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ABSTRACT
Recent studies have investigated how a team of mobile sen-
sors can cope with real world constraints, such as uncer-
tainty in the reward functions, dynamically appearing and
disappearing targets, technology failures end changes in the
environment conditions.

In this study we consider an additional element, deception
by an adversary, which is relevant in many (military) appli-
cations. The adversary is expected to use deception to pre-
vent the sensor team from performing its tasks. We employ a
game theoretic model to analyze the expected strategy of the
adversary and find the best response. More specifically we
consider that the adversary deceptively changes the impor-
tance that agents give to targets in the area. The opponent
is expected to use camouflage in order to create confusion
among the sensors regarding the importance of targets, and
reduce the team’s efficiency in target coverage. We repre-
sent a Mobile Sensor Team problem using the Distributed
Constraint Optimization Problem (DCOP) framework. We
propose an optimal method for the selection of a position
of a single agent facing a deceptive adversary. This method
serves as a heuristic for agents to select their position in
a full scale problem with multiple agents in a large area.
Our empirical study demonstrates the success of our model
as compared with existing models in the presence of decep-
tions.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multi-agent systems

General Terms
Algorithms
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Deception, Sensor Network, Game Theory

1. INTRODUCTION
Recent studies have investigated how a team (or a net-

work) of mobile sensing agents can cope with various real-
istic elements of real world situations. One study [3] has
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considered uncertainty in the reward functions of agents for
different alternative combinations of positions. Jain et. al.
propose different ways to balance between the exploitation
of the information agents acquire during search and the po-
tential of exploring positions which were not visited yet. An-
other study [13], considered the different dynamic elements
of such a problem including new targets, disappearing tar-
gets, technology failures of sensors and environment condi-
tions which may reduce the quality of agent’s reports. [13]
proposed a model which captures these dynamic changes in
the application and distributed algorithms for dynamic ad-
justment of the agents’ deployment to the evolving state of
the problem.

While some of the relevant applications in which mobile
sensor networks (MSN) are expected to be used, as the Res-
cue scenario [6] or Maximizing Radio Signal [3], are “peace-
ful” applications in which agents are combating the forces
of nature in order to solve the problem, other (military) ap-
plications include an adversary which is expected to make
attempts to prevent the team from performing their task.
For such applications a game theoretic model is appropriate,
which can analyze the expected actions of the adversary and
find the best response to it.

We consider a MSN that needs to “cover” targets, i.e. to
allocate groups of sensors to monitor targets. Sensors are
allocated as a function of a target’s importance with more
important targets getting higher value/number of sensors.
In addition, we address the possibility of an adversary to
use means for deception that will affect the importance that
agents give to targets. Opponents in a military applica-
tion are expected to use camouflage in order to decrease the
importance that the MSN will give targets of high impor-
tance and on the other hand attempt to make insignificant
targets appear to be of high importance. Such deception
would cause the MSN to select a deployment in which pre-
cious resources are used for the surveillance of insignificant
targets while the targets of high importance are not covered
properly.

Following [13], our approach consists in finding an optimal
strategy for the selection of a position of a single agent, and
empirically test the success of this optimal strategy when
used by agents in a team of agents with a common goal.

The proposed optimal strategy for a single agent considers
multiple targets with various degrees of importance to which
an adversary can increase or decrease the reflected impor-
tance. This effect on the reflected importance is bounded.
This bound represents the limitations of camouflage for re-
alistic targets (i.e., it is not realistic to consider that a large
army base is disguised as a bush or a single car as a brigade).

We applied our local optimal method to problems with



multiple agents in which agents have mobility and sens-
ing limitations. In the distributed (local search) algorithm,
agents share their positions with their neighbors and select
their position using an algorithm based on the locally opti-
mal method.

Our empirical study evaluates the success of both the sin-
gle agent method and the local search algorithm for the
agent team. In the case of the single agent problem, our pro-
posed method is optimal in the worst scenario case, however,
if the adversary is very limited or does not use its deception
capabilities, a näıve method can produce high quality re-
sults. The same phenomenon was consistently found for the
agent team. An experimental comparison of the proposed
local search algorithm compared to a näıve local search al-
gorithm, DSA reveals that the success of the proposed local
search algorithm is more apparent when the bounds on the
deception capabilities of the adversary are less tight.

The rest of this paper is organized as follows: Section 2
presents related work on deceptions in multi-agent applica-
tions. In Section 3 we introduce deceptions into the standard
DCOP MST model. Section 4 presents the optimal method
for selecting the position of a single agent. Section 5 presents
how the proposed method for a single agent is integrated in
full case scenario. Our experimental evaluation is presented
in Section 6 followed by our conclusions.

2. RELATED WORK
Deception has been studied in a limited way in the multi-

agent literature. The work that is most similar to the pre-
sented research is [2]. The authors investigate deception in
a simple two-player zero-sum game. One of the players is
the attacker that decides to attack one of two targets. The
defender can distribute 3 units to defend the targets. The
more units are defending the attacked target, the lower is
the reward for the attacker. Each of the defending units
can be observed with one of two probabilities. The lower is
the natural chance to observe the unit and the higher corre-
sponds to the defender intentionally showing the defending
unit in order to deceive the attacker. The authors analyze
the optimal strategies for a player that by manipulating the
information revealed to her opponent, she is rendering the
observations of units useless. We perform a similar anal-
ysis for the case of mobile sensors, which requires a novel
approach and optimizations.

Deception in the form of lowering the utility of the avail-
able information is investigated also in [8]. The task there
is to plan paths for a team of UAVs, which inspect a given
path to be used later by a convoy of ground vehicles, in such
a way as to give an adversary that would want to ambush
the convoy as little information as possible. Besides flying
over the desired path, the UAVs would randomly fly over
the other paths to deceive the observer.

Other analysis of deception in multi-agent systems include
the control mechanism for a team of UAVs creating a single
“phantom” aircraft by their movements [11] and the study
[7] that suggests using software decoys in network security.
These decoys should deceive the attacker to think the attack
was successful, make him continue and allow assessing the
nature of its attack.

Deception was studied formally also in the field of game
theory. A formal deception game was first formulated as
an open problem in [10]. One player is given a vector of
three random numbers from uniform distribution on [0,1].
It changes one of the numbers to an arbitrary number from
[0,1] and presents the modified vector to the second player.

The second player chooses one position in the vector and
receives as its reward the number that was originally on that
position. The open question stated in the paper is whether
there is a better strategy than randomly choosing one of the
positions.

The game was solved in [4], showing that for the case of
3 numbers, the information provided to second player can
be made completely useless, but in case of 4 numbers and
changing only one of them, the expected gain of the optimal
strategy of the second player is more than the mean value
guaranteed by random choice.

A generalized form of the game is solved in [1]. The game
is played with vector of arbitrary length (n). The first player
is allowed to permute the vector in a way that only up to
m numbers change their positions. The second player then
selects the position and obtains the reward corresponding
to the number at the position in the original vector. The
paper shows that if the first player is allowed to change at
least half of the positions, the resulting vector would not
contain any information useful for selecting a high number
by player two.

The model presented in this paper differs from the pre-
vious models by allowing the first player to modify each of
the numbers, but only by a given amount. This assumption
leads to novel method for creating the selection strategy that
is not based on the results from the papers above.

3. PROBLEM DEFINITION
Our problem definition is as in [13] with addition of pos-

sible deception. The task is placing a network of mobile
sensing agents to suitable positions, so that they meet the
specified requirements for surveillance of individual targets,
i.e. points in space. The problem is set to a discretized met-
ric space with a finite set of positions. A network of finite
number of agents A1, . . . , An operates in the space. Each
of the agents (Ai) is placed in some position cur posi and
it is characterized by three parameters. The sensing range
(SRi) is the effective coverage range of the agent, i.e., agent
Ai can detect and cover all the targets that are within its
sensing range from cur posi. The mobility range (MRi) is
the range that an agent can move in a single time step. And
the credibility Credi is a real positive number representing
the quality of the sensor.

We further define an environmental requirement function
ER, i.e. importance of covering a position. This function
expresses for each point in the area, the required joint credi-
bility amount (the sum of the credibility variables) of agents
that have this point within their sensing range (i.e. covered).
Function Cur DIFF calculates for each point in the area
the difference between the current value of the ER function
and the sum of the credibilities of the agents which are cur-
rently covering it. Formally, if we denote the set of agents
within their sensing ranges from point p by SRp then:

Cur DIFF (p) = ER(p)−
∑

Ai∈SRp

Credi (1)

The global goal of the agents is to cover all the targets ac-
cording to ER (i.e. to reduce the largest value of Cur DIFF
to zero) in a pre-defined number of time steps. Since this
goal cannot always be achieved, we define a more general
goal which is to minimize the largest value of the Cur DIFF
function over all targets in the area.

In addition to these original problem properties, we define
the properties relevant for the deception. We assume that
the adversary with limited capabilities has used means of



deception to make the environmental requirements appear
to be v(p) for each position p. The sensors do not have the
knowledge about the real importance of the target (ER(p)),
but only about the apparent importance v(p). Moreover, the
sensors have some information about the adversary capabil-
ities, options and effort put into deception. This knowledge
is represented by a pair of functions ∆+ and ∆−. These
functions relate the real requirements to the apparent ones
for the individual points in space. For each point in space,
the unknown real importance of the target (ER(p)) can be
any number between v(p) − ∆+(p) and v(p) + ∆−(p), i.e.
∆+ and ∆− are the maximal increment and decrease, re-
spectively, that the adversary can cause to any target.

The goal of the sensors remain to cover the real require-
ments given by ER(p) for the individual positions.

4. FORMAL DECEPTION GAME
This section presents one of the most important contri-

butions of the paper. It shows the derivation of the sensor
placement method that is robust to deception. It is a prob-
abilistic method that allows choosing the targets with high
importance while keeping the right amount of randomization
to prevent the adversary to mislead via deception.

4.1 Formal Game Definition
We define the problem being solved in this section as a

game between a single sensor and an adversary that uses
deception (such as decoys or camouflage) to make the sensor
less efficient. The adversary starts with n targets of various
positive importance values (y1, . . . , yn). It can use deception
in order to generate a perceived importance of each target
(v1, . . . , vn), but the types of the targets and the effort he
can spend on the camouflage for each of the targets does not
allow him to modify the importance of the target arbitrarily.
The perceived importance for each target is bounded to an
interval:

vi ∈ [yi −∆−i , yi + ∆+
i ]

where ∆+
i as well as ∆−i are non-negative real numbers and

yi − ∆−i ≥ 0 for each target i. The sensor can perceive
the modified importance values and we assume it knows the
boundaries ∆+

i ,∆
−
i . Based on this information, it decides

to cover a single target, trying to maximize its perception of
the target’s real importance. We represent the strategy of
the sensor as a probability distribution of covering individual
targets (x1, . . . , xn).

The goal of this paper is to create a sensor placement
method that would be robust against deception, so we per-
form analysis of the worst case scenario. The natural for-
malization of the problem would then be maximizing the
expected value of the covered target in case of the worst
case ~y that is consistent with the observations ~v.

max
~x

min
~y

n∑
i=1

xiyi

However, this optimization is trivial. For any fixed ~x, the
worst case corresponds to setting all yi = vi −∆−i . It says
that the sensor covers less important targets in case that all
the targets are generally less important. It constitutes the
worst case in problem instance rather than some smart infor-
mation manipulation by the adversary. In order to focus on
adversary deceptive strategies, we use a simple observation.

If we assume that the sensor player is rational (makes
optimal decisions), it should be able to figure out when the

information provided by the adversary is useless and hence
it should always reach at least the payoff of random strategy
corresponding to uniform probability distribution over the
targets.

1

n

n∑
i=1

yi

We can reformulate the objectives of the players relative to
this assured value. The sensor player tries to gain more than
what is provided by the random strategy and the adversary
uses deception to make the information useless and force the
opponent to play the random strategy. Formally, the task
that the sensor solves is

max~x min~y

∑n
i=1 xiyi

1
n

∑n
j=1 yj

s.t.

~0 ≤ ~x ≤ ~1∑n
i=1 xi = 1

~v − ~∆+ ≤ ~y ≤ ~v + ~∆−

(2)

This problem formulation still requires finding the strategy
that assures the highest expected coverage, but it removes
the trivial cases that prevent more interesting solutions of
the game.

4.2 Worst Case for Fixed Sensor Strategy
In this subsection, we show what is the worst case ~y for

any fixed ~x.

Lemma 4.1. The function f(~x, ~y) =
∑n

i=1 xiyi
1
n

∑n
j=1 yj

is mono-

tonic in any yc if all other yi and xi are fixed.

Proof. For arbitrary c ∈ 1..n, we compute the sign of
the partial derivative with respect to yc. The constant in
the denominator can be omitted.

sgn

(
∂

∂yc

(∑n
i=1 xiyi∑n
j=1 yj

))
=

sgn

xc

∑n
j=1 yj −

(∑n
i=1 xiyi

)
1(∑n

j=1 yj
)2

 =

sgn

(
n∑

i=1

(xc − xi)yi

)
(3)

In case of i = c the term (xc−xi) = 0 and it makes formula
(3) independent of the value of yc. The sign of the derivative
is constant in yc, hence the function is monotonic in yc.

An immediate corollary of the fact above is that in finding
the worst case ~y, we need to consider only the vectors with
all their coordinates set to the extreme values.

Corollary 4.2. For all the coordinates in the worst case
~y, yi = vi − ∆+

i , yi = vi + ∆−i or the coordinate does not
influence the optimized value.

Proof. Let ~y be the worst case for a fixed ~x and con-
sider an arbitrary coordinate yi. Lemma 4.1 says that the
sign of the derivative of f according to yi is constant. If it
is (constantly) zero, the optimized value does not depend
on the value assigned to yi. Otherwise f is either strictly
increasing or strictly decreasing in yi. If the sign of the
derivative is (constantly) +1, any yi > vi −∆+

i can be de-
creased to yi = vi −∆+

i decreasing the optimized function.
If it is (constantly) −1, any yi < vi + ∆−i can be increased
to yi = vi + ∆−i decreasing the optimized function.



Lemma 4.3. For any fixed ~x, there exists a coordinate
c ∈ 1 . . . n, such that the worst case ~y can be constructed

as
if xi ≥ xc then yi = vi −∆+

i

else yi = vi + ∆−i

Proof. The proof is by induction on the number of unset
coordinates. First we show that we can always set some
coordinates of ~y in the global optimum at the beginning.
Then we show that after setting any number of coordinates,
we can find one more that can be set in the global optimum.

I) Assume the coordinates

b = arg min
i∈1..n

xi, t = arg max
i∈1..n

xi

Then for any i ∈ 1..n holds

((xb − xi)yi) ≤ 0, ((xt − xi)yi) ≥ 0

As a result, for the sign of the partial derivative in formula
(3) the following holds:

sgn

(
n∑

i=1

(xb − xi)yi

)
≤ 0, sgn

(
n∑

i=1

(xt − xi)yi

)
≥ 0

for all possible values of other xi and yi. That means that
in the globally optimal ~y, we can set

yb = vb + ∆−b , yt = vt −∆+
t

II) Assume that some of the values yi are already set.
Without loss of generality rename the coordinates so that
the set coordinates are 1, . . . , k. Then

Sc = sgn


k∑

i=1

(xc − xi)yi︸ ︷︷ ︸
Ac

+

n∑
i=k+1

(xc − xi)yi


and the term Ac is a fixed constant for each c. Using the
same argument as in part I)

(a) if ct = arg maxi∈k+1..n xi & Act ≥ 0 then Sct ≥ 0 for
all xi, yi and we can set yct = vct −∆+

ct

(b) if cb = arg mini∈k+1..n xi & Acb ≤ 0 then Scb ≤ 0 for
all xi, yi and we can set ycb = vcb + ∆−cb

In order to finish the proof, we have to show that at least one
of the conditions in (a),(b) always holds. Clearly xct ≥ xcb .
Assume that (b) does not hold

Acb > 0⇔
k∑

i=1

(xcb − xi)yi > 0
xct≥xcb=====⇒

k∑
i=1

(xct − xi)yi > 0⇔ Act > 0⇒ (a) holds

The induction always sets the yi for the unset target with
minimal xi to vi + ∆−i or the yi corresponding to the unset
target with maximal xi to vi − ∆+

i . As a result, if all of
the coordinates are set, the last set coordinates define the
xc from the proposition.

4.3 Optimal Strategy for the Sensor
In this section, we show how the optimal solution for the

sensor in the deception game can be computed by a linear
program. The linear program is based on the standard trick
often used in game theory. The max-min optimization from

formula (2) can be rewritten to max optimization for the
price of defining additional constraints (e.g. [9]). A con-
straint must be added for each strategy ~y that can possibly
be the worst case for a valid strategy of the maximizing
player (~x). Corollary 4.2 assures that we need to add just a
finite number of constraints.

Corollary 4.4. If we denote the set of all targets T , the
optimal strategy for the sensor in the deception game can be
computed by the linear program

max~x,z z s.t.
~1 ≥ ~x ≥ ~0∑n

i=1 xi = 1

∀A ⊆ T
∑

i∈A xi(vi−∆+
i )+

∑
i∈(T\A) xi(vi+∆−i )∑

i∈A(vi−∆+
i )+

∑
i∈(T\A)(vi+∆−i )

≥ z

(4)

If we use this basic program, the number of constraints
is exponential in the number of targets. The rest of this
section shows, how the number of constraints can be fur-
ther reduced. First, we need to define the notion of partial
ordering of the targets and present a technical lemma.

Definition 4.5. We define the relation ti�tj on the tar-
gets that have both the upper and lower bounds of their in-
tervals ordered.

(vi −∆+
i ) ≥ (vj −∆+

j ) & (vi + ∆−i ) ≥ (vj + ∆−j )

Note, that this relation is transitive, because of the transi-
tivity of the ordering of the bounds.

Lemma 4.6. If tk � tl then there is an optimal strategy
for the sensor for which xk ≥ xl.

Proof. Remember that the worst case for any sensor
strategy is modifying the importance of the targets to the
bound of the interval. If both of the inequalities in defini-
tion of � hold as equalities, the ordering of the probability
of covering them (xk, xl) cannot make difference for any of
the players.

Next we assume both inequalities defining tk�tl are strict.
We consider a modified game, where the players are pre-
sented the real importance of the targets and they simulta-
neously decide on which target to cover on the sensor side
and how to modify the real importance of the targets on
the adversary side. The optimal strategy for the sensor in
this game corresponds to the deception-robust play in the
original game. The max-min oprimization for both games is
formula (2). The game is a two player zero-sum game with
finite number of strategies on each side and hence it has a
Nash equilibrium (~x, ~y) with a unique value (e.g. [9]).

With coordinates renamed such that ∀i ∈ 2..n xi−1 ≥ xi,
Lemma 4.3 says that there is a coordinate c, such that ~x
optimizes

n∑n
j=1 yj

(
c−1∑
i=1

xi(vi −∆+
i ) +

n∑
i=c

xi(vi + ∆−i )

)
We show that if xk < xl then swapping values of xk and

xl improves the strategy of the sensor player for the fixed ~y
which would be a contradiction with (~x, ~y) being the Nash
equilibrium. The fixed strategy of the adversary implies that
the denominator of the optimized function stays the same.



For l < c ≤ k the strategy is improved if

xl(vl −∆+
l ) + xk(vk + ∆−k ) < xk(vl −∆+

l ) + xl(vk + ∆−k )
(xl − xk)(vl −∆+

l ) + (xk − xl)(vk + ∆−k ) < 0
(xl − xk)︸ ︷︷ ︸

>0

[
(vl −∆+

l )− (vk + ∆−k )
]
< 0

(vl −∆+
l ) < (vk + ∆−k )

The last inequality holds from tk � tl, because

(vl −∆+
l ) ≤ (vl + ∆−l ) < (vk + ∆+

k )

For l < k < c the strategy is improved if

xl(vl −∆+
l ) + xk(vk −∆+

k ) < xk(vl −∆+
l ) + xl(vk −∆+

k )
(vl −∆+

l ) < (vk −∆+
k )

For c ≤ l < k the strategy is improved if

xl(vl + ∆−l ) + xk(vk + ∆−k ) < xk(vl + ∆−l ) + xl(vk + ∆−k )
(vl + ∆+

k ) < (vk + ∆−l )

All the final inequalities trivially hold from tk � tl.
The last two cases to finish the proof are if just one of

the inequalities holds strictly. If (vk − ∆+
k ) = (vl − ∆+

l )

and (vk + ∆−k ) > (vl + ∆−l ) then for cases besides l < k <
c the argument about improving the value for the sensor
player above holds. In this case, the pay-off of the sensor
player does not change, but we show that if the sensor player
switches the probabilities of covering targets tk and tl, the
adversary does not have an incentive to deviate from its
original strategy. This means that the original strategy of
the adversary and the modified strategy of the sensors form
a Nash equilibrium.

Remember the construction of the worst response of the
adversary in the proof of Lemma 4.3. If the adversary mod-
ifies the real importance of the targets one by one, it arrives
first to xl as before. All the targets that are camouflaged so
far are set on the same values as for the unmodified sensor
strategy. The direction in which the target tk will be cam-
ouflaged does not depend on the bounds on yk. It depends
only on xl and the already camouflaged targets. As a result
the target tk, currently corresponding to the value xl will be
camouflaged in the same direction as tl before, setting it to
the same value. If construction of the optimal strategy for
the adversary continues and encounters xk, all the data used
to compute the direction of deceptively altering the target
tl are the same as with the original sensor strategy and it is
altered to the same value as tk before. That is why the worst
response to the modified sensor strategy is the same as to
the original sensor strategy. The proof of the last case where
the second condition holds as equality is symmetric.

Using the previous lemma, we can reduce the number of
constraints needed in the linear program (4).

Theorem 4.7. The optimal solution for the sensor player
can be computed by the linear program

max~x,z z s.t.
~1 ≥ ~x ≥ ~0∑n

i=1 xi = 1
∀ti � tj , 6 ∃tk ti � tk � tj
xi ≥ xj

∀A ∈ T : 6 ∃i ∈ A, j ∈ (T \A)tj � ti∑
i∈A xi(vi−∆)+

∑
i∈(T\A) xi(vi+∆)∑

i∈A(vi−∆)+
∑

i∈(T\A)(vi+∆)
≥ z

(5)

Proof. From Lemma 4.6, we know that introducing the
constraints on the ordering of xi will not prevent us from
finding the optimal solution. The linear program finds the
correct solution, if for any strategy ~x that respects the or-
dering, a constraint representing the worst response to the
strategy is present. From Lemma 4.3, we do not have to
consider that the adversary decreases the importance of a
target that is covered with higher probability than another
target for which it increased the importance.

Now consider a basic setting, in which a single sensor can
cover one of n targets and the sensor knows that the impor-
tance of each of the targets could have been modified by a
fixed ∆ up or down. Even if the resulting apparent impor-
tance is bounded to a predefined interval [0,MAX IMP], the
relation � creates a full ordering. It is the same ordering as
the ordering of the apparent importance. For this kind of
settings, the linear program computing the strategy for the
sensor has only small number of constraints that is linear in
the number of targets.

Corollary 4.8. If the ordering induced by the relation
� is full and if we rename the targets so that

∀i ∈ 2..n ti−1 � ti

then the optimal strategy for the sensor can be computed by
the linear program

max~x,z z s.t.

∀j
∑j

i=1 xi(vi−∆+
i )+

∑n
i=j+1 xi(vi+∆−i )∑j

i=1(vi−∆+
i )+

∑n
i=j+1(vi+∆−i )

≥ z

~1 ≥ ~x ≥ ~0
∀i ∈ 2..n xi−1 ≥ xi∑n

i=1 xi = 1

(6)

5. SENSOR NETWORK ALGORITHM
In this section, we present how finding the solution for

the formal deception game described in the previous section
can be used to create a successful deception-robust heuristic
algorithm for the whole network. The first step of the gener-
alization is constructing a local strategy for single agent with
specified sensor and mobility ranges. This strategy can then
be used as the local method for solving the whole problem
in the DCOP framework via local search.

5.1 Sensors with Mobility and Sensing Range
The formal analysis in the previous section gives us a solu-

tion in case of covering just one target, i.e. the sensing range
of the sensor is very small. It also assumes that the mobility
restrictions of the sensors allow covering any of the targets
considered. In order to loosen these restrictions, we design
the local algorithm that choses the best position among all
the positions in the mobility range of a single sensor. Con-
sidering the main criterion of minimizing the remaining im-
portance of the most important uncovered target (see Sec-
tion 3), the best position should cover the most important
target and if the sensing range allows it, also the second,
third and next most important targets. The local algorithm
that does not take deception into account is described in
[13]. Figure 1 presents its deception-aware variant. Each
agent calls the described function with all targets and all
positions in its sensor range.

The algorithm incrementally constructs the set of most
important targets that is eventually covered by the sensor.
The main issue is that with deception, we often cannot be
sure which target is the most important. That is why the



Require: posSet: available positions for the sensor,
targets: targets to consider, ∆: assumed capabilities
of the adversary

Ensure: position where to move the sensor
1: close := {t ∈ targets : ∃p ∈ posSet dist(p, t) < SR}
2: if close is empty then
3: return Any pos ∈ posSet
4: else if ||close|| = 1 then
5: top :=the only element of close
6: else
7: top := deceptionAwareMax(close,∆)
8: end if
9: posSet := {p ∈ posSet : dist(p, top) < SR}

10: return selectPosDA(posSet, close \ top,∆)

Figure 1: selectPosDA(posSet, targets,∆) – local
deception-aware procedure for selecting the best po-
sition for placing single sensor covering targets in
circular sensing range (SR).

selection of the most important target from the remaining
options (line 7) is performed by the deception-aware method
developed in Section 4 as the procedure deceptionAwareMax.
This procedure returns a single target that is selected ac-
cording to the probability distribution resulting from the
linear program in Theorem 4.7.

5.2 Multiple Coordinated Sensors
The generalization to the case of multiple coordinated sen-

sors is performed using the DCOP MST model introduced
in [13]. This model, with some small adjustments, can be
solved by standard DCOP local algorithms and the results in
[13] show that a simple hill-climbing algorithm as MGM [5]
or DSA [12] can be efficient in solving this problem without
considering deception

The algorithm which we have chosen to incorporate our
method within is the DSA algorithm. In DSA, agents share
with their neighbors only their current assignments (posi-
tion in our case). In each iteration of the algorithm, an
agent finds the best alternative for her current assignment
according to the assignments it received from her neigh-
bors. It replaces her assignment by the alternative with
a pre-defined probability p or retains her original assign-
ment. In the MGM algorithm, agents share besides their
assignments, the maximal improvement (reduction) in cost
they can achieve by replacing their assignment. DSA was
favored over the variants of the MGM since MGM requires
that agents are able to exactly quantify the quality of this
proposed local reductions, i.e. quantify the difference be-
tween the coverage of the importance in the current and the
alternative positions. Using the deception aware algorithm,
many local reductions have uncomparable quality. It is of-
ten not possible to say that one position is strictly better
then another. The benefit of using the proposed algorithm
demonstrates only statistically, if the agents follow the prob-
ability distribution given by the method.

If the apparent importance of the most important target
covered form the alternative position reduced to the lower
bound of the interval of its possible real importances is lower
then then the apparent importance of the most important
target covered from the current position increased to the
upper bound of the interval of its possible real importances
then the alternative position clearly dominates the current
one. However if this does not hold, any ordering of the real
importance of the positions is possible.

In order to allow similar grounds for the deception-aware
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Figure 2: The importance of the target covered by
the proposed and two baseline algorithms in formal
deception game scenario. The adversary uses its ca-
pabilities optimally against the näıve approach.

and the näıve (deception ignoring) algorithm, we use a vari-
ant of DSA proposed by [12], that allows the sensors in
the deception aware as well as deception ignoring variant
to move not only in cases of positive local reduction, but
also if the best new position is not worse than the current
one. If we disallowed moving to the uncomparable states,
the deception-aware algorithm would have very restricted
exploration capablities.

6. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the derived

solution of the formal deception game as well as the per-
formance of the proposed heuristic algorithm based on this
method (presented in Figure 1).

6.1 Formal Deception Game
The first experiment we present validates the strategy for-

mally derived in Section 4. The sensor has to choose to cover
one of five targets with importance uniformly randomly se-
lected from the interval [0,29]. The graph in Figure 2 shows
the mean importance of the covered target from 1000 runs
of the experiment and three target selection strategies. The
horizontal axes of the graph represent the capability of the
adversary (∆), that is the same for all the targets and posi-
tive as well as negative modification of the importance.

∀i, j∆+
i = ∆−i = ∆+

j = ∆

In this case, the algorithm that the adversary uses to deceive
the sensor is (a) finding the least important target t that
can be camouflaged to be the most important one, i.e. such
target that the importance of the most important target
lowered by ∆ is smaller than the importance of the target
increased by ∆. (b) Increasing the importance of target
t as well as all the targets with smaller importance by ∆
and decreasing the importance of all targets that are more
importance than t by ∆. This way, target t appears to be
the most important target after the camouflage. The higher
is the capability of the adversary, the higher is the chance
that a target with low importance will appear to be the most
important target.

Figure 2 shows the results for three target selection strate-
gies. The näıve algorithm (denoted as Max) does not assume
deception and selects the target that appears to be the most
important. The real importance of the target chosen by this
algorithm decreases with increasing capability of the adver-
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Figure 3: (a) The importance of the target covered by the proposed and two baseline algorithms on formal
deception game scenario. The adversary uses sub-optimal heuristics. (b) The price of paranoia for the
proposed algorithm on formal deception game scenario. (c) The quality of DSA algorithm on the multi-agent
scenario with the proposed deception-aware and the apparent importance maximizing local method.

sary. If the adversary is able to modify the importance by
more than half of the maximal importance of the targets, it
can make the least important target appear to be the most
important and as a result, the näıve algorithm selects the
least important target.

The second algorithm is called Random in the figure. It
completely ignores any information about the importance
of the targets and selects one of them randomly. This leads
to constant performance, corresponding to the mean real
importance of the targets, independent on the adversary ca-
pabilities.

The third algorithm is the Proposed algorithm, selecting
the target according to the distribution resulting from the
linear program in Corollary 4.8, which is sifficient for this
setting. In case the adversary is using its capabilities in the
optimal way, the performance of the proposed algorithm is
never worse than the performance of the Max algorithm nor
the blind Random algorithm. This shows that the algorithm
is capable of using the information that is still left in the im-
portance value due to limited capabilities of the adversary,
but it is robust against deception and if no useful informa-
tion is present anymore, it chooses the target randomly.

6.1.1 Sub-optimal Adversary
The proposed algorithm was developed as a response to

the worst possible real importance of the targets that is con-
sistent with the observation. If the adversary does not use its
capability optimally, additional information is left in the ap-
parent importance and the proposed algorithm can perform
worse than Max. This situation is shown in Figure 3(a). The
setting is the same as in the previous case, but the adver-
sary is using a simpler strategy. It (a) computes the mean
importance of the targets in the current scenario and (b)
increases the importance of all the targets with importance
lower than the mean by ∆ while increasing the importance
of all the remaining targets by ∆.

This strategy of the adversary is far from the optimal
strategy and it makes the proposed algorithm too conserva-
tive, randomizing even for the cases that still contain enough
information about the real importance of the targets. How-
ever, even for this sub-optimal adversary, the proposed algo-
rithm outperforms Max algorithm if the adversary is able to
modify the importance more than one third of the maximal
possible importance.

6.1.2 Price of Paranoia
We show above that the proposed method can be outper-

formed if the opponent does not use its capabilities opti-
mally. Now we examine the decrease in the quality of the
solution in case that no adversary is trying to deceive the
sensor, but the sensor expects otherwise. We call the func-
tion, mapping the expected adversary capability to the de-
crease of the quality of produced solution (compared to the
optimal solution without deception), the price of paranoia.
For our scenario, the price of paranoia can be seen on Fig-
ure 3(b). The optimal solution without any deception is
the Max algorithm producing the straight line in the figure.
With increasing paranoia (i.e. the false belief about the ad-
versary activity), the performance of the proposed algorithm
gradually decreases to the mean real importance.

6.2 Full Scale Scenario
We continue by showing that the presented deception aware

method can be successfully used as the method executed by
each agent in the decentralized local search algorithm for
solving the sensor placement problem defined in Section 3.
We evaluate it on a grid of 50x50 positions with ten tar-
gets with random importance selected from interval [0,99]
with uniform probability. The adversary uses a sophisticated
heuristic method to camouflage the targets. The method is
based on repeated selecting of a group of targets close to a
very important target and making it look more important
than the target. This group is selected as the least important
group that can be camouflaged to be more important than
the selected target and at the same time, the group cannot
be covered together with the very important target. While
making the camouflage, the adversary does not necessarily
modify the targets as much as possible, only enough to make
them look more important than the target it wants to draw
the sensors’ attention from (the real important target).

Ten identical agents are present in the scenario. The sen-
sor range of all the agents is set to ten, the mobility range
is set to twenty. The credibility of a sensor is thirty. Conse-
quently, at least four sensors are needed to completely cover
a target of full importance.

We use the same assumption on uniform ∆ for simple pre-
sentation. However, partial covering of a target with another
agetn, the full ordering of the target does not have to hold
in some cases and we use the more general version of the
linear program presented in Theorem 4.7.



The proposed algorithm is run against the adversary ca-
pable of modifying the importance of each target by a fixed
∆ up or down as long as the importance stays in the interval
[0,99]. The explored settings of the fixed ∆ range from five
to ninety five. The results of the experiment are presented
in Figure 3(c).

Note that unlike in the previous figures, the vertical axis
shows the maximal uncovered requirement (Curr DIFF )
that is defined as the optimization criterion in the problem
definition in Section 3. Therefore, the lower values are bet-
ter.

The results are similar to the results in the formal de-
ception game with the suboptimal adversary. When the ca-
pabilities of the adversary are low, and it uses them in a
sub-optimal heuristic way, the random exploration method
of DSA being deception ignorant and maximizing the appar-
ent importance, outperforms the proposed algorithm. How-
ever, with higher capabilities of the adversary, the proposed
method is clearly superior.

7. CONCLUSION
Realistic military applications of mobile sensing agents

networks, are expected to include adversaries which try to
reduce the network efficiency. Previous attempts to address
the problem of effectively monitoring (covering) an area us-
ing a network of mobile sensing agents did not consider such
an adversary in their model.

In this paper we focused on the ability of an adversary
to use means of deception (i.e. decoys, camouflage) to draw
attention to less important targets and keep the more impor-
tant targets uncovered. The adversary is assumed to be able
to either increment or decrease the perceived importance of
targets by a bounded amount.

For a single agent, we address the problem of covering one
of several targets in a way that optimizes the chance to cover
the most important target. To this end, we define a formal
deception game and using game theoretical techniques, we
derive a strategy that optimizes the position selection of
the sensor in case of the worst possible real importance of
the targets, consistent with the available observation. This
approach results in a method which is robust against any
deception and it never performs worse than a complete ran-
dom selection which ignores all the (possibly misleading)
information observed.

The worst scenario approach might be too careful in cases
the adversary does not use its capabilities optimally. The
success of the proposed method is dependent on the inten-
sity of the deception. If the adversary uses only a very small
part of its deception ability, then ignoring the possibility
of deception can produce the best results. With increasing
amount of ability to modify the reflected importance of tar-
gets, the advantage of the proposed method over the näıve
method becomes apparent.

The formally sound local method is used as the bases of
a deception aware heuristic algorithm for a full scenario in
which a complete network of mobile sensing agents is oper-
ating. When compared with a local distributed algorithm
(DSA) which follows a random exploration approach the
proposed distributed algorithm is beneficial when the ad-
versary has large deception abilities. For the full scenario,
as for the single sensor problem, for small deception capa-
bilities, a näıve approach of selecting positions which enable
the covering of the targets which appear to be most impor-
tant is enough, while with increasing deception capabilities,
the success of the proposed algorithm becomes apparent.

In future work we intend to extend the optimal method for
small groups of k agents and apply them in k−opt algorithms
for the full scenario.
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