.

Let RA be an allocation of the resources to the agents. The absolute envy Ei j between
agent i and agent j is defined as follows:

Ei j =
{
ui (R j ) − ui (Ri ) if ui (R j ) − ui (Ri ) ≥ 0
0 Otherwise

The relative envy for the same case is defined as folows:

Ei j =
{
ui (R j )/ui (Ri ) if ui (R j )/ui (Ri ) ≥ 1
1 Otherwise

The envy Ei of agent i is defined to be Ei = max j (Ei j ), the maximal envy of agent i of
all other agents.

The global envy in RA is the aggregation of the individual agents envy, which can be
done in several ways depending on the global target. For example, the Utilitarian envy
EUtili tarian = ∑

i (Ei ) and the Egalitarian envy EEgali tarian = maxi (Ei )

An Indivisible Resource Allocation Envy Minimization Problem is to find an allocation
that minimizes the global envy.

2.4 Related work—envy bound by Lipton et al.

In [18] the absolute envy for indivisible resource allocation was shown to be bound by the
maximum marginal utility of one resource, which in the case of additive valuation takes the
form of the resource with the highest valuation to any agent.

The algorithm for finding an allocationwith such bounded envy is based on anEnvyGraph
in which the nodes are the agents and a directed edge (ai , a j ) denotes that agent ai envies
agent a j . Any cycle in such an Envy Graph is an Envy Cycle. A simple example of an envy
cycle can include two agents ai and a j , where ai holds one good ri that is valued by a j more
than by ai , and a j holds one good r j that is more valuable to ai than to a j . In this case ai
envies a j and a j envies ai .

If we denote the fact that agent ai envies agent a j by ai ⇒ a j , then Fig. 2 shows an
example of an envy graph with a1 ⇒ a2, a2 ⇒ a3, a2 ⇒ a4, a3 ⇒ a1.
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Fig. 2 Envy graph example

Fig. 3 Constraints graph for the
example in Table 1

Rotating the bundles in an envy cycle in a direction counter to the cycle direction will
improve the envy of all agents in the cycle, and will not change the envy of agents outside the
cycle. For any given allocation, eliminating all envy cycles will result in a Directed Acyclic
Envy Graph, which means there is at least one agent that is not envied by any other agent.

The algorithm presented in [18] repeatedly allocates one resource to an agent that is not
envied and eliminates all envy cycles after each resource allocation, hence insuring that the
envy is not larger than the maximum marginal utility of one resource.

3 Distributed constraint reasoning for envy minimization

The field of Distributed Constraint Reasoning (DCR) provides a widely accepted framework
for representing and solvingMulti Agent System (MAS) problems. In a distributed constraint
problem each agent holds a set of variables representing its state. These variables take values
from a finite domain and are subject to constraints. A distributed constraint algorithm defines
an interaction protocol for coordinating a joint assignment of variables.

DistributedConstraint Optimization Problems (DCOPs)were successfully applied to vari-
ousMAS problems—coordinatingmobile sensors [19,33], meeting and task scheduling [22],
and many others. In recent years, a large number of different algorithms were proposed for
optimally solving DCOPs. These include Synchronous Branch and Bound (SBB) [13], BnB-
ADOPT [36], ConcFb [26], and others.

This section presents a formulation of envy minimization for indivisible goods allocation
as a DCR problem. In this formulation an agent is constrained with another agent if both of
them are “interested” in the same resource (i.e., derive a non-zero utility if this resource is
allocated to them). The problem in the example in Table 1 can be represented by the constraint
graph in Fig. 3. The variables of agents represent the resource that the agent is interested in
and their allocation. The edges in the constraint graph denote the fact that two agents are
interested in the same resource. So, a2 is connected to a1 since they are both interested in
r1, and to a3 due to their common interest in r2. a1 and a3 have no resource they are both
interested in, and therefore they are not connected by an edge.

The formulation of envy minimization for indivisible resource allocation as a DCR prob-
lem enables the design of distributed algorithms for finding minimal envy solutions. The
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present paper presents a new complete Distributed Envy Minimization algorithm (DEM).
Inspired by state of the art DCOP algorithms, two improved algorithms are also presented
(DEM-FE and DEM-FB) and the performance of the algorithms is evaluated.

3.1 DCR algorithm for envy minimization

3.1.1 Formulating distributed envy minimization as a DCR problem

The representation of a distributed envy minimization problem (DEMP) as a DCOP allows
the use of existing algorithms to solve it. However, this use of the DCOPmodel and algorithm
for solving DEMPs is not straightforward. The special type of constraints that an envy mini-
mization problem includes, as well as the specific way envy is calculated, require a different
method for constraint reasoning during search.

In the proposed representation each agent ai has a local Boolean variable xil for each
resource rl for which ai has a non-zero utility ui (rl) > 0. Assigning true to xil means that
rl is allocated to agent ai . Binary constraints are used to ensure that a good is only allocated
to a single agent. So, a binary constraint between xil and x jl will associate infinity cost for
the case that both variables are assigned true, and zero otherwise.

Note that, when an agent ai assigns true to one of its variables xil (i.e., a resource rl is
allocated to ai ), it does not know the impact of this assignment on other agents, and the prob-
lem becomes an Asymmetric Distributed Constraint Optimization Problem (ADCOP) [12].
However, the cost for an agent (i.e., its envy) is not the sum of costs that are directly associ-
ated with assignments, as in ADCOP, but rather depends on the relation between an agent’s
valuation of its assignments and its valuation of the assignments of other agents.

In addition to the binary constraints that prevent a good from being allocated twice, one
needs to ensure that all goods are allocated. Ensuring allocation of every good cannot be
enforced by an asymmetric binary constraint. In order to ensure that all goods are allocated,
one needs to add a K-ary constraint per good.

Note that these constraints do not require a representation that is exponential in k, since
one only needs to verify that not all assignments relevant to a given good are f alse. Thus,
it may be enough that such a K-ary constraint that insures the allocation of rl will be held
by the lowest priority agent ai that has a variable xil for resource r j . Such a constraint will
associate infinity cost with a false assignment of all variables corresponding to rl and zero
otherwise. In the proposed algorithm an allocation of a good is guaranteed by extending the
backtracking mechanism of ADCOP to backtrack when a given good allocation is no longer
possible.

Another difference from a standard ADCOP formulation is due to the definition of an
agent’s envy as the maximal envy it has towards other agents, while in standard ADCOP the
cost endured by an agent is typically the sum of all its costs for constraints it is involved
in. However, since maximal envy of an agent is monotonous in the number of agents (i.e.,
after an agent has all of its variables assigned, its envy can only grow when more agents
are assigned), envy measurement can still serve as a pruning criterion, and only the “cost”
calculation needs to be modified.

The special type of constraints in a DEMP (i.e., all goods must be allocated, and only
once) does not only present difficulties but also allows exploitation of the structure in order
to find tight bounds during search. Bounds on the envy of agents that are not yet allocated
can be calculated, as well as bounds on the envy of allocated agents in future allocations
to agents that are not yet allocated. Advanced versions of the DEMP algorithm that include
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the computation of both types of bounds, can significantly improve the performance of the
search algorithm.

This section describes the implementation of the ADCOP representation and search algo-
rithm for the case of indivisible resource allocation envy minimization, and proposes two
improved variants of the basic algorithm using the characteristic of indivisible resource allo-
cation.

3.1.2 Algorithm overview

In the proposed Distributed Envy Minimization (DEM) algorithm, each agent ai has a local
Boolean variable xil for each resource rl for which ai has a non-zero utility ui (rl) > 0.
Assigning true to xil means that rl is allocated to agent ai .

Each agentmaintains a list of neighbors (NB_List) for eachof its variables. The NB_List
of a variable contains all other agents that are interested in the resource NB_Listxil =
a j : j �= i, u j (rl) > 0.

The search algorithm maintains an invariant attribute in which only one variable of all
interested agents that represents resource rl can be true. In addition, in a full allocation at least
one of the variables that represents resource rl must be true. This ensures that all resources
are allocated, and that at no stage of the algorithm is a resource allocated to two agents.

All agents are ordered lexicographically. If agent ai is before agent a j in the lexicographic
order, we say agent ai is a higher priority agent than agent a j [23].

Each agent orders its variables in lexicographic order. Each agent at its turn, tries to assign
true to any variable that represents a resource that was not allocated by higher priority agents.
Whenever an agent has all of its variables assigned (true or f alse) it sends a message to the
next agent in the global order, informing it of the assignments of all higher priority agents,
and signaling that it is its turn to assign variables.

Whenever an agent assigns true to a variable, it sends a message to all of the variable’s
higher priority neighbors (agents in the variable NB_List that have higher priority than the
current agent). Each such higher priority neighbor returns a message with its envy evaluation
for the current agent. Based on the envy reports, and depending on the global minimization
target function, the agent decides whether to keep the assignment or to backtrack.

If an agent needs to backtrack (change its assignment from true to f alse) on a variable
that has no lower priority neighbors, it means that there is no other agent that can take this
resource, and the agent needs to backtrack farther. If an agent needs to backtrack on a variable
that is already assigned a false value, it also needs to backtrack farther. If an agent needs to
backtrack on its first variable, it backtracks to the previous agent.

Whenever the last agent successfully assigns all its variables, a new upper bound on the
envy minimization target function has been found. If the first agent needs to backtrack on its
first variable, then the search has ended, the upper bound on the envy minimization target
function is the minimal envy, and the full allocation that is associated with it is the optimal
allocation.

Consider the algorithm run example in Fig. 4. The order of the agents is lexicographic. The
first agent a1 starts by assigning its variable x1 to true. Next, a2 must assign its x1 variable to
f alse, since resource r1 was already allocated to agent a1. Agent a2 proceeds by assigning
x2 to true. Agent a3 must assign its variable x2 to f alse, and the upper bound on the global
envy is calculated to be 4, which is the envy of agent a3. Note that according to the definition
of envy, agent a2 is not envious of agent a1 even though it has a non-zero utility for r1. The
reason is that a2 values its assigned bundle by 6, and values the bundle assigned to a1 (e.g.,
r1) by 3, which is less. Agent a3 then backtracks to agent a2. If a2 assigns f alse to its x2
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Fig. 4 A branch and bound run
on the search space in Fig. 1

variable and a3 assigns true to its x2 then a2’s envy will be 6, which is higher than the upper
bound; hence both a3 and a2 backtrack on x2. Since x1 of agent a2 is already set to f alse,
it backtracks on it too. Now agent a1 changes its assignment of x1 to f alse, followed by a
true assignment of a2 to both its variables. At this stage agent a3 is left with no resources
that can be allocated to it, and the total envy is calculated to be 7 (3 for agent a1 and 4 for
agent a3). Since this is more than the upper bound, agent a3 backtracks without updating the
upper bound. As before, a2 assigns f alse to its x2 variable and a3 assigns true to x2 then the
total envy will be 6 (3 for a1 and 3 for a2), and backtracks are performed until the algorithm
terminates.

For the worst case run time analysis of DEM one needs to assume that no pruning is
performed through the search process. Let |rl | be the number of variables corresponding to
resource rl . Since only one of these variables can be assigned true, there are exactly |rl |
different assignments regarding resource rl . Hence the worst case number of assignments is∏m

l=1 |rl |, where m is the number of goods. In the special case where all resources have non
zero valuations to all the n agents, there are nm legal full assignments.

3.1.3 DEM—algorithm description

The main data structures used by the algorithm are:

Agent_Assignment—A vector of Boolean values representing the assignments of the
agent’s variables.
CPA—A CPA (Current Partial Assignment) that maintains all assignments of all vari-
ables of currently assigned agents. That is, it contains a set of pairs of the form
〈Agent, Agent_Assignment〉.
Envy_List—The Envy_List is a vector of agents Envy, reported by all assigned agents
with respect to a given CPA.
NB_List—A list of all agents that have a non-zero utility for a given variable. The
NB_List is maintained per variable per agent.

The algorithm uses four types of messages to transfer information and requests between
agents:

CPA_MSG—A message containing a CPA and an Envy_List , sent by an agent after
extending the CPA, to an unassigned agent.
BT_CPA—A backtrack message, notifying an agent that a CPA needs to be backtracked.
Envy_Request—Amessage containing a CPA, sent to an agent asking it to compute its
envy for the given CPA and return it to the requesting agent.
Envy_Report—Amessage sent as a reply toEnvy_Request, reporting the Envy for a given
agent for a given CPA.
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Fig. 5 main()

Fig. 6 Assign_Val(CPA)

The pseudocode for the main procedure of the DEM algorithm is presented in Fig. 5. It
starts with the initializing agent calling Assign_Val() trying to assign its variables (line 3).
The main loop (line 4) continuously looks for incoming messages (line 5), and dispatches
them according to the message type to the appropriate functions (lines 7–15).

Figure 6 presents the pseudo code for the Assign_Val() function. First, the function checks
if all variables are assigned (line 1). If so,Agent_Assignment is completed and the appropriate
function is called (line 2). Otherwise, the next unassigned variable is identified (line 4), and
the CPA is checked to see if the resource represented by this variable is already assigned
(line 5). If the resource is assigned then the variable gets a false value, the CPA is updated.
In this case Assign_Val() is called recursively to try and assign the next variable (lines 7–9).
If the resource was not assigned to a higher priority neighbor, then the variable is set to true
and the CPA is updated (line 12). If the variable has no higher priority neighbors then its
assignment cannot change the envy valuation for any of the higher priority neighbors, and
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Fig. 7 Agent_Assignment_Complete(CPA)

Fig. 8 Backtrack(CPA)

the agent can proceed to assign the next variable (lines 13–14). If there are higher priority
neighbors an Envy_Request message is sent to them.

When an agent finds an assignment for all its variables (Fig. 7), the agent calculates its
envy against all higher priority agents (line 1). The global target function is then calculated
based on the envy of the agent and all the agents ordered before it (line 3). If the upper bound
known for the global target function is breached, we do not need to proceed and BackTrack()
is called (lines 4–5). Otherwise, if this is the last agent, a new upper bound is registered, and
a BackTrack() is called (lines 7–9). If this is not the last agent then the CPA message is sent
to the next agent (line 11).

Upon Backtrack() (Fig. 8), if a backtrack is needed to a higher priority agent, then, if this
is the first agent, the algorithm terminates (lines 3–5), and if not, a Backtrack message is sent.
If the backtrack is to another variable owned by the current agent then if the current variable
is already assigned f alse, or if there is no lower priority agent that can take the relevant
resource (line 9), there is no valid assignment for the variable and we need to backtrack
further by recursively calling backtrack() (lines 10–11). If the variable is assigned true and
there is some lower priority agent that can take the resource, the variable is assigned f alse
and we proceed to assign the next variable (lines 13–14).
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Fig. 9 Receive_Envy_Request(msg)

Fig. 10 Receive_Envy_Report(msg)

In response to an Envy_Request message (Fig. 9) the agent calculates its envy against
the CPA in the message, and sends it back to the requesting agent (lines 2–3). When an
Envy_Report message is received (Fig. 10), the Envy_List is updated with the new envy.
If the Envy_Reports of all higher priority agents were received, the global envy target func-
tion is calculated and compared to the known upper bound (lines 3–4). If the upper bound
was breached, then a backtrack is issued, otherwise we proceed to assign the next vari-
able.

3.1.4 Forward estimate—DEM-FE

Upon receiving an Envy_Request message from a lower priority neighbor, an agent ai cal-
culates its envy towards all agents assigned on the CPA (Fig. 9 line 2). However, there may
be resources with positive utility to ai that are not yet allocated to any agent on the CPA.
Since eventually all resources will be allocated, if the utility of ai for any of the resources
that are currently not allocated on the CPA is larger than the bundle of any agent on the
CPA, this can be used as a better bound on the envy of ai . Note that since the agent does not
know how resources not currently assigned on the CPA would be allocated, one can only
consider the utility of each resource by itself, and not the utility of bundles of unallocated
resources.

Figure 11 shows the run example from Fig. 4 for the DEM-FE case. As before, an upper
bound if registered after a1 assigns true to its variable x1 , a2 assigns f alse to x1, a2
assigns true to x2 and agent a3 must assign its variable x2 to f alse. The upper bound on
the global envy is calculated to be 4. Agent a3 then backtracks to agent a2. If a2 assigns
f alse to x2 variable it knows that r2 will have to be allocated to a3, and can calculate its
own envy to be 6. In this case a2 can backtrack without extending the CPA to a3. In the
same way, after a1 assigns f alse to variable x1 , a2 assigns true to x1 and a2 assigns f alse
to x2, a2 can calculate its envy to be 3, and together with a1’s envy, it is more then the
upper bound. The CPA does not need to be sent to a3 and the algorithm backtracks until
termination.

In order to incorporate the Forward Estimate (FE) capability, the only change needed is
in the Received_Envy_Request() function. Figure 12 presents the enhanced function. Line
3 loops through all resources r j for which agent ai has a non-zero utility, and are not yet
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Fig. 11 A DEM-FE run on the
search space in Fig. 1

Fig. 12 Receive_Envy_Request(msg)-FE

Fig. 13 A DEM-FB run on the
search space in Fig. 1

allocated. For each of them, if the utility of agent ai (r j ) is higher than the calculated envy
(line 4), the envy is updated accordingly (line 5).

3.1.5 Forward bounding—DEM-FB

Forward Bounding is a method in which agents send the CPA to lower priority, unassigned
agents, and receive bounds on what the valuation of these lower priority agents may be
if the CPA will be extended to the responding agents. Though this method increases the
computation and communication needed for assigning a new value, it may lead to a better
pruning of the search space. Forward bounding has been shown to give a significant boost in
DCOP algorithms [11]. In this section we show how forward bounding can be added to the
distributed envy minimization algorithm described above.

Figure 13 shows the run example from Fig. 11 for the DEM-FC case. The difference from
the DEM-FE case can be seen after a1 assigns f alse to variable x1 , a2 assign true to x1 and
true to x2. In this case the Forward Bound mechanism will reveal a3 envy for this CPA, and
a backtrack will be performed without sending the CPA to a3.

The required adaptation is in the function Assign_Val(). Here we need to send an
Envy_Request (Fig. 6 line 16) to all neighbors and not only to higher priority agents. Simi-
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Fig. 14 Receive_Envy_Request(msg)-FB

larly, in function Receive_Envy_Report (Fig. 10 line 2), the condition needs to be modified
to wait for Envy_Reports from all neighbors.

The last modification needed is in the envy computation done by lower priority agents
receiving an Envy_Request message. Since a lower priority agent receiving an Envy_Request
does not have its variables assigned yet, it can only give a bound on its envy. The high-
est evaluating bundle that such an agent may be allocated by extending the current CPA
would be all resources not already allocated on the CPA. So the agent computes its
envy based on the assumption that its bundle would consist of all the not yet allocated
resources.

The new Receive_Envy_Request() routine is described in Fig. 14. In line 2 the agent
checks if the Envy_Request originated from a higher priority agent. If it was (line 3), the
agent assumes its assignment includes all the resources currently unassigned on the CPA.
The Envy is computed (line 4) based on either the agent assignment on the CPA (in case the
agent is assigned in the CPA) or on the tentative assignment of all goods not allocated in
the CPA (in case the agent is not yet assigned in the CPA).

3.1.6 Envy target functions

The algorithms described above can support all target functions described in Sect. 2.2.
Supporting absolute or relative envy measures will require the correct envy calculation
in Receive_Envy_Request() (Fig. 9, line 2), and in the same way in Agent_Assignment_
Complete() (Fig. 7, line 1).

A Utilitarian envy minimization is achieved by setting the global envy calculation in
Receive_Envy_Report() (Fig. 10, line 3) and in Agent_Assignment_Complete() (Fig. 7, line
3) to be the sum of the envy of all agents. An egalitarian global envy will require setting the
same global envy calculation to be the maximum envy among all agents.

In order to minimize the number of agents with non-zero envy, one can use a global envy
calculation that adds 1 for every agent that has a non-zero individual envy. Requiring an envy-
free solution is identical tominimizing the number of envious agents with theUpper_Bound
set to 1.

3.2 Algorithm correctness

To prove the algorithm’s correctness, one first proves that it terminates and then proves that
upon termination the value of the upper bound is the optimal envy (completeness).

To prove that the algorithm terminates one needs to prove that it will never go into an
endless loop. To do so, one needs to consider the algorithm’s state. Let an algorithm state S
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include all agents, their variables, and current assignment. Let Si be the group of all algorithm
states in which all variables of the first i agents are assigned. Let Sik be the group of all states
in which all agents until agent ai are fully assigned, and agent ai has its first k variables
assigned.

The following Lemma proves that the same state is not generated more than once.

Lemma 1 (Unique states) A state S is never repeated.

Proof Assume that some partial assignment {〈a1, v1〉 · · · 〈al , vk〉} = Slk has been duplicated.
There is some agent ai (1 ≤ i ≤ l) who is holding the CPA and by assigning

〈
ai , v j

〉

on it, generates for the first time the duplicated partial assignment. Clearly, being the first
duplication of the CPA means that ai is the highest in the order of agents to assign itself the
same assignment for the second time, with the same partial assignment before it.

Anynewassignment added to theCPA is selected in theAssign_Val function. This function
is invoked from one of the following functions:

– main()—This function only invokesAssign_Val once—at the beginning of the run.Hence
it cannot cause the same state to be produced more than once.

– Receive_CPA()—The Receive_CPA() function is invoked whenever a higher priority
agent a j (where j < i) sends a CPA message to ai (line 8 of main()). A duplicated CPA
generated by ai includes the same assignments to all of its variables and therefore the
first j assignments must be the same. This contradicts the assumption that ai is the first
agent that repeats a state.

– Backtrack()—If Assign_CPA() is invoked following line 14 of Backtrack(), line 13 was
also executed. Specifically, a variable that had a true value is now set to f alse. As a result,
Assign_Val() can never generate a duplicated CPA, which contradicts our assumption.

Theorem 1 (Termination) Every run of the algorithm terminates.

Proof The algorithm will terminate if the following conditions hold:

– The number of states it traverses is finite.
– It does not examine the same state more than once.
– The algorithm maintains progress. That is, it moves from one state to another within a

finite amount of time.

The first condition is trivially met by the fact that the number of agents and the number of
resources are finite. The second condition immediately follows from Lemma 1.

Consider the state sa ∈ Si . The algorithmcan proceed to someother state sb ∈ Si whenever
the Assign_CPA() and Receive_BT_CPA() functions are executed (assigning true or f alse
to a variable) by some agent. The only situation inwhich the algorithm does notmove trivially
to the next state is when the algorithm asks for Envy valuation of its neighbors following an
assignment (Assign_val() line 16). In this case Envy_Request will be sent to all neighbors
and the agent will wait for new messages to arrive. However, since every agent receiving an
Envy_Request responds to it by an Envy_Report (Receive_Envy_Request() line 3), the agent
assigning the new value is guaranteed to receive Envy_Report messages from every neighbor.
This will result in either Backtrack() or a new Assign_Val() call in Receive_Envy_Report()
lines 5 and 7, respectively.

To prove completeness one needs to show that the value returned upon completion is
indeed the optimal (minimal) envy for a full allocation. We start by proving a monotonicity
characteristic of the CPA.
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Lemma 2 (CPA monotonicity) Let e be the envy of the current CPA. Any extension of the
CPA will result in an envy that is equal to or greater than e.

Proof The proof is divided into two parts. First we need to show that the envy between two
agents cannot decrease when the CPA is extended. Then, we show that for the set of global
target functions, global envy cannot decrease unless some agent’s envy decreases.

The envybetween twoagents canbemeasuredbetween a fully assigned agent and anyother
agent (Agent_Assign_Complete() line 1 or Receive_Envy_Request() line 2). Alternatively,
envy can be measured between an unassigned agent and any other agent (in case of forward
bound Receive_Envy_Request() line 4). For the first option, due to the fact that utilities are
additive, and since a CPA extension can only add resources to agents that were not fully
assigned, the envy of fully assigned agents cannot decrease. The second option deals with
the forward bounding mechanism, which assumes that agents will be allocated all available
resources (see Fig. 14 line 3). Any extension of the CPA cannot result in the future agent
getting more resources than was assumed, and due to the monotonicity of the utilities (i.e.,
additive) cannot result in a higher utility, which means that the envy of a future agent cannot
be smaller than the envy it reported during the forward bounding.

We consider three global target functions: (1) the number of envious agents, (2) the sum
of envy of all agents, (3) the envy of the agent that has the highest envy (see Sect. 2.2). It is
easy to see that for any of these target functions for global envy to decrease, the envy of at
least one agent must decrease.

Theorem 2 The DEM algorithm is complete.

Proof Upon termination, the allocation that produced this upper bound is the selected allo-
cation, resulting in a global envy equal to the upper bound. One needs to prove that the last
reported upper bound is theminimal envy.Every full allocation envy is compared to the known
upper bound (in Agent_Assignment_Complete line 4), and if it is lower, the upper bound is
replaced by the new value (same place line 8). One needs to show that every allocation that
will improve the upper bound will be checked.

If a full allocation is not checked, then it must have been pruned in the search process by
backtracking on one of its possible partial assignments. For this to not violate completeness
two conditions need to hold:

– Every CPA that was not extended has a higher global envy valuation than the upper
bound.

– Every potential extension of a CPA that was not extended will have a higher global envy
valuation than the upper bound.

For the first condition to hold we observe that a CPA is not extended only if a Backtrack()
was called for the given CPA. A Backtrack() is called from the following locations:

– Agent_Assignment_Complete() line 9—called only after theCPAenvy is checked against
the upper bound (lines 1–4).

– Receive_Envy_Report() line 5—conditioned on theCPAenvy exceeding the upper bound
(line 4).

– Backtrack() line 11—this recursive call for Backtrack() is conditioned on the fact that
the CPA cannot be extended, which can be due to one of the following reasons: (1) The
relevant variable is already assigned false, or (2) If the relevant variable will not get the
resource allocated to it, no other variable can get it (line 9).

The second condition follows immediately from Lemmas 1 and 2.
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Table 2 Minimal Global Envy for 15 goods and varying numbers of agents and goods per agent

Goods per agent Number of agents

6 7 8 9 10 11 12 13 14

5 0 0 1 3 6 10 13 21 26

6 0 0 0 0 0 4 11 18 23

7 0 0 0 0 0 0 7 16 20

3.3 Experimental evaluation

The experimental evaluation in this section is divided to two parts. In the first part the above
algorithm is used to find theminimal global envy under varying conditions. In the second part
the algorithmic performance of the three algorithm versions (DEM, DEM-FE, and DEM-FB)
is evaluated in terms of computation and communication load.

In all the experiments in this section, the utility functions were additive and each agent
was randomly assigned to each resource it was interested in, and assigned a value by drawing
from a uniform probability distribution in the range of 1–100. The envy between two agents
was taken to be the absolute envy, and the global optimization goal was the egalitarian
social welfare function. All of the results represent average results for solving 50 randomly
generated problems.

3.3.1 Global envy

The DEM-FB algorithm was used to find the minimal global envy under varying conditions.
The envy between two agents was taken to be the absolute envy, and the global optimization
goal was the egalitarian social welfare function.

Table 2 depicts the global envy found for 15 goods, varying the number of agents from 6
to 14, and the number of goods with non-zero valuation (goods per agent) from 5 to 7.

One can see that as the ratio between the number of goods and the number of agents is
big enough (i.e., 6 or 7 agents for 15 goods), an envy-free solution was always found. One
can also see that as the number of goods each agent was “interested in” grows, an envy-free
solution can be found in a lower ratio of goods to agents.

Figure 15 compares the minimal envy to that of the approximation algorithm proposed
in [18]. The theoretical bound of [18] is also presented. In this experiment 20 goods are
allocated to a varying number of agents. Two experiments are presented; in Fig. 15a each
agent has 5 goods with non-zero valuation and in Fig. 15b each agent has 4 such goods.

Both experiments show the same pattern in which the optimal global envy increases as the
ratio between the number of goods and the number of agents becomes closer to unity. This
is consistent with the results in Table 2. Since Lipton’s bound depends only on the marginal
utility of a single good, it does not depend on this ratio. Furthermore, the actual allocation
found by Lipton’s algorithm has a global envy that is very close to its theoretical bound. Due
to the above, the gap between Lipton’s bound and the optimal allocation envy is significantly
larger for high ratio of goods to agents.

3.3.2 Algorithm performance

Two performance measures are routinely used to evaluate distributed search algorithms:
network load measured by the total number of messages sent [20,37] and run-time in the
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Fig. 15 Global envy versus number of agents. a Five goods per agent. b Four goods per agent

form of Non-Concurrent Logic Operations (NCLOs) [40]. In DCOPs the measure of NCLO
usually translates to Non-Concurrent Constraint Checks. For envy minimization the logic
operation is taken to be the evaluation of utility of a bundle of resources. The evaluation of
bundle utility is taken as the logic operation since this is the basic andmost frequent operation
that needs to be taken after each assignment, for envy evaluation.

The first experimental setup included 10 agents and 15 resources; the number of resources
per agent was varied between 5 and 10. Figure 16 presents a comparison of DEM, DEM-
FE, and DEM-FB. The graph clearly demonstrates the pruning power of forward bounding,
resulting in better performance of DEM-FB in both total message count and NCLO time.

The second experiment (Fig. 17) included 20 resources, 5 resources per agent, and the
number of agents was varied from 13 to 20. As before, utility functions were additive and
each agent randomly assigned a value in the range of 1–100 to each resource it was interested
in. One can see that the performance enhancements betweenDEMandDEM-FE and between
DEM-FE and DEM-FB resemble the enhancements observed in the first experiment.

4 Distributed local search for envy minimization

When a DCR problem includes a large number of agents, complete search will typically
fail to solve the problem in reasonable time [39]. One common method to overcome the
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Fig. 16 Algorithms comparison, 10 agents, 15 resources, number of resources per agent varies from 5 to 8

complexity of complete search large problems is to use local search, which is incomplete but
fast. This section introduces a distributed local search algorithm for minimizing envy for the
indivisible good allocation problem.

A number of distributed local search algorithms have been proposed for Distributed Con-
straints problems. Algorithms such as MGM [21] and DSA [39] have been shown to perform
well for DCOP problems. However, these algorithms cannot be applied directly to solve
DEMPs. This is because DEMPs include hard constraints that allow each resource to be held
by exactly one agent. Thus, any local change of assignment by a single agent will result in
breaking this hard constraint. Therefore, in order to perform a local search there is a need to
design a new algorithm based on good transfers that includes the change of the state of two
or more agents.

Standard DCOP local search algorithms require that an agent only needs to communi-
cate with its neighborhood (i.e., agents that are constrained with it). However, in the envy
minimization local search case, an agent’s neighborhood includes all other agents that can
be affected by its allocation. In other words, all agents that share interest in at least one of
the agent’s desired goods. As the local search proceeds, the agent’s neighborhood changes
dynamically according to the current allocations.

Note that a hill climbing algorithm based on good transfers is very susceptible to local
minima. Consider a simple problem of two agents a1, a2 and two goods r1, r2. Let us assume
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Fig. 17 Number of agents varied from 13 to 20

a1 has a higher valuation for r1 than r2 and agent a2 the other way around. Let us also assume
that in the initial state r1 is allocated to agent a2, and r2 is allocated to a1. Obviously, swapping
goods will result in every agent getting the good it prefers, and will lower the envy. However,
an algorithm that considers only a single transfer of a good at a time will not perform this
swap.

In order to overcome the above difficulties of standardADCOP local search algorithms, the
proposed algorithm alternates between two hill climbing search phases, each of which uses a
different type of steps. Alternating the phases results in an algorithm that is less susceptible
to getting trapped in a local minimum than a single phase algorithm, while maintaining the
anytime characteristic of a hill climbing algorithm.

The first phase (Sect. 4.1.1) uses one-transfer steps, in which at each step of the algorithm
exactly one good is transferred from one agent to another. The second phase (Sect. 4.1.2)
uses a distributed extension of the envy cycle elimination idea introduced in [18].

Since both stages of the algorithm are monotonic hill climbing, the valuation of the target
function improves at each step of the algorithm. This guarantees the convergence of the
algorithm.

First the algorithm for minimizing the sum of envy of all agents is described—Distributed
Local Search for Envy minimization Sum (DLS-EMS) in Sects. 4.1.1 and 4.1.2. Next the
modifications for minimizing the maximal envy of all agents (DLS-EMM) are described in
Sect. 4.1.3.
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4.1 Algorithm description

4.1.1 One-transfer phase

The one-transfer phase of the envy minimization algorithm uses the concepts of DCOP local
search with the necessary modification for the neighborhood definition and target function
used for envy minimization.

This phase is performed by negotiating the transfer of goods between agents, looking for
an allocation with lower global envy. In the general case a transfer may involve k goods and n
agents. A higher order of transfer (k > 1, n > 2) resembles a k local search algorithm such
as MGM2 [29]. However, increasing the order of the transfer exponentially increases the
complexity of the negotiation. Since the presented algorithm is designed for large numbers
of agents and goods, we limit this phase to using transfers in which one good is transferred
from one agent to another.

In this synchronized distributed phase each agent continuously loops through five stages
of the algorithm:

– Broadcast Bundle—Each agent broadcasts its bundle to its neighborhood. The neighbor-
hood of agent ai includes all agents that have a non-zero utility for at least one good in
ai ’s bundle.

– Request Transfer—At this stage each agent decides on one transfer it would like to request
and sends a message with the requested good to all agents with non-zero valuation for
the requested good.

– Respond to Transfer Request—Upon receiving a transfer request, an agent calculates its
new envy assuming the requested transfer will take place, and sends a message with its
new envy to the requesting agent.

– Broadcast transfer impact—When all responses to a transfer are collected and summed,
each agent sends a message with the impact of its requested transfer on the global envy.
Note that since envy can only change in agents that have non zero valuation for the
particular resource, these responses hold all the information on the impact of the transfer
on the global envy.

– Transfer—The agent holding the good that is requested in the transfer and that has the
best impact on the global envy, transfers the good to the requesting agent.

The Broadcast Bundle stage enables each agent to calculate its envy. Note that agent ai
can only be envious of another agent a j if a j holds at least one good which has a non-zero
valuation for ai . Agent ai compares its bundle to the bundles of all its neighbors and calculates
its envy with respect to each of its neighbors.

Out of all the agents that agent ai envies, it randomly selects a single agent a j to request
a transfer from. Out of all goods held by a j that have a non-zero valuation to ai , ai randomly
picks one good rl to be the transfer candidate. Note that randomization is required since, at this
stage, the agent does not know what transfer will have a positive effect on its neighborhood.
If an agent consistently chooses to request the good that has the highest value to it, and the
transfer of this good will not benefit the neighborhood, the transfer will not be made, nor will
other potential transfers of goods with lower valuation.

Since only agents with non-zero valuation of rl may change their envy evaluation due to
such a transfer, at the Request Transfer stage, only these agents will get the request transfer
message from ai .

In Response to a Transfer Request an agent a j receiving a transfer request only needs to
re-evaluate the bundles of the transfer requesting agent, and the agent currently holding good
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Fig. 18 One-transfer phase

rl . Note that this is true regardless of the question whether the transfer request receiving agent
is the agent currently holding the requested good, or not. Agent a j calculates the impact of
the request on its envy assuming the transfer will be performed, and sends a message to the
transfer requesting agent with this information.

In order to ensure hill climbing search, one must prevent a situation in which an agent
ai receives a good rl , and simultaneously another agent a j that has a non-zero valuation of
rl , gives another good rk . Since in the Response to a Transfer Request envy was calculated
each time assuming only one of the above transfers, if agent a j gives rk and at the same
time ai receives rl , a j ’s envy in ai may be greater than the envy calculated in Response to a
Transfer Request, resulting in an increase in global envy. Note, that if a j was not interested
in rl then its transfer would not affect a j envy as calculated in the Response to a Transfer
Request phase.

In order to ensure hill climbing, the Broadcasting transfer impact is divided into two
sub-states. First, each agent ai sends the impact of its request on the global envy to agent
a j that is currently holding good rl ; then a j broadcasts this value to all agents interested in
rl . At this stage, if a j the agent giving up good rl will have the best global impact out of
all possible transfers originating from agents interested in rl , rl can safely be transferred to
agent ai .

The algorithm can continue looping through these stages for a given number of algorithmic
rounds, or until no improving transfers are found for a given number of rounds (i.e. until
convergence).

Figure 18 presents the pseudo code for the One-Transfer phase algorithm.

4.1.2 Elimination of cycles

As described in Sect. 2.4 the algorithm presented in [18] uses the elimination of envy cycles
to achieve a state in which there is at least one agent that no other agent envies. However,
exchanging bundles in order to improve the global sum of envy is not limited to envy cycles
elimination. In fact any bundle exchange that will result in lowering the sum of envy of the
participating agents will reduce the sum of envy of all agents.

The cycle elimination phase of the algorithm proposed in the present paper uses Open-
end Envy Cycles (OEEC). In OEEC all participating agents envy the next agent in the
cycle, but the last one may or may not envy the first. So, OEEC of four agents will include

123



Auton Agent Multi-Agent Syst (2016) 30:364–402 387

a1 ⇒ a2 ⇒ a3 ⇒ a4. In order to use OEEC for hill climbing local search one needs to make
sure that the sum of envy changes due to a given OEEC rotation is positive. We call such
cycles Positive Open-end Envy Cycles (POEEC).

In order to identify POEECs, the algorithm repeatedly performs distributed DFS rooted
in a randomly selected node in the envy graph. During the DFS run, each agent maintains
a list of all its ancestors and the envy of each of the ancestors of its direct child. Whenever
an agent adds a child during the run of the DFS, it adds its own envy in that child to the list,
and the list is sent to the child. Each agent ai in the DFS compares its own envy of any of
its ancestors a j , to the sum of envies from a j through the tree, up to itself (agent ai ). If this
sum is greater than the envy ai ⇒ a j then a POEEC was found. Once a POEEC is found
the bundles of the relevant agents are transferred counter to the cycle direction. This phase
terminates when no POEECs exist.

4.1.3 Minimizing for the maximal envy (DLS-EMM)

Astraightforwardmodification of the above algorithm thatwillmake itminimize themaximal
envy would be to replace the optimization target function during the search. This, however,
limits the search to transfers that strictly improve the worst off agent (i.e., the agent with
the maximal envy). This limitation causes the algorithm to get stuck in local minima very
frequently.

Alternatively, one can allow any step that does not increase the maximal envy. However,
this does not guarantee convergence. In order to overcome this, one can use an algorithm that
optimizes the sum of envy, allowing only steps that do not increase the maximal envy. This
results in an anytime algorithm forminimizing themaximal envy, yet guaranties convergence.

The needed modifications of the algorithm are the following:

– One-transfer—In the Broadcast transfer impact stage agents calculate both target func-
tions and if the impact on themaximal envy is negative, the agent broadcasts it. Otherwise,
the agent broadcasts the impact on the global sum of envy.

– POEEC elimination—In addition to verifying that the sum of envy in an open-end envy
cycle is positive, one also verifies that the last agent in the cycle (the only one whose
envy increases) will not be more envious after the rotation than all agents in the cycle
before the rotation.
This is straight forward to calculate since the envy of the last agent after the rotation is its
envy before the rotation plus the difference between its old bundle and its new bundle.

4.2 Experimental evaluation

The experimental evaluation uses randomly generated problems to compare the quality of
the solutions reached. Every result presented is the average result of 50 randomly generated
problems with the same parameters.

Two experiments setups were used:

– Random Problems—In random problems each agent randomly picks the goods it will
have a non-zero valuation for, and then randomly picks the valuation of the good. This
gives a normal distribution for the number of agents interested in each good.

– Scale Free Problems—In a Scale Free Problem the probability of a good to have a non-
zero valuation for a given agent follows a power law distribution. The long tail effect
of the power law distribution will cause a small number of goods with many interested
agents, whilemost goodswill only have a non-zero valuation by a small number of agents.
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Table 3 Global minimal envy
found, with a varying number of
goods versus number of agents

Number of goods Number of agents

10 20 30 40 50 60

(a) Random problems

200 0 0 12 18 32 70

250 0 0 4 8 16 33

300 0 0 0 8 10 25

350 0 0 0 3 11 12

400 0 0 0 0 4 11

Number of goods Number of agents

10 20 30 40 50 60

(b) Scale free problems

200 0 8 10 16 23 26

250 0 2 4 14 20 24

300 0 1 3 11 13 18

350 0 1 2 9 10 13

400 0 0 2 4 9 11

This simulates a real life situation in which a small number of goods are “popular” and
have a high demand. Such goods are called “hub goods”, to borrow the terminology of
hub nodes in Scale Free Graphs. In the following experiments a power of 2.5 was used.

Three types of experiments were performed. The first measured the amount of envy found
when the ratio between the number of goods and the number of agents is relatively high. The
second evaluates algorithmic performance when the global target is minimizing the maximal
envy of agents. The third type of experiments uses the sum of envy as the target function.

4.2.1 Envy for a large ratio of goods to agents

For this setup of the experimental evaluation only the one-transfer phase of the algorithm
was used.

Table 3a shows the global envy calculated for a varying number of agents and a varying
number of goods for Random Problems. For this experimental setup every agent was “inter-
ested” in (i.e., had a non-zero valuation for) 40 randomly selected goods, and the value of
each relevant good for each agent was uniformly randomized in the range 0–100. One can
see that when the ratio between the number of goods and the number of agents is high enough
(over 10 times more goods than agents), the algorithm frequently returns with an envy-free
solution.

At a high goods to agents ratio one intuitively expects that there would be many goods
desired by a small number of agents and as a result it would be easier to transfer these goods
and prevent envy. At such a setup, in practice every local minimum is an envy-free solution.
In this case any hill climbing algorithm would have high probability to find one. As the ratio
between the number of goods and the number of agents becomes smaller it becomes harder
to find envy-free solutions and the minimal global envy increases.
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Fig. 19 Maximal envy versus number of agents. a Random problems. b Scale free problems

The numbers in the table represent the sum of envy of all agents. Note that, when the
solution is envy-free, both the sum and the maximal envy are zero.

Table 3b presents the same experiment over Scale Free Problems. One can see that the
same pattern of results appears in scale free problems. However, for Scale Free Problems,
envy begins to appear in a higher ratio of goods to agents. This is explained by the fact that
hub goods make it more likely that an agent will have a non-zero valuation to goods held by
other agents, hence there is a higher chance for envy.

4.2.2 Minimizing the maximal envy

This section compares the performance of DLS-EMM to that of the approximation algorithm
proposed in [18]. The theoretical bound of [18] is also presented.

Figure 19a shows the globalmaximum envy for a fixed number of 150 goods using random
problems. Each agent has a non-zero valuation for 40 goods and all values are uniformly
randomized in the range 0–100. The number of agents varies from 20 to 150.

One can see that when the number of agents is small the algorithm finds an envy-free
solution. This is consistent with the results in Table 3. As the number of agents grows, the
maximal envy found grows as well, but, remains significantly smaller than the result of
Lipton’s approximation algorithm. Moreover, it is clear that Lipton’s algorithm produces
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Fig. 20 Number of agents with more then 1 good allocated to them

a maximal envy that is very close to the bound. For an intermediate number of agents
the DLS-EMM algorithm proposed in the present study produces a maximal envy result
that is less than half of the envy in the allocation produced by Lipton’s approximation
algorithm.

DLS-EMM demonstrates a phase reversal when the number of agents becomes closer
to the number of goods. In this situation the global maximal envy found by DLS-EMM
decreases. It is apparent from Fig. 20 that in the extreme case, every agent holds exactly 1
good. This can explain the phase reversal two folds: On one hand, an agent with one good has
a higher probability for large amount of envy in agents with two goods, that are inevitable
if the number of agents is smaller then the number of goods. On the other hand, when all
agents are allocated exactly one good, all possible transfers are transfers of ”bundles” between
agents. Thus the POEEC elimination phase performs better.

The results of the same experiment using the Scale Free problems setup is presented in
Fig. 19b.

The results of the Scale Free experiments are almost identical to the random problems
results until the number of agents reaches 130. When the ratio between the number of agents
and the number of goods becomes close to one; the Scale Free Problems do not demonstrate
the phase reversal that the Random Problems do. In fact, the maximal envy at this ratio
deteriorates significantly.

The deterioration in the maximal envy in Scale Free problems when the goods-to-agent
ratio approaches unity can be explained by the fact that under this condition every bundle has
approximately one good. Since some of the goods will be hubs, and will have high valuation
by many agents, it is likely that the agents not holding such a hub good will have relatively
high envy.

4.2.3 Minimizing the sum of envy

For minimizing the sum of envy of all agents, the combined DLS-EMS algorithm was com-
pared to the performance of the algorithm that uses only the one-transfer phase.

Figure 21a presents the global envy for 150 goods using random problems. Each agent
has a non-zero valuation for 40 goods and all values are uniformly randomized in the range
0–100. The number of agents varies from 50 to 150.
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Fig. 21 Sum of envy versus number of agents. a Random problems. b Scale free problems

It is easy to see that when the number of agents is low relative to the number of goods,
both variants of the algorithm find a solution that is almost envy-free. This is consistent with
the results in Table 3. As the number of agents grows, the benefit of using the two-phase
algorithm becomes significant and the allocations found byDLS-EMS are up to 5 times better
than the one-transfer phase allocations.

DLS-EMSdemonstrates a phase reversal as the ratio of the number of agents to the number
of goods gets closer to one. This is consistent with the results in Fig. 19. The one-transfer
phase also demonstrates a phase reversal when the ratio between the number of agents and
goods becomes unity. This may be explained by the fact that in the extreme case where each
agent holds exactly 1 good, a one-transfer is a transfer of the agent’s whole bundle.

The experimental results for Scale Free Problems are presented in Fig. 21b. The phase
reversal that was apparent in the Random Problems no longer exists. This is consistent with
the results in Fig. 19b. Furthermore, as the ratio of the number of agents to the number of
goods gets closer to one, the contribution of the cycle elimination phase becomes smaller.
This is explained by the fact that bundles that include a hub good are unlikely to be part of
an envy cycle since many agents will be interested in the same bundle.

Another set of experiments was performed in order to measure the effect of the number
of non-zero valuated goods per agent on the global envy found by the algorithm (Fig. 22).

123



392 Auton Agent Multi-Agent Syst (2016) 30:364–402

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50 60

G
lo

ba
l e

nv
y

Number of goods with positive valuation per agent

DLS-EMS

1 transfer

0

500

1000

1500

2000

2500

10 20 30 40 50 60

G
lo

ba
l e

nv
y

Number of goods with positive valuation per agent

DLS-EMS

1 transfer

(a)

(b)

Fig. 22 Sum of envy versus number of goods per agent. a Random problems. b Scale free problems

In this setup 150 goods are allocated to 130 agents and the number of goods each agent is
interested in varies between 10 and 60.

Increasing the number of goods per agent that have non-zero valuation gives the algo-
rithm more goods that can be transferred to an agent in order to lower its envy. On the
other hand, as the number of relevant goods per agent increases, the search space grows as
well.

The main result is that DLS-EMS shows a constant decrease in global envy as the number
of goods of interest per agent increases. This probably indicates that the algorithm handles
the local minima better, which helps handle the increase in the search space while benefiting
from having more goods that can be allocated to each agent.

The performance of the one-transfer phase algorithm improves slightly when increasing
the number of goods with interest from 10 to 20. However, increasing the number of goods of
interest further produces a sharp increase in the global envy reached by the one-transfer phase.
This may be due to the sharp increase in the search space size that lowers the probability of
the simple hill climbing algorithm to find a good solution.

A similar pattern can be seen in Fig. 22b. In this experiment 150 goods were allocated to
130 agents in a Scale Free problem setup. As in the Random Problem case (Fig. 22a), the
benefit from having a two-stage algorithm increases with the problem size.
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Fig. 24 DLS-EMS: Cycles for convergence versus number of agents

4.2.4 Algorithm convergence

Figure 23 presents the global sum of envy versus the number of algorithm cycles for a typical
experiment on a Random Problem with 150 goods, 150 agents, and 40 goods per agent with
non-zero valuation. The vertical lines show the location of envy cycle elimination phases.

Note the the number of messages in each cycle of the local search algorithm is the number
of agents times its neighborhood. In this example it is 150 × 40 = 6000 messages for each
cycle.

One can see that the first one-transfer phase lowers the global envy from about 20,000
to 5000 until cycle 14,000. The first cycle elimination phase optimizes the solution further
to around a 1000. The cycles elimination phase is very fast and takes only a few hundred
of the algorithm cycles. The algorithm continues to converge with two more iterations of
one-transfer cycle phases until it converges at around 35,000 cycles.

Figure 24 presents the number of cycles DLS-EMS needed in order to converge, as a
function of the number of agents. The experiment was performed on Random Problems with
150 goods and 40 goods of interest per agent. One can see that the number of cycles for
convergence grows linearly with the number of agents.
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5 Pareto optimal allocation with minimal envy

While an allocation that results in low envy among the agents is clearly desirable, it may
not be efficient, i.e., not Pareto Optimal (PO). Besides the immediate motivation for efficient
allocations in multi-agent resource and task allocation applications [1], in the context of
self-interested agents, PO affects the stability of an allocation as well. The basic motivation
for minimizing envy was to prevent situations in which agents wish to exchange their share
with others. However, by definition, if an allocation is not PO, there exists an exchange
cycle, where each agent passes a part of its share to another and receives some goods from
another in which all agents weakly benefit from the exchange and at least one benefits in the
strong sense [2]. The existence of such an exchange cycle indicates that the allocation is not
“stable”, i.e., a group of individually rational agents may choose to exchange goods between
themselves in a way that would benefit all participating agents, even though it increases the
envy among them.

This section proposes an efficient polynomial complexity method that finds a Pareto
Optimal allocation with a low level of envy; however, not necessarily the one with the lowest
envy.

The method proposed is a two-stage algorithm. In the first phase goods are assumed to be
divisible and the problem is represented as a Fisher market. Then, an efficient, off-the-shelf
algorithm for finding a market equilibrium is used to obtain its corresponding divisible goods
allocation (market clearing allocation) [38]. This allocation is known to be both envy-free
and Pareto Optimal [31].

In the second stage, the goods that were split between more than one agent in the first
stage, are allocated to a single agent resulting in an indivisible allocation. We prove that
the resulting allocation is PO. Though there is no tight bound guarantee on the envy of the
resulting Pareto optimal allocation, the experimental evaluation demonstrates a low envy
measure in comparison to Lipton’s bound and Lipton’s approximation algorithm [18]. Note
that Lipton’s algorithm and bound are not guaranteed to be Pareto Optimal.

5.1 Fisher market equilibrium

The preliminary work on market clearing (equilibrium) models is more than a century old
[10]; it includes thework of Irving Fisher and LeonWalras from the end of the 19th century. A
Fishermarket is a bipartitemarket of buyers and sellers. Each buyerai has a budgetbi and each
seller has a unit of divisible good for sale (therefore sellers and goods are indistinguishable).

In the case of linear utilities each agent ai has a valuation vi j for every good r j . The utility
of agent ai is: ui = ∑m

j=1 (vi j ri j ), where m is the number of goods and ri j is the amount of
good r j allocated to agent ai .

A market clearing solution is a price for each product so that there exists an allocation
such that each agent pays for the products allocated to it the fraction of the market clearing
price of the product according to the fraction of the product that was allocated to it (i.e.,
ri j p j ), and this allocation maximizes its utility within its budget constraint. Moreover, all
money is spent and all goods are bought. Under the assumption of linear utilities, such a
solution is unique, and always exists [7].

Many approaches for efficient calculation of market clearing have been suggested over the
years. [35] presented a polynomial time algorithm for market equilibrium approximation. [7]
proposed a polynomial time combinatorial algorithm for computing the market equilibrium
for the linear Fisher market. [14] proposed a polynomial time algorithm for computing the
market equilibrium by solving the Eisenberg-Gale program [10]. Recently [38] presented a
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proportional response dynamics algorithm that converges to Fisher market equilibrium and
is particularly suitable for distributed computation.

The proportional response dynamics algorithm proceeds in cycles. Each cycle every agent
sends a message to all relevant agents, with a bid on every resource he is interested in.
Every agent then collects the bids, and update its own bids according to the collected bids
(For a full description of the proportional response dynamics algorithm for Fisher market,
see [38]).

When all agents have the same budget, an allocation derived from a market clearing
solution is guaranteed to be Pareto Optimal and envy-free [31]. In the following section we
build upon the market clearing allocation for the divisible good scenario when proposing a
method for generating a Pareto Optimal indivisible good allocation that results in low global
envy.

5.2 From market equilibrium to an indivisible allocation

5.2.1 Pareto optimal allocation for indivisible goods

In order to create indivisible good allocations that are Pareto Optimal we use the following
theorem:

Theorem 3 Given a market clearing allocation A, any allocation Â in which every good
r is allocated to an agent ai i f f r , or a non-empty portion of it, was allocated to i in A as
well, is Pareto Optimal.

Proof Let us assume that Â is not Pareto Optimal. There has to be a group of transfers of
goods or some part of them in Â, such that all agents participating in the group will not
have lower valuation after its execution, and at least one agent will strictly benefit from it.
However, since according to the theorem’s condition all goods are held by agents that held
them in A, the same group (perhaps with different parts of the goods, but with the same
ratios between the amounts transferred between the agents) existed in A. This contradicts
the assumption that A is Pareto Optimal.

According to Theorem 3, any allocation created by fully allocating a good to an agent that
held a portion of it inA is Pareto Optimal. Allocating all goods that are split between agents
in A to one of the agents holding them, will result in an indivisible good allocation that is
Pareto Optimal.

5.2.2 The reallocation algorithm

In order to create an indivisible good allocation out of the Fisher market equilibrium divisible
allocation three alternative heuristics were designed:

The holder of the largest part The first heuristic allocates every good that is split between
two or more agents to the agent holding the largest part of it.

Consider a graph in which every node is an agent holding a fraction of a good split
between two or more agents in the Fisher market equilibrium, and every edge connects
two parts of the same good. Due to the Pareto optimality of the allocation, this graph
includes no cycles, hence the number of goods that are split between agents is at most
n + 1 where n is the number of agents. Therefore, the complexity of the above heuristic is
O(n).
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Fig. 25 The holder of the largest part

Fig. 26 Most envious agent

Figure 25 presents a pseudo code for a distributed implementation of the holder of the
largest part heuristic.

Most envious agent This heuristic considers only allocations of complete goods for envy
calculation. It repeatedly finds the most envious agent that holds a fraction of at least one
split good, and allocates to that agent one of the split goods in order to lower its envy. It uses
the following algorithm:

– Let R∗ ⊆ R be the set of goods that are split between multiple agents.
– Let A∗ ⊆ A be the set of agents allocated at least one good r∗

j ∈ R∗.
– Each agent in A∗ computes its envy taking into account only goods that are fully allocated

to a single agent (goods not in R∗).
– Select the agent ai ∈ A∗ with the highest envy.
– Let R∗

i ⊆ R∗ be the set of goods that are currently partially allocated to ai . Let r∗
j i ∈ R∗

i
be the good that ai holds the largest portion of it among all goods in R∗

i . Fully allocate
r∗
j i to ai .

– Repeat until R∗ is empty.

The complexity analysis of this heuristic algorithm is as follows:
Assuming n is the number of agents and m is the number of goods, and since we are
using additive utility functions (linear market) the calculation of the envy for all agents
has the complexity of O(n ∗ m). Since in every iteration of the algorithm, exactly one of
the split goods is fully allocated, the algorithm will terminate after, at most, m iterations.
This results in a complexity of O(n ∗m2) for generating the Pareto Optimal indivisible good
allocation.

Figure 26 presents a pseudo code for a distributed implementation of the holder of the
most envious agent.

123



Auton Agent Multi-Agent Syst (2016) 30:364–402 397

Fig. 27 Reallocate to create minimal envy

Reallocate to create minimal envy: The third heuristic repeatedly finds which of the split
goods, if fully allocated to a single agent holding a part of it, will cause the least global envy,
and allocates it to this agent. It uses the following algorithm:

– Let R∗ ⊆ R be the set of goods that are split between multiple agents.
– ∀r∗

j ∈ R∗ let A∗
j be the group of agents holding some part of it.

– For each good r∗
j ∈ R∗

• For each agent a∗
i ∈ A∗

j• Tentatively fully allocate r∗
j to a

∗
i and compute the global envy E ji , taking into

account all goods and parts of goods.
• If fully allocating r∗ j to a∗

i produced the lowest global envy, fully allocate r∗
j

to agent a∗
i .

– Repeat until R∗ is empty.

For the complexity analysis of this heuristic one first needs to note that since there are at
most n allocated parts of goods and at most m fully allocated goods, calculating the global
envy can be done in O(n(n +m)). Since at each round of the algorithm every agent holding
a part of a good is a candidate for getting all of the good, and there are at most n allocated
parts, the complexity of a round is O(n3 + n2m). Since at each round a split good is fully
allocated to an agent, and there are at most m split goods, the complexity of the heuristic is
O(m ∗ n3 + m2n2).

Figure 27 shows a pseudo code for a distributed implementation of the holder of the
reallocate to create minimal envy heuristic.

5.3 Experimental evaluation

The experimental evaluation uses the same setup as in Sect. 4.2.2. The first experiments
compare the global envy reached by the three heuristics described in Sect. 5.2.2. Figure 28
shows the experimental results for both Random problems and Scale Free problems. As in
Sect. 4.2.2, 150 goods were allocated to 50–150 agents with 40 non-zero valuated goods
per agent. The values are randomized in the range 0–100 and every result is the aver-
age of 50 experiments. The global envy was calculated as the sum of all agents absolute
envy.

One can see that the Reallocation for the Minimal Envy heuristic consistently reaches a
lower global envy; however, it is the heuristic with the highest complexity. On the other hand,
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Fig. 28 Maximal envy versus number of agents. a Random problems. b Scale free problems

the Largest Part heuristic, which requires the lowest computation effort, results in the highest
global envy.

The second experiment (Fig. 29) uses the same setup, and compares the global envy
of the Pareto Optimal allocation, found using the Fisher market clearing method with the
Reallocation for Minimal Envy heuristic to the Lipton et al. approximation and to the local
search algorithmpresented in Sect. 4.1.3.Note that the Fishermarket clearing based algorithm
is the only one guaranteeing a Pareto Optimal allocation.

One can see that the global envy produced by the different versions of the Market clearing
based algorithm are consistently better than Lipton’s bound. The algorithm performs par-
ticularly well when the number of agents is small. The local search algorithm presented in
Sect. 4.2.2 outperforms the market clearing algorithm when the number of agents is between
80 and 140; however, it does not guarantee Pareto Optimality.

Figure 29 also demonstrates two phase transitions, one when shifting from three items per
agent to two and one when shifting from two to one (around 75 agents and 150 agents). This
can be explained by the fact that as long as the Pareto Optimal allocation does not result in
sharing, we get an envy free allocation. On the other hand, as the ratio between number of
resources and the number of agents is small, the more sharing is required and the effect of
the heuristics increases.
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Fig. 29 Maximal envy versus number of agents. a Random problems. b Scale free problems

6 Conclusions

Minimizing the envy in a resource or task allocation in a multi-agent system is an important
optimization goal since it affects the stability of the allocation. In contrast to standard utility
maximizing optimization, minimal envy is achieved by addressing inter-relations among the
agents.

The distributed envy minimization problem (DEMP) was formulated as a Distributed
Constraint Reasoning Problem (DCR), and a DCR-based algorithm was proposed to find the
allocation that minimizes the envy. The special type of constraints that an envy minimization
problem includes, as well as the specific way envy is calculated, require adjustments of
existing DCR algorithms to use them to solve DEMPs. On the other hand, the same special
problem characteristics enable the development of dedicated bounding mechanisms that
improve the search process significantly.

An interesting prospect for future work is the formalization of DEMP in a bipartite factor
graph representation, enabling the development of a GDL algorithm to solve this problem.
Although it is not clear at this point if the required factor graph formulation will make a GDL
algorithm’s operation more efficient that the proposed specialized one.

WhenDEMPsare large, a completeminimization algorithm is unable to solve the problems
in reasonable time. Awell-knownmethod to solve large problems is to use incomplete search.
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A local search algorithmwas designed and presented for finding an allocation that minimizes
envy among agents. The atomic action in this local search algorithm is a transfer that involves
the change of state of more than a single agent. Thus, the local algorithm designed is not
standard. In addition, since the structure of theDEMPs is susceptible to getting caught in local
minima, the local search algorithm that is proposed interleaves two hill climbing phases, one
that considers only atomic transfers of goods and the other that considers exchange cycles.

Alternating the phases results in an algorithm that is less susceptible to getting trapped
in a local minimum than a single phase algorithm, while maintaining the anytime property
of a hill climbing algorithm. The first phase uses one-transfer steps, in which at each step of
the algorithm exactly one good is transferred from one agent to another. The second phase
uses a distributed extension of the envy cycle elimination. The empirical study in Sect. 5.3
demonstrates that the two-phase algorithm outperforms a single phase algorithm in terms of
envy minimization.

While complete search algorithm cannot find an optimal solution in large scale problems,
several DCOP studies demonstrated the use of complete search on a derived partial problem,
as an approximate method with error bound guarantees on the original problem [28,30,36].
In DEMP this approach may be perused by discarding the interest of agents in resources
with low evaluation, or by enabling some resources to be allocated to more then one agent.
However this is outside of the scope of this paper, and is left for future work.

There is a clear motivation for efficient allocations in multi-agent resource and task alloca-
tion and in addition Pareto optimality affects the stability of the allocation.Due to the hardness
of the problemof finding a Pareto optimal allocationwithminimal envy, the present paper pro-
poses a method that combines efficiency with fairness by searching for a Pareto optimal allo-
cationwith a low level of envy. In the context of resource allocation problems, a Pareto optimal
solution is particularly desirable since it presents a stable solution , i.e., no subset of agents
would want to collude and perform transfers that benefit all of them. The proposed algorithm
finds an envy-free Pareto optimal divisible allocation using a Fisher’s market equilibrium
and transfers it into an indivisible allocation of goods while maintaining the Pareto optimal
characteristic of the allocation and a low global envy measure. Three polynomial complexity
heuristics are presented for transferring the divisible Fisher’s market equilibrium allocation
into an indivisible one. The three heuristics are evaluated and are shown to offer a trade-off
between their polynomial complexity and the amount of envy in the resulting allocation.
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