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ABSTRACT
Consumers of resources in realistic applications (e.g., web, multi-
media) typically derive diminishing-return utilities from the amount
of resource they receive. A resource provider who is deriving an
equal amount of revenue from each satisfied user (e.g., by online
advertising), can maximize the number of users by identifying a
satisfaction threshold for each user, i.e., the minimal amount of re-
source the user requires in order to use the service (rather than drop
out). A straightforward approach is to ask users to submit their
minimal demands (direct revelation). Unfortunately, self-interested
users may try to manipulate the system by submitting untruthful re-
quirements.

We propose an incentive-compatible mechanism for maximizing
revenue in a resource allocation system where users are ex-ante
symmetric (same amount of revenue for any satisfied user) and have
diminishing-return utility functions. Users are encouraged by the
mechanism to submit their true requirements and the system aims
to satisfy as many users as possible. Unlike previous solutions,
our mechanism does not require monetary payments from users or
downgrading of service.

Our mechanism satisfies the number of users within a constant
factor of the optimum. Our empirical evaluation demonstrates that
in practice, our mechanism can be significantly closer to the opti-
mum than implied by the worst-case analysis.

Our mechanism can be generalized to settings when revenue
from each user can differ. Also, under some assumptions and ad-
justments, our mechanism can be used to allocate resource period-
ically over time.
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1. INTRODUCTION
There are many applications where the satisfaction of users, with

respect to improvements in product quality or product performance,
is not linear but is governed by diminishing returns. In such appli-
cations, there is some threshold value which quantifies the quality
or performance required for the satisfaction of the user: below the
threshold, the user is unsatisfied; however, above the threshold, the
additional satisfaction from a larger quantity or quality of a product
(or resource) grows at a slower and slower rate. This latter property
is often called diminishing returns.
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In order to maximize the number of satisfied users (agents), the
allocator needs to know their satisfaction thresholds. One way to
elicit the satisfaction threshold of agents is to have them submit
their demand when applying for service (direct revelation). How-
ever, in order to increase their own utility, which can be achieved
by receiving a larger amount of resource (even with diminishing
returns, larger amounts of resource give rise to increases in utility),
self-interested agents may try to manipulate the system by submit-
ting untruthful needs (thresholds).

In this paper we describe a method for truthful elicitation of pref-
erences from agents with diminishing-return utility functions in re-
source allocation applications. The contributions of our work are
as follows: First, unlike traditional mechanisms of truthful elicita-
tion (e.g., VCG [2]), we do not require either monetary transfers, or
even conversions of hypothetical payments into degradation of ser-
vice (e.g., [1]), indeed, our assumption that the user utility jumps
from unsatisfied to satisfied makes such conversions impossible.
Second, our method ensures that a large number of agents will be
satisfied. This is true even in cases where the standard VCG mech-
anism would assign allocations which would result in zero utility
for agents (when the demands of agents are tied, but there is in-
sufficient total resource). Third, we prove that the number of user
agents satisfied by our mechanism is within a constant factor of the
optimal allocation method. However, unlike our method, the opti-
mal allocation method does not guarantee truthfulness. Our exper-
imental comparison reveals that in practice, the number of satisfied
agents is close to optimal for various distributions of agents’ needs.
Fourth, our method can be extended and adjusted to systems that in-
clude priorities (some agents are expected to bring higher revenue
to the system and therefore are entitled for larger portions than oth-
ers), and (under some restrictions) in systems where the resource is
allocated periodically over time.

The goals we set for this study were most challenging consider-
ing the impossibility of payments (or payment conversions) which
is one of the foundations of traditional mechanism design. When
payments are part of the mechanism, an agent is indifferent be-
tween winning a resource and paying for it the appropriate amount,
or not winning a resource and not having to pay. In our setup,
agents are not charged anything (or possibly they are charged a flat
subscription fee independently of their demand), and thus we can-
not resolve tied demands by charging some agents and not charging
others. A naive approach either allocates resource to all or none of
the tied users, which can be very inefficient. Our work relies on
the diminishing returns property to remove this inefficiency while
preserving truthfulness.

2. RESOURCE ALLOCATION MECHANISM
Our goal is to allocate an infinitely divisible but bounded re-

source among agents from some set A. We assume that the total
available quantity of resource is Q > 0. The allocation is a vector



q = (qa)a∈A where qa ≥ 0 and
∑

a∈A qa ≤ Q. The utility that
the agent a derives from the quantity q is denoted va(q). We as-
sume that va is non-negative, i.e., va(q) ≥ 0, and non-decreasing
in q. We also assume that each agent has some minimum demand
da which is of value to her and the additional benefit beyond this
amount is only small (the property of diminishing returns). We dis-
cretize demands at the precision ε > 0, i.e., we assume that da is a
positive integer multiple of ε. The agent derives no value for an al-
location smaller than da−ε. Then, within an ε amount, the agent’s
value dramatically increases to some value va(da) > 0. We for-
malize the diminishing returns beyond the demand da using a slope
parameter 0 ≤ λ < 1:

va(y)− va(x)
y − x ≤ λ · va(da)

ε
for y > x ≥ da,

i.e., we assume that beyond da, the utility grows at a rate slower by
a factor of at least λ compared with the initial jump. We say that
the agent a is satisfied if she receives an amount q ≥ da.

2.1 Mechanism
Agents from the set A apply for an allocation. Our mecha-

nism asks agents to submit their demands da. The submission of
the agent a will be referred to as a bid and denoted ba. We as-
sume that the bids {ba} are integer multiples of ε, but possibly
different from the true demands {da}. Our mechanism selects an
allocation q̂ which assigns only three possible values to agents:
q̂a ∈ {0, q̂, q̂ + ε}, for some q̂ ∈ R. The value q̂ is the largest
integer multiple of ε such that all submission ba ≤ q̂ can be sat-
isfied. Specifically, let M(q) denote the set of agents with sub-
mitted demands at most q: M(q) = {a ∈ A : ba ≤ q}, then:
q̂ = max {q ∈ εZ : |M(q)|q ≤ Q}.

All of the bids ba ≤ q̂ receive q̂ amount of the resource. Let
m denote the corresponding number of satisfied submissions, i.e.,
m = |M(q̂)|. We have an excess resource amount of Q − mq̂.
WhenQ−mq̂ ≥ q̂+ ε we distribute the excess among agents with
ba = q̂ + ε as follows. Let k denote the number of submissions
with ba = q̂ + ε, i.e., k =

∣∣{a ∈ A : ba = q̂ + ε}
∣∣. Let

k̂ = min

{⌊
Q−mq̂
q̂ + ε

⌋
,

⌊
k

1 + λ

⌋}
.

We choose a random subset of k̂ agents among k. Thus, each indi-
vidual agent is chosen with probability k̂/k, and each of the cho-
sen agents receives q̂ + ε of the resource. Note that by definition
k̂ ≤

⌊
Q−mq̂
q̂+ε

⌋
and thus we always obtain a valid allocation (we

never redistribute more resource than available after giving q̂ to the
initial m agents). Since each of the k agents is chosen with prob-
ability at most 1/(1 + λ), it can be proved that agents with lower
true demands have no incentive to over-report. This random distri-
bution of excess resource among agents with ba = q̂ + ε ensures
that a constant fraction of agents is satisfied even when their bids
are tied, unlike VCG and other classical solutions.

2.2 Properties
Our mechanism has two key properties. First, it is incentive-

compatible, i.e., agents have no incentives to lie. Second, it satis-
fies the number of agents which is at least 1/(2 + 2λ) fraction of
the optimal allocation. Note that if the truthfulness is not a concern,
the smallest bid first allocation is optimal [3]. The reduction in the
number of satisfied agents compared with the optimum is the price
we pay for incentive compatibility. The guarantee ranges between
25% (for λ = 1) and 50% (for λ = 0). However, since this guaran-
tee is based on the worst-case analysis, in practice the mechanism
can be much closer to the (non-truthful) optimum.

For lack of space we omitted the proofs of incentive-compatibility
and of the approximation bound of the optimum. The empirical
evaluation of performance in a variety of settings was omitted as

Figure 1: The number of satisfied agents for varying amount of
available resource Q.
well. In Figure 1, we present the performance of our mechanism
relative to the optimal allocation for an increasing total amount of
resource Q. The number of agents was 100; their demands were
uniformly random integers between 1 and 20; we used ε = 1 and
assumed λ = 0.5. The graph shows that our mechanism satisfies a
number of agents much closer to the optimum than the loose theo-
retical bound of 33%, which we would obtain for λ = 0.5. Similar
results were obtained for a fixed quantity (Q = 200) and a varying
number of agents from zero to 200.

3. EXTENSIONS
In many resource allocation applications, some users should be

entitled to receive larger proportions of resource than others, i.e.,
some users may have a higher priority [3]. In our settings such
users are expected to bring more revenue to the service provider.
We model the differential entitlement by assigning each agent a a
priority pa ≥ 1, proportional to the expected revenue. Given a set
of submitted demands {ba} and a set of priorities {pa}, we require
that the mechanism satisfies the submitted demand ba only after
satisfying all the submitted demands ba′ with ba′

pa′
< ba

pa
, i.e., re-

source is redistributed in the order of decreasing per-unit revenue
(beginning with the largest per-unit revenue). Our mechanism can
be adjusted to include this form of priorities while preserving truth-
fulness.

Another extension to our mechanism, considers the case when
the resource is allocated to user agents periodically over multiple
rounds. We assume that beside the demand for an amount of re-
source, agents also have a time limit after which they are not will-
ing to wait for the service (as in a real-time allocation system [3]),
agents cannot manipulate their arrival times and their deadlines,
and their utility is constant between the arrival and the deadline.

4. CONCLUSIONS
We propose an incentive-compatible mechanism for resource-

allocation systems in which the system’s expected revenue from
satisfying different agents is equal. It is guaranteed to satisfy a
number of agents within a constant factor of the optimal (but not
necessarily truthful) allocation. Our empirical study demonstrates
that the number of satisfied agents is much closer to the optimum
than our theoretical bound. Our mechanism can be generalized to
systems with priorities and to multi-round allocation.
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