
Explorative Max-sum for Teams of Mobile Sensing Agents

Harel Yedidsion, Roie Zivan
Industrial Engineering and Management department,

Ben Gurion University,
Beer-Sheva, Israel

{yedidsio,zivanr}@bgu.ac.il

Allesandro Farinelli
Computer Science department,

University of Verona,
Verona, Italy

alessandro.farinelli@univr.it

ABSTRACT
Multi-agent applications that include teams of mobile sensing agents
are challenging since they are inherently dynamic and a single move-
ment of a mobile sensor can change the problem that the whole
team is facing. While agents select their positions with respect to
the information available to them in their local environment, by
moving to a different location they can reveal new information,
e.g., targets, which they were not aware of before. Thus, explo-
ration is required for such information to be revealed. A variation
of the DCOP model (DCOP_MST) was previously adjusted to rep-
resent such problems along with local search algorithms that were
enhanced with exploration methods.

In this paper we design an explorative version of Max-sum for
solving DCOP_MST, which is based on an iterative process where,
at each iteration, agents generate and solve a specific problem in-
stance. We demonstrate that this basic algorithm (Max-sum_MST)
converges faster than other standard local search algorithms that
were adjusted to solve DCOP_MSTs, however, its exploitive na-
ture makes it inferior to explorative local search algorithms.

Thus, we designed exploration methods that when combined with
basic Max-sum_MST, significantly outperform the existing explo-
rative local search algorithms. Moreover, the best performing method
we propose also eliminates the exponential time complexity of Max-
sum by bounding the number of agents involved in each constraint.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: [Multi-agent systems]

General Terms
Algorithms, Experimentation

Keywords
DCOP, Incomplete Algorithms, GDL

1. INTRODUCTION
Some of the most challenging applications of multi-agent systems
include teams of mobile sensing agents that are required to acquire
information in a given area. Examples include networks of sensors
that track targets [16] and rescue teams operating in disaster areas
[4]. A crucial, common feature of these applications is that agents

Appears in: Proceedings of the 13th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2014),
Lomuscio, Scerri, Bazzan, Huhns (eds.), May, 5–9, 2014, Paris,
France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

select physical locations to move to, and that this selection affects
their future interactions, e.g., if a mobile sensor decides to sense a
given area, it will then coordinate its actions with nearby sensors,
which it might not have considered (or even met) before.

These types of scenarios have been previously modeled using
the Distributed Constraint Optimization Problem (DCOP) frame-
work by representing mobile sensors as agents that need to select
locations and their tasks/targets as constraints [9]. However, if all
possible future moves of dynamic agents are considered, the prob-
lem becomes dense and hence, finding an optimal solution in rea-
sonable time becomes infeasible. Thus, previous work deals with
the inherent dynamism of such scenarios by suggesting an iterative
process. In each iteration a DCOP instance is built representing the
current situation (e.g., sensor positions) and in which only limited
movements of the agents are considered. Agents run a distributed
algorithm (that might involve several communication cycles) to de-
cide what would be the best next joint move. After they execute the
selected joint move, they build a new DCOP instance considering
their new positions [9]. This approach generates inherent locality
for agents, i.e., in each iteration an agent only considers alternative
positions it can move to (in this iteration) and tasks it can fulfill
(targets it can cover) when located at these positions.

The result of such a design may be that some tasks are not con-
sidered by enough agents, e.g., targets are not within sensing range
from locations that sensors are considering to move to (i.e., not
within the local environment of enough sensors with respect to the
targets’ coverage requirements) and thus, even if the sensors exploit
their local information optimally, the team’s deployment may be of
low quality. In such cases some agents are required to explore for
tasks beyond their local environment. In such a scenario, a move to
what appears to be a low quality position may turn out to be most
effective. Hence, agents may not be aware of the actual reward for
some of their possible moves, (as in [10]).

Recently, Zivan et al. [16] proposed a model and corresponding
local search algorithms for representing and solving such scenar-
ios, particularly focusing on teams of mobile sensing agents that
need to select a deployment for the sensors in order to cover a
partially unknown environment - DCOP_MST. DCOP_MST is an
extension of the DCOP model that allows agents to adjust their
location in order to adapt to dynamically changing environments.
The local distributed search algorithms that were proposed for solv-
ing DCOP_MST, were adjustments of standard local search tech-
niques (such as Maximum Gain Message (MGM) [5] and Dis-
tributed Stochastic Algorithm (DSA) [14]) to the model, enhanced
by specifically designed exploration methods [16].

Nevertheless, prior to this work, only local search algorithms
were proposed for solving DCOP_MST. This is in spite of the
intensive study on incomplete inference algorithms, (e.g., Max-

sum), that were applied to many realistic applications including
mobile sensor networks [9] and teams of rescue agents [7]. In con-
trast to standard local search algorithms, agents in Max-sum do
not propagate assignments but rather calculate utilities (or costs)
for each variable, considering all possible value assignments of
their neighboring agents’ variables. The general structure of the
algorithm is exploitive, i.e., the agents attempt to compute the best
costs/utilities for possible value assignments according to their own
problem data and recent information they received via messages
from their neighbors. However, exploration requires that agents
perform non exploitive actions.

The need for exploration can be reduced by extending the local
environments of the agents and allowing them to consider further
away tasks/targets. However, this would increase the number of
agents that can be assigned to each task. Since the computation
performed by Max-sum is exponential in the number of agents in-
volved in a constraint, constraints that involve many agents (k-ary)
represent a computational bottleneck. While a number of tech-
niques were proposed to reduce such complexity [9, 4], in general
settings, the time required to perform such computation is exponen-
tial in the constraint arity. Thus, an increase in the number of agents
that can be assigned to tasks would prevent the use of Max-sum for
solving such problems.

Taking all the above into consideration, in this work we focus
on adjusting the Max-sum algorithm to the DCOP_MST model by
designing efficient exploration methods that allow agents to select
sub optimal positions and seek for additional targets that are cur-
rently beyond their sensing ranges. In more detail, in this paper
we contribute to the state of the art first by applying the periodic
incremented largest reduction (PILR) approach, which was found
successful for local search algorithms, to Max-sum. In this ap-
proach, periodically (i.e., every k iterations where k is a predefined
number), agents are allowed to select sub optimal positions. As a
result, agents can select locations from which they can be effective
for covering targets beyond their current local environment defined
by their mobility and sensing ranges.

Next, we propose a novel exploration method, specifically de-
signed for Max-sum, based on meta-reasoning: agents select for
each target a subset of the sensors that can be effective for cover-
ing it. The size of the subset is equal to the maximal number of
sensors required for covering the target. This target is ignored in
the process for selecting the locations of other sensors. As a result,
such sensors that were not selected for coverage of targets are free
to explore for new targets.

The proposed function meta reasoning method (FMR) breaks the
relation between the size of the local environment of agents and the
arity of the constraints, i.e., the arity of the constraint is not defined
by the number of sensors that can be within sensing range of a
target t after the next assignment selection (i.e., the “neighbors" of
t) but rather by the required number of sensors for covering t. Thus,
even if we enlarge the local environment of agents and the number
of neighbors of target t grows, the number of neighbors for t in the
reconstructed factor-graph is bounded from above by the number of
sensors required for covering it. Our empirical study reveals that a
greedy heuristic for selecting the subset of the neighboring sensors
for coverage improves the performance of the method further.

We empirically compare the proposed exploration methods and
the adjusted iterative version of standard Max-sum to existing local
search methods for DCOP_MST. Our results demonstrate that stan-
dard Max-sum is superior to standard local search algorithms (in
terms of iterations to reach convergence and solution quality) but it
is outperformed by local search algorithms that include exploration
methods. However, when Max-sum is combined with any of the

exploration methods described, it outperforms the explorative lo-
cal search algorithms, and the combination of Max-sum with func-
tion meta reasoning dominates all other approaches. Moreover, we
demonstrate that an increase in the size of the local environments
of agents does not affect the runtime required for completing an it-
eration for agents performing the FMR method while the runtime
required for agents to complete an iteration in all other methods
based on Max-sum grows exponentially.

The rest of the paper is organized as follows: Section 2 discusses
previous work, while Section 3 describes the DCOP_MST model
and the existing leading solution algorithms. Section 4 presents
the adjustment of Max-sum for solving DCOP_MSTs (i.e., Max-
sum_MST) and Section 5 describes the exploration methods we
propose. Finally, Section 6 describes our experimental study and
Section 7 concludes the paper.

2. RELATED WORK
DCOP is a general model for distributed problem solving that has
been widely used to coordinate the activities of cooperative agents [5,
14, 11, 8]. The DCOP literature offers a rich wealth of solution
techniques, ranging from complete approaches [6], which are guar-
anteed to find the optimal solution, to heuristic methods [14, 15, 8,
12] that do not provide optimality guarantees but can provide high
quality solutions for systems of significant magnitude (in terms of
number of agents and constraint density). Since DCOPs are NP-
hard, heuristics are typically preferred for practical applications
where a solution must be returned within a few seconds.

A number of papers proposed the DCOP model for representing
and solving coordination problems related to sensor networks [1]
and mobile sensor networks [9]. Specifically, Stranders et al. in [9]
focus on a mobile sensor placement problem, where a network of
sensors must cooperatively measure a scalar field (e.g., tempera-
ture) to minimize the measurement uncertainty. The method pro-
posed in that work includes the construction of a DCOP instance
for every selection of a limited path for the sensors to follow and
gather the information required. The Max-sum algorithm is used
for solving the DCOP and coordinating sensors’ movements. Simi-
lar to that work, in order to adjust Max-sum to DCOP_MST we also
build a DCOP instance based on the current sensors’ positions and
use the Max-sum algorithm to solve each instance. However, while
in [9] agents share a model of the environment that provides them
with an estimate of the reward associated to each joint move, in our
scenario agents need to explore their surroundings as information
beyond their local environment might significantly change their re-
ward (e.g., the discovery of a new task). Therefore, we introduce
explicit mechanisms for exploration for the Max-sum algorithm.

The concepts of exploration and exploitation have been investi-
gated, in the DCOP context, by Taylor et al. in [10]. They consider
a specific setting where mobile sensors have knowledge about the
distribution of rewards in the environment, but they do not know
the exact rewards, and they can not perform an exhaustive explo-
ration of all the actions. Consequently, authors propose a series of
approaches to address the trade-off between exploring new (possi-
bly sub-optimal) actions versus exploiting the best actions experi-
enced so far. A crucial difference with respect to our work is that
the topology of the network (and hence the constraint graph of the
DCOP) does not change when agents move, while the dynamism of
the DCOP (and particularly of the constraint graph) is a key com-
ponent for the DCOP_MST model and for the solution techniques
that we propose here.

Finally, regarding the Max-sum algorithm, there is a significant
body of work that focuses on different aspects of the algorithm
such as, convergence guarantees [8, 17], evaluation for realistic

Figure 1: An example of the MST coordination problem.

applications [7] and computational complexity [4, 3]. Our work
contributes to this ongoing effort by extending the applicability of
Max-sum to teams of mobile sensing agents, by providing explo-
ration mechanisms.

3. BACKGROUND
In this section we provide the necessary background on 1) coordi-
nation for mobile sensor teams. 2) the DCOP_MST model and the
associated solution techniques.

3.1 Mobile Sensor Teams
In a mobile sensor team, agents A = {A1, A2, . . . , An} are phys-
ically situated in the environment, which is modelled as a metric
space with a distance function d. We assume that the locations that
can be occupied by agents are a set of discrete points that form a
subset of the total environment, and the current position of agent
Ai is denoted by cur_posi. Moreover, time is discretised into an
undeterminate series of time-steps, and the maximum distance that
Ai can travel in a single time step is defined by its mobility range
MRi. Figure 1 illustrates the relevant aspects of the model for an
exemplar situation, agents are depicted by small robots, and the
possible locations are shown by “X”s. The dashed, outer circles
centered on the agents represent their mobility range and all “X”s
within the circle are locations that the agent can move to in a single
time step.

As for perception, agents have limited, heterogeneous sensing
ranges (SRi denotes the sensing range of agent Ai), and each agent
can only provide information on targets within its sensing range.
Moreover, agents may also differ in the quality of their sensing abil-
ities, a property termed their credibility. The credibility of agent
Ai is denoted by the positive real number Cred i, with higher val-
ues indicating better sensing abilities1. Figure 1 reports the sensing
ranges of each agent (the inner circle centered at the agent) and the
credibility, shown by the number on each sensing range circle.

The individual credibilities of agents sensing the same target are
combined using a joint credibility function F : 2A → R, where
2A denotes the power set of A. We require F to be monotonic so
that additional sensing agents can only improve the joint credibility.
Formally, for two sets S, S′ ⊆ A with S ⊆ S′, we require that
F (S) ≤ F (S′). For simplicity, in the remainder of this paper we
will use the sum function to aggregate agents’ credibilities:

Fsum(S) =
∑
Ai∈S

Cred i

1We assume that Cred i is exogenously provided (for instance, cal-
culated by a reputation model) and accurately represents the agent’s
sensing ability; dealing with inaccurate scores is of interest but be-
yond the scope of the work.

Targets are represented implicitly by the environmental require-
ment function ER, which maps each point in the environment to a
non-negative real number representing the joint credibility required
for that point to be adequately sensed. In this representation, tar-
gets are the points p with ER(p) > 0. A major aspect of the mobile
sensing team problem is to explore the environment sufficiently to
be aware of the presence of targets. In Figure 1 there are a number
of targets (stars) and their numbers represent their ER values.

Agents within SR of a target are said to cover the target and the
remaining coverage requirement of the target, denoted Cur_REQ ,
is the environmental requirement diminished by the joint credibility
of the agents currently covering the target, with a minimum value
of 0. Denoting the set of agents within sensing range of a point
p by SR(p) = {Ai ∈ A[d(p, cur_posi) ≤ SRi]}, this is for-
malized as Cur_REQ(p) = max{0,ER(p)	F (SR(p))}, where
	 : R × R → R is a binary operator that decreases the environ-
mental requirement by the joint credibility.

The global goal of the agents is to position themselves so to min-
imize the values of Cur_REQ for all targets. In some cases it may
be possible to reduce the values of Cur_REQ to zero for all tar-
gets indicating perfect coverage. However, in other cases this may
not be possible (e.g., because of insufficient numbers or quality of
agents). In these cases, we aim at minimizing the sum of remaining
coverage requirements for all targets. Such a minimization problem
is NP-hard [13].

3.2 Distributed Constraint Optimization
A distributed constraint optimization problem (DCOP) is a tuple
〈A,X ,D, C〉whereA = {A1, A2, . . . , An} is a finite set of agents
,X = {X1, X2, . . . , Xm} is a finite set of variables,D = {D1, D2,
. . . , Dm} is the set of finite domains for the variables, and C is a
finite set of constraints. Each variable Xi is controlled (or owned)
by an agent who chooses a value to assign it from the finite set of
values Di; each agent may control multiple variables. Each con-
straint C ∈ C is a function C : Di1×Di2×. . .×Dik → R+∪{0}
that maps assignments of a subset of the variables (called the scope
of the constraint) to a non-negative cost. The cost of a complete
assignment of values to all variables is computed by summing the
costs of all constraints. The goal of a DCOP is to find a complete
assignment with minimum cost (or with maximal utility in the case
of a maximization problem).

Control in DCOPs is distributed, with agents only able to as-
sign values to variables that they control. Furthermore, agents have
knowledge only of the constraints involving variables that they con-
trol. Coordination is achieved through message passing. A stan-
dard assumption is that an agent can exchange messages only with a
subset of the other agents, called neighbors. Two agents are neigh-
bors if there is at least one constraint connecting the variables that
the agents control. While transmission of messages may be de-
layed, it is assumed that messages are received in the order that
they were sent.

3.3 The DCOP_MST Model
The DCOP_MST model is a dynamic DCOP formulation that mod-
els the mobile sensor team coordination problem [16]. DCOP_MST
takes the dynamic nature of such an application into account by re-
acting to changes as they occur, instead of requiring an explicit
model of the dynamics.

Specifically, each agent Ai controls one variable that represents
its position, and the domain of such a variable contains all loca-
tions within MRi of cur_posi; consequently, as the agent moves
from one location to another, the content of its variable’s domain
changes. A change in the content of a domain of some variable can

induce a change in the constraints that include it. This is because
only agents that can take a value within sensing range of a target
are included in the constraint that calculates the coverage for this
target. Hence, the constraint Cp for a target p, only involves those
agents Ai, whose variable’s domain includes a location within SRi

of p. Therefore, as the domains change, the constraints change as
well. As a consequence the set of neighbors for each agent changes
over time as the agents move. In more detail, in DCOP_MST two
agents are neighbors if their sensing areas overlap after they both
move as much as possible in a single time step towards each other.
This encodes the fact that such two agents might directly influence
each other (e.g., by observing the same target in the next time step).

The local environment of agent Ai is the joint area within SRi

from all positions within MRi from cur_posi, i.e., it includes all
targets that the agent can cover after a single move.

3.4 Adjusting local search to DCOP_MST
For lack of space we do not include a detailed description of the
implementation of DSA and MGM in DCOP_MST.2 We note that
standard local search algorithms such as DSA and MGM require
that agents will be able to compute the best alternative assignment
for their variable. In DCOP_MST, the best alternative is a posi-
tion that allows the coverage of the targets with the highest current
coverage requirement in range.

As mentioned before, a crucial element for solving a DCOP_MST
problem is to provide the agents with a mechanism for exploring
potentially sub-optimal solutions that might result in increased re-
ward for the team (e.g., because the agents discover a target that
was previously not included in their local environment).

A successful exploration mechanism must be able to balance the
exploration with the exploitation of the local knowledge that can
produce solutions with low costs. In other words, agents should ex-
plore the area for new targets while maintaining coverage of targets
that were previously detected. To this end, a number of powerful
methods were proposed in [16], and the most successful one is a
periodic strategy named: Periodic Incremented Largest Reduction
(PILR).

The PILR approach allows agents, in some iterations, to select
sub-optimal assignments, such as a joint move that results in an in-
crease of the Cur_REQ function up to a constant bound c. Such
a strategy is applied periodically, i.e., every k1 iterations, agents
can perform sub-optimal moves for k2 iterations. The parameter c
controls the increase in cost that agents are willing to accept when
performing the sub-optimal moves and, by tuning this parameter,
we allow agents to search for new targets while preventing them
from abandoning the ones they are aware of. The most success-
ful technique according to [16] was the combination of PILR with
DSA (DSA_PILR).

3.5 Standard Max-sum
The Max-Sum algorithm [2] is a GDL algorithm that operates on a
factor graph: a bipartite graph where the nodes represent variables
and constraint functions [2, 17].3

In more detail, in a factor graph, each variable-node is connected
to all function-nodes that represent constraints with which it is in-
volved.4 Similarly, a function-node is connected to all variable-

2A detailed description can be found at [16].
3For lack of space we describe Max-sum briefly. The reader is
referred to the following papers for a detailed description of the
algorithm [2, 17].
4We preserve in this description the terminology used in [2], and
call constraint-representing nodes in the factor graph “function-
nodes".

nodes that represent variables included in the scope of the con-
straint it represents.

Both variable and function nodes are active computational en-
tities that can send, read and update messages. The agents are
then responsible for the computation associated to the nodes and,
in more detail, each variable-node is assigned to the agent control-
ling this variable, and each function-node is assigned to one of the
agents controlling the variables that form the scope of the associ-
ated constraint function.

The content of messages sent by function-nodes differs from the
content of messages sent by variable-nodes. A message sent from
a variable-node to a function-node includes, for each of its possible
value assignments, the sum of costs/utilities for this value reported
by all other function neighbors. A message sent from a function-
node to a variable-node in each step includes, for each possible
value assignment of the variable, the best (minimal in a minimiza-
tion problem, maximal in a maximization problem) cost/utility that
can be achieved for any combination of assignments to the vari-
ables involved in the function, apart from the destination variable.
At the end of the run, each variable node selects the value assign-
ment that has the best sum of costs/utilities, considering the most
up to date messages received from all neighboring function-nodes.

4. APPLYING MAX-SUM TO DCOP_MST
Applying Max-sum to DCOP_MST is challenging since Max-sum
does not propagate assignments but rather utilities (or costs). While
assignment selections are not a part of the Max-sum algorithm, as-
signment selections determine the local environments in DCOP_MST
and directly affect the structure of the constraint network (and con-
sequentially, the factor graph).

We overcome this obstacle by following the scheme proposed
in [9], which is an iterative process in which in each iteration the
agents construct a factor graph based on their current location, run
the Max-sum algorithm for a number of message cycles and move
according to the solution provided by the algorithm. Agents se-
lect the locations from which they derive the highest utility, i.e.,
from which they are most effective (ties are broken randomly). The
next factor graph is generated considering the new locations of the
agents.

The number of message cycles that are performed before an as-
signment (position) selection, must be selected with care. On one
hand, we would like to allow the information regarding the cover-
age capabilities of sensors to propagate to other sensors. On the
other hand, these message cycles of Max-sum result in a single
movement for the sensors, thus, we want to avoid unnecessary de-
lays. In our experiments we found that the any-time performance
of Max-sum (i.e. the best result it finds throughout the search [15])
converges very fast and thus, a small number of message cycles (5
in our experimental set-up) was enough to get the best performance.

The time complexity for the message update operations performed
by the function-nodes in Max-sum in each message cycle is known
to be exponential in the size of the function scope (i.e., the arity
of the constraint/function). In the DCOP_MST model, a function-
node represents a target, and the arity of the function is the number
of sensors that can sense the target after a single move. Therefore,
for scenarios where sensors have large sensing and mobility ranges,
the arity of constraints can be large (in the worst case it could be
equal to the number of agents) ,hence, the time requirement for
message computation of function nodes can be a severe bottleneck
when using Max-sum for solving such DCOP_MSTs..

A number of papers proposed techniques to reduce the complex-
ity of the message update calculation for function-nodes in Max-
sum [9, 4]. Here, we implemented all of the methods proposed in

these papers including: i) preprocessing the variables’ domains to
detect and eliminate values that are dominated by others (proposed
in [9]). In our experiments, this preprocessing method pruned be-
tween 25% to 30% of the value assignments; ii) mapping the do-
mains of all variables to two values that are required for performing
the function computation (proposed in [4]5). This is possible be-
cause the only information required to compute the value of a func-
tion is whether a sensor covers the target or not; iii) using branch
and bound search to calculate the utility for a value assignment of
a neighboring sensor instead of a naive search through all possible
assignment combinations (proposed in [9]).

It is important to note that while the methods mentioned above
significantly reduce the complexity of the calculation performed for
production of messages in the algorithm the calculation performed
by the function-nodes is still exponential. Thus, the effective num-
ber of neighboring sensors that a target can have is still limited (and
small).

5. EXPLORATION METHODS FOR MAX-
SUM_MST

While Max-sum_MST is superior to standard local search (see ex-
periments presented in Section 6), it is outperformed by algorithms
that include explicitly designed exploration methods.

We use the example presented in Figure 2 to demonstrate the
need for exploration in Max-sum_MST and the use of the proposed
exploration methods. It includes three agents (sensors) (A1, A2 and
A3) and two targets (T1 and T2). The factor graph on the right rep-
resents agents as variables and targets as functions (V1, V2, V3, F1

and F2 respectively). The credibility of all sensors is 5 and targets
have importance 10. Two sensors (A1 and A2) are currently fully
covering T1. A3 can cover T1 if it would make a single move in
its direction, therefore V3 is connected to F1 in the factor graph. In
contrast, none of the sensors can be in sensing range from T2 after
a single move, therefore, F2 is disconnected in the factor graph.

In contrast to local search algorithms, e.g., DSA, in which when
a target is fully covered, other agents would not consider covering it
too, in Max-sum the highest utility is propagated by the targets for
each possible location in its mobility range, considering all possible
locations of the other sensors in range. Thus, in the case of A3, F1

would send a message to V3 assigning the maximal possible con-
tribution A3 would have in covering T1. In doing so, the function
would consider the case in which A1 and A2 would move to fur-
ther locations and allow A3 to be effective in T1’s coverage. This
behavior would prevent A3 from exploring even though T1 is fully
covered. This phenomenon can be avoided using the exploration
methods we propose.

Thus, in this section we propose exploration methods for Max-
sum_MST that aim to allow agents to explore for new targets while
maintaining coverage on targets they have previously detected.

5.1 Max-sum_PILR
In our first attempt to introduce exploration into Max-sum_MST,

we aimed to duplicate the success of the periodic exploration meth-
ods that were combined with local search algorithms. Similar to the
MGM_PILR and DSA_PILR algorithms, Max-sum_PILR encour-
ages exploration by allowing agents periodically to select a sub-
optimal assignment. More formally, Max-sum_PILR is defined by
three parameters k1, k2 and c. After k1 iterations in which it per-
forms its standard operations, the algorithm performs k2 iterations
in which each agent selects a random position among the possible
positions from which the utility (the effectiveness of the agent) was
5This method is also known as: “Fast Max-sum"

5 5

5

A1 A2

A3

A1

T1

T2

F2

V2

V3

V1

F1

Figure 2: An example of the exploration process.
within c from the utility it would have derived if it would have se-
lected the best possible position (the position that would have been
selected in a standard iteration). Formally, for every variable-node
x representing a sensing agent, the agent calculates for every value
v in its domain a utility u(v) =

∑
f uf (v) where f is a neighbor-

ing function-node and uf (v) is the utility associated with value v
that was included in the last message received from f . Assume that
v′ is the value (position) in the domain of x with maximal calcu-
lated utility, i.e., ∀v ∈ Dx, u(v′) > u(v). Thus, the agent selects
a position for x randomly among all values v ∈ Dx for which
u(v) ≥ u(v′) − c. The agents perform periodically k1 standard
iterations and k2 random selection iterations as described above.

If we return to the example presented in Figure 2, in Max-sum_PILR,
the agents would periodically consider sub-optimal positions from
which they would select their position randomly. Hence, it is now
possible for A3 to move to a location that will allow it to include
T2 in its local environment.

5.2 Max-sum_FMR
The second approach for exploration we propose is based on

function meta reasoning, and therefore it is termed Max-sum_FMR.
This approach takes advantage of a property that is quite common
in DCOP_MST, that targets have more neighbors than required for
covering them. Consider an iteration i in which the factor graph
FGi was generated based on the locations of sensors selected in
iteration i − 1. Denote by n(t)i the number of neighboring sen-
sors that target t has in FGi and by r(t) the maximal number of
sensors that are required to cover t. When r(t) < n(t)i, t can se-
lect r(t) neighbors for covering it and allow the other n(t)i − r(t)
neighbors to perform exploration. We implement this by generat-
ing a new factor graph F̂Gi in which each target t has at most r(t)
neighbors. This can be done distributively by having each target t
remove the edges between it and n(t)i − r(t) of its neighbors.

Figure 3 displays a section of a factor graph in which function-
node F1 has 6 neighboring variable-nodes (V1, , V6). In this exam-
ple function-node F1 represents target T1, which has a coverage
requirement of 100. The 6 variable-nodes represent 6 neighboring
mobile sensors (n(T1) = 6), each with credibility 40. The func-
tion used for combining agents’ coverage capabilities is the stan-
dard additive function Fsum. Therefore, three sensors are required
at most for covering this target (r(t) = 3). Thus, in F̂Gi, F1 will
have three neighboring variable-nodes (sensors) for which it will
compute their best position using standard Max-sum_MST, while
its other three neighboring variable-nodes in FGi are disconnected
from it and therefore the sensors they represent are encouraged to
explore.

It is important to notice that when using this method, the com-

V2

V3

V1

F1

V6

V4

V5

SR

SR+MR

Figure 3: An example of Max-sum_FMR.
plexity for producing each of the messages to be sent by the function-
node to its neighbors is no longer exponential in n(t)i − 1 as
in standard Max-sum, rather it is exponential in r(t) − 1. Thus,
the complexity of the computation of function-nodes is no longer
dependent on the sensing and mobility ranges of the sensors. In
other words, this method eliminates the main drawback of Max-
sum compared to local search algorithms.6

The selection of the covering neighbors by the method can af-
fect its success. If a sensor that is selected by a target moves to a
position such that the target is beyond its sensing range, this target
will remain uncovered. This can happen if multiple targets select a
sensor that cannot cover all of them from a single location. Thus,
the agent will need to select a position from which it covers only
part of the targets that selected it. Such a selection may result in a
poor outcome.

We propose the following greedy heuristic for selecting the r(t)
neighbors by a function-node t for which n(t)i > r(t):

1. Each of the n(t)i sensor neighbors sends to t its degree in
FGi (i.e., the number of function-node neighbors it has in
FGi).

2. t divides its n(t)i neighbors into two subsets: n̂(t)i and
n̄(t)i. n̂(t)i includes all neighbors that are currently located
within sensing range from t and n̄(t)i includes the rest of the
neighbors.

3. While (n(t)i > r(t))

(a) If (n̄(t)i 6= ∅) remove the neighbor in n̄(t)i that has
the highest degree from n(t).

(b) Else, remove the neighbor in n̂(t)i that has the lowest
degree from n(t).

In the example presented in Figure 3, according to the heuris-
tic proposed, the first variable node to be removed from the set of
neighbors of F1 is V6, which among the variable-nodes out of SR
is the one with the highest degree. The second to be removed is
V5, which is also out of SR. V4 will also be removed from the
set although it is within SR since there are no more neighboring
variable-nodes out of sensing range and it is the one with the low-
est degree among the rest.
6This advantage is not limited to DCOP_MST. In fact, it can
be applied to any task allocation application where the property
r(f) < n(f) is common (where r(f) is the required number of
neighbors for the task represented by f and n(f) is the actual num-
ber of neighbors), e.g., allocation of rescue teams to tasks in a dis-
aster area, grid computing etc.

The heuristic above attempts to increase the probability that the
neighbors that are selected for coverage are indeed able to cover
the targets that selected them. It does so by preferring sensors that
are currently within sensing range. Obviously, if it was possible
for every target t to select r(t) sensors that are currently located
within sensing range, then Max-sum_FMR would have produced
the optimal solution. Thus, the heuristic prefers sensors within
sensing range, and among them, the sensors that are effective for
other targets as well (i.e., with a higher degree). However, if there
are no more neighbors within sensing range, the selected neighbor-
ing sensor will need to move closer in order to be effective, thus,
among the neighbors outside of sensing range it selects the least
constrained sensors. Our empirical results demonstrate its advan-
tage over a random selection in settings where sensors may be se-
lected by more than one target (i.e., when agents have larger local
environments).

In the problem depicted in Figure 2, Max-sum_FMR will have
T1 select one of its neighbors and remove the edge connecting them
in the factor graph. Notice, that according to the heuristic we pro-
pose, A3 is the neighbor it will disconnect since it is the only one
that is not currently covering it (i.e., the only one in n̄(T1)). Thus,
the chances that A3 will move towards T2 are increased.

6. EXPERIMENTAL EVALUATION
In order to compare Max-sum_MST and its versions that include
exploration with the DCOP_MST algorithms proposed in [16], we
used a simulator representing a mobile sensing agent’s team prob-
lem. The problem simulated is of an area in which the possible
positions are an m over m grid. Each of the points in the area
has an ER value between 0 and 100. The mobility and sensing
ranges are given in terms of distance on the grid and are varied
in our experiments to demonstrate their effect on the success of
the algorithms. The credibility of an agent can vary between zero
(for an agent with no credibility) and 100 (for an agent with max-
imal credibility). The method for calculating the joint coverage of
agents within the sensing range of a target is a standard sum of
the agents’ credibility and the 	 operator is a standard minus, i.e.:
Cur_REQ(p) = max{0, ER(p)−

∑
Ai∈SR(p)

Credi}
The credibility variable in the experiments for all agents was set to
30. These values were chosen so targets with maximal importance
(100) will require the cooperation of multiple agents.

Max-sum algorithms ran 5 rounds of messages in every itera-
tion. This number was found to produce best results.7 All results
depicted in this section are an average over 50 runs of the algorithm
solving 50 different random problems.

Figure 4 presents a comparison between Max-sum_MST, the
standard local search DCOP algorithms that were adjusted to DCOP
_MST in [16] and the PILR explorative algorithms. This exper-
iment included 50 agents (sensors) and 20 targets that were de-
ployed randomly in a 100 over 100 grid. Each target had impor-
tance 100. Thus, the sum of all uncovered targets is at most 2000.
The sensing range (SR) and the mobility range (MR) were set to
5. The results demonstrate the advantage of Max-sum_MST over
standard local search algorithms. Not only does it converge in a
smaller number of iterations8, but its final result is also better than
standard DCOP algorithms. However, it is clearly inferior in com-

7A smaller number of message rounds produced inferior results,
while for a larger number we experienced loopy propagation be-
havior as described in [17], which again, produced lower quality
solutions.
8Notice that each Max-sum iteration takes multiple message
rounds, i.e., more time to compute than in standard local search.

500

700

900

1100

1300

1500

1700

0 5 10 15 20 25

Co
ve

ra
ge

 D
if

fe
re

nc
e

Iterations

DSA

MGM

DBA

Max-sum

MGM_PILR

DSA_PILR

Figure 4: Sum of coverage differences over all targets as a func-
tion of the number of iterations. SR=5, MR=5

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25

Co
ve

ra
ge

 D
if

fe
re

nc
e

Iterations

DSA

Max-sum

DSA_PILR

Max-sum_PILR

Max-sum_FMR_rand

Max-sum_FMR

Figure 5: Sum of coverage differences over all targets, as a
function of the number of iterations. SR=5, MR=5.

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25

C
o

ve
ra

ge
 D

if
fe

re
n

ce

Iterations

DSA

Max-sum

DSA_PILR

Max-sum_PILR

Max-sum_FMR_rand

Max-sum_FMR

Figure 6: Sum of coverage differences for all targets, as a func-
tion of the number of iterations. SR=10, MR=5.

parison with local search algorithms that are combined with explo-
ration methods.

In the second set of experiments we evaluated the performance of
the versions of Max-sum_MST that include exploration (see Sec-
tion 5), Max-sum_PILR and Max-sum_FMR. These exploration
algorithms are compared with standard Max-sum_MST, DSA and
DSA_PILR. The settings in this experiment were the same as in
the experiment described above. The parameters used in Max-
sum_PILR were: k1 = 4, k2 = 1 and c = 20, i.e., every fifth iter-
ation, a random position is selected from the set of positions whose
current utility is within 20 from the value assignment with the max-
imal current utility. The value of 20 for the parameter c was chosen
both for Max-sum_PILR and for DSA_PILR. For Max-sum_FMR
the sensors credibility values and the importance of targets indi-
cated that no more than 4 sensors are needed to cover a target, i.e.,
r(t) = 4. In order to evaluate the impact of the heuristic for se-
lecting neighbors to be removed from the factor graph, presented
in Section 5, we also depict the results of Max-sum_FMR-rand in
which a random selection of neighbors was performed.

The experiments presented in Figure 5 included sensors with
SR = 5 and MR = 5. It is apparent that Max-sum based al-
gorithms reach solutions with low coverage difference (high qual-
ity) within a smaller number of iterations than local search algo-

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25

Co
ve

ra
ge

 D
iff

er
en

ce

Iterations

DSA

DSA_PILR

Max-sum_FMR_rand

Max-sum_FMR

Figure 7: Sum of coverage differences for all targets, as a func-
tion of the number of iterations. SR=10, MR=10.

rithms. Moreover, the resulting solutions that Max-sum’s explo-
ration methods produce, in terms of coverage, are superior to ex-
isting local search algorithms even when they are combined with
exploration methods. Specifically, Max-sum_PILR produces better
results than DSA_PILR and Max-sum_FMR produced the best re-
sults.9 Figures 6 and 7 present results for experiments in which
the local environments of agents were larger. In Figure 6, the
ranges were SR = 5 and MR = 10 and in Figure 7, SR = 10
and MR = 10. It is apparent that when agents have larger lo-
cal environments the need for exploration is reduced. However,
Max-sum_FMR dominates on all types of problems. Interestingly,
the impact of the selection heuristic for Max-sum_FMR is most
significant when the environments are the largest. Our investiga-
tion revealed that when environments are small there is less of a
conflict between targets, i.e., most sensors do not have multiple
targets within their environment and therefore, they are not se-
lected by more than one target. For example, the average number
of neighboring targets for a sensor in experiments with SR = 5
and MR = 5 was 1.3 and for experiments with SR = 10 and
MR = 5 it was 2.1. Thus, both selection methods will commit
most sensors only to a single target and therefore, a significant ad-
vantage of the proposed heuristic over the random selection is not
expected. On the other hand in experiments with SR = 10 and
MR = 10 the average number of neighboring targets for a sensor
was 3. Thus, scenarios in which a sensor is selected by multiple tar-
gets but there is no location that it can select within sensing range
from all these targets, are more common.

Figure 8 presents the results of the algorithms when solving much
smaller problems for which we were able to produce the optimal
solutions using exhaustive search. These problems included a 20
over 20 grid, 8 sensing agents with SR = MR = 3 and 4 targets.
It is evident that the explorative versions of Max-sum find higher
quality solutions than the explorative local search algorithm when
solving small problems as well. They find solutions with a ratio as
low as approximately 1.4 (or 140%) of the optimal solution.10

Figure 9 presents a runtime comparison between the algorithms.
The runtime was calculated by adding for each synchronous mes-
sage round of the algorithm the maximal time it took an agent to
complete its actions. The results indicate the runtime required to
complete 50 random experiments for varying sensing ranges. It
was shown in [16] that given large enough sensing and mobility
ranges, even the simplest myopic algorithms can quickly achieve
optimal coverage. We assume that if Max-sum could have run with
larger ranges it would produce high quality results as well. How-

9The differences between Max-sum_FMR and DSA_PILR were
found to be significant. However, the advantage of the use of the
FMR edges selection heuristic was only found to be significant
when solving high density problems.

10Here we do not present the results for the random selection version
of Max-sum_FMR since in small problems with a small number of
agents such selection heuristic has no effect.

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 5 10 15 20 25

Ra
ti

o
Fr

om
 T

he
 O

pt
im

al
 S

ol
ut

io
n

Iterations

DSA

Max-sum

DSA_PILR

Max-sum_PILR

Max-sum_FMR

Figure 8: Ratio from the optimal solution, as a function of the
number of iterations for different algorithms. Small problems.

0

1000

2000

3000

4000

5000

5
3

5
4

5
5

5
6

5
7

5
8

5
9

5
10

6
10

7
10

8
10

9
10

10
10

Ti
m

e
In

 S
ec

on
ds

MR/SR Combinations

Max-sum_PILR

Max-sum

Max-sum_FMR

DSA_PILR

DSA

Figure 9: The time required to complete 50 experiments as a
function of different sensing and mobility ranges.

ever, our analysis illustrates that Max-sum cannot benefit from such
improved technology since larger sensing and mobility ranges im-
ply more neighboring agents per target and therefore exponentially
greater computation efforts. The MR in the experiments was var-
ied between 5 and 10 and the SR was varied between 3 and 10.
Figure 9 demonstrates the exponential growth of runtime as a func-
tion of the sensing and mobility ranges (notice that the sum of both
ranges on the x axis is increasing linearly).

It is apparent that while the runtime of Max-sum_MST and Max-
sum_PILR grows exponentially, the increase in time when using
DSA and DSA_PILR is negligible. As we expected, Max-sum_FMR
performs in a near linear runtime while producing the best results
in terms of coverage quality.

It is also notable that Max-sum_PILR performs much slower
than standard Max-sum_MST. A further investigation revealed that
the maximal number of neighboring sensors that targets have in
Max-sum_PILR was double than in Max-sum_MST. Apparently,
the increased exploration of Max-sum_PILR allows agents to de-
tect targets and cluster around them. This emphasizes the need for
Max-sum_FMR, which triggers exploration but is not exponential
in the number of neighboring sensors that targets have.

7. CONCLUSION
In this paper we adjusted the Max-sum algorithm to the DCOP_MST
model by designing efficient exploration methods that allow agents
to select sub optimal positions and seek for additional targets that
are currently beyond their sensing ranges. Specifically, we pro-
posed two classes of exploration methods that can be combined
with Max-sum_MST. The first (Max-sum_PILR) implements the
periodic reduction of requirements approach that was found suc-
cessful for local search algorithms. The second (Max-sum_FMR)
required function-nodes (targets) to perform meta-reasoning and
manipulate some of the sensors to perform exploration. Our empir-
ical evaluation shows that this class of methods not only produces
the best results in terms of coverage but also eliminates the rela-
tion between the size of the local environment (commonly defined

by sensors’ technical limitations, i.e., their mobility and sensing
ranges, which affect the arity of the constraints) and the complex-
ity of the calculation performed by the function nodes. As a result,
we show that, in contrast to the other versions of Max-sum, Max-
sum_FMR does not exhibit an exponential increase in time when
the number of sensors that can be effective for each target grows.

8. REFERENCES
[1] A. Farinelli, A. Rogers, and N. Jennings. Agent-based

decentralised coordination for sensor networks using the
max-sum algorithm. AAMAS, 2013.

[2] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings.
Decentralised coordination of low-power embedded devices
using the max-sum algorithm. In AAMAS, 2008.

[3] Y. Kim and V. R. Lesser. Improved max-sum algorithm for
dcop with n-ary constraints. In AAMAS, 2013.

[4] K. S. Macarthur, R. Stranders, S. D. Ramchurn, and N. R.
Jennings. A distributed anytime algorithm for dynamic task
allocation in multi-agent systems. In AAAI, 2011.

[5] R. T. Maheswaran, J. P. Pearce, and M. Tambe. Distributed
algorithms for dcop: A graphical-game-based approach. In
PDCS, 2004.

[6] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
asynchronous distributed constraints optimizationwith
quality guarantees. Artificial Intelligence, 2005.

[7] S. D. Ramchurn, A. Farinelli, K. S. Macarthur, and N. R.
Jennings. Decentralized coordination in robocup rescue.
Computer Journal, 2010.

[8] A. Rogers, A. Farinelli, R. Stranders, and N. R. Jennings.
Bounded approximate decentralised coordination via the
max-sum algorithm. Artificial Intelligence, 2011.

[9] R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings.
Decentralised coordination of mobile sensors using the
max-sum algorithm. In IJCAI, 2009.

[10] M. E. Taylor, M. Jain, Y. Jin, M. Yokoo, and M. Tambe.
When should there be a "me" in "team"?: distributed
multi-agent optimization under uncertainty. In AAMAS, 2010.

[11] M. Vinyals, J. A. Rodríguez-Aguilar, and J. Cerquides.
Constructing a unifying theory of dynamic programming
dcop algorithms via the generalized distributive law. AAMAS,
2011.

[12] X. S. W. Yeoh and S. Koenig. Trading off solution quality for
faster computation in dcop search algorithms. In IJCAI,
2009.

[13] G. Wang, G. Cao, P. Berman, and T. F. Laporta. A bidding
protocol for deploying mobile sensors. In in Proceedings of
IEEE ICNP, 2003.

[14] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. Distributed
stochastic search and distributed breakout: properties,
comparishon and applications to constraints optimization
problems in sensor networks. Artificial Intelligence, 2005.

[15] R. Zivan. Anytime local search for distributed constraint
optimization. In AAAI, pages 393–398, 2008.

[16] R. Zivan, R. Glinton, and K. Sycara. Distributed constraint
optimization for large teams of mobile sensing agents. In
International Joint Conference on Web Intelligence and
Intelligent Agent Technology, 2009.

[17] R. Zivan and H. Peled. Max/min-sum distributed constraint
optimization through value propagation on an alternating
dag. In AAMAS, 2012.

