
Cooperation between search and surveillance agents in
DCOP MST

Roie Zivan and Katia Sycara,
Robotics Institute,

Carnegie Mellon University,
5000 Forbes Avenue,

Pittsburgh, PA, 15213, USA,
{zivanr,katia}@cs.cmu.edu

Abstract. A team of mobile sensors working together towards a common goal
of covering targets in some area, can be modeled by DCOP MST. DCOP MST, is
a model based on distributed constraints optimization that enables representation
of the dynamic elements in a mobile sensing agents team problem, e.g., environ-
ment changes, changes in the agents’ tasks and technology failures. Agents in
DCOP MST, perform local DCOP algorithms, adjusted to this model, in order to
adjust their deployment to the current state of the dynamic environment.
In our previous work on DCOP MST we assumed complete and accurate knowl-
edge on the location and importance of targets in the area. This information might
not be available in realistic scenarios. In this paper we consider two teams of
agents, (a) sensors with advanced mobility and sensing tasked to detect targets,
and (b) sensors with limited mobility tasked with target surveillance.
We demonstrate how the DCOP MST model can be used by these two teams
to fulfill their sub-tasks, and how it can be used for cooperation among the two
teams. Our experimental study demonstrates how an increased level of coopera-
tion among the two teams improves the performance of both teams and improves
the overall result on fulfilling the mutual coverage goal.

1 Introduction

Some of the most challenging applications of multi agent systems include a team of
mobile agents with sensing abilities which are required to cover a given area to achieve
a common goal. Various examples are a network of sensors tracking enemy targets,
rescue teams searching for survivors and teams of unmanned vehicles (UVs) searching
an unfamiliar terrain. These applications are often large and complicated and thus, it is
reasonable to assume that the agents cooperating to achieve coverage in these applica-
tions, reside on mobile sensors of different types and are divided into different teams
where each of them has its own subtask. These subtasks are derived from the general
common goal.

In a previous paper [12] we presented DCOP MST, a model based on distributed
constraint optimization for representing and solving problems of teams of mobile sens-
ing agents [12]. The DCOP MST model allows the representation of multiple dynamic



elements, which the applications discussed above include, such as changes in the envi-
ronment, changes caused by technology failures and changes caused by agents’ move-
ments. We demonstrated in [12] how the DCOP MST and the novel algorithms we
proposed for this model, are successful in maintaining high level coverage in dynamic
environments. The innovation of the DCOP MST model is its ability to maintain dy-
namic domains and dynamic sets of neighbors. In addition, the environment is modeled
as a function (environment requirement function, ER) that assigns to each point in the
area its coverage importance, e.g., targets of interest are expected to have very high ER
values.

However, in [12] we assumed that the ER function, which agents refer to and per-
form upon, is accurate and there is no uncertainty. This assumption is limiting when
considering military and rescue applications. In this paper we extend the work on
DCOP MST. Here, the model is used to represent two teams of agents which reside on
mobile sensors. The mutual goal of these teams performing in the same area, is surveil-
lance coverage of all targets in the area according to their importance. The first team
includes agents with advanced mobility and accurate sensing technology. The sub-task
of this team of agents is to detect the targets and inform the surveillance agents (agents
from the other team) of their location. The second team is the team of agents we have
presented [12], which in this paper we refer to as “surveillance agents”. Their task is to
maintain coverage according to the targets’ importance [12].

We demonstrate in this paper that the differences between the sub-tasks of the two
teams require different search strategies. For the surveillance team, in [12] we found that
the most successful algorithm was MGM enhanced with exploration methods which
maintain reasonable coverage (prevent from abandoning covered targets). The require-
ment of maintaining long term coverage encouraged an algorithm in which the coor-
dination between agents is high (an agent moves only if her neighbors do not) and
monitored exploration level. On the other hand, search agents are expected to benefit
from high level of exploration which will allow them to reach the entire area in minimal
time.

To accomplish the different requirements of the search team’s task, we designed
a new algorithm based on DSA [9]. The agents use a second ER map/function which
initially includes only vague probabilities on the location of the targets. The agents
update this function by reducing the probability of areas which they recently visited.
Agents select their next position according to this function. Our experiments show that
in contrast to standard DSA [9], our algorithm does not suffer from thrashing as the
probability for changing location increases.

Although the tasks of the two teams are different and require different algorithms,
awareness of the global goal and the subtask of the other team can enable agents to co-
operate with agents from the other team [3, 4]. We propose three levels of cooperation:

1. Agents from the search and detection team participate in the surveillance process of
targets within their sensing range. This requires agents of the search and detection
team to be aware of the location of the targets which were already found and to
perform surveillance as long as they are in range.

2. Agents from the surveillance team inform the search and detection agents on ele-
ments in their sensor range which they suspect to be targets.



3. Search and detection agents which are covering a target, do not leave it until it is
covered by surveillance agents.

.
In our experimental study we evaluated both the success of the sub-tasks of the two

teams and the overall result when these different levels of cooperation are performed.
Our empirical evaluation reveals that higher level of cooperation improves both.

The rest of this paper is organized as follows: After presenting the standard DCOP
model in Section 2, we present DCOP MST in Section 3. Section 4 presents the algo-
rithm based on MGM performed by the surveillance agents. In Section 5, we present
the extension to the model and the algorithm based on DSA performed by the search
agents team. Section 6 discusses the different levels of cooperation we propose between
the two sub-teams. Our empirical study is presented in Section 7 followed by our con-
clusions.

2 Distributed Constraint Optimization

A DCOP is a tuple < A,X ,D,R >. A is a finite set of agents A1, A2, ..., An. X
is a finite set of variables X1,X2,...,Xm. Each variable is held by a single agent (an
agent may hold more than one variable). D is a set of domains D1, D2,...,Dm. Each
domain Di contains the finite set of values which can be assigned to variable Xi. R is
a set of relations (constraints). Each constraint C ∈ R defines a non-negative cost for
every possible value combination of a set of variables, and is of the form C : Di1 ×
Di2 × . . .×Dik

→ R+ ∪ {0}. A binary constraint refers to exactly two variables and
is of the form Cij : Di × Dj → R+ ∪ {0}. A binary DCOP is a DCOP in which all
constraints are binary. An assignment (or a label) is a pair including a variable, and a
value from that variable’s domain. A partial assignment (PA) is a set of assignments, in
which each variable appears at most once. vars(PA) is the set of all variables that appear
in PA, vars(PA) = {Xi | ∃a ∈ Di ∧ (Xi, a) ∈ PA}. A constraint C ∈ R of the form
C : Di1 ×Di2 × . . . ×Dik

→ R+ ∪ {0} is applicable to PA if Xi1 , Xi2 , . . . , Xik
∈

vars(PA). The cost of a partial assignment PA is the sum of all applicable constraints
to PA over the assignments in PA. A full assignment is a partial assignment that includes
all the variables (vars(PA) = X ). A solution is a full assignment of minimal cost.

3 DCOP MST

DCOP MST includes a number of concepts which are not used in the standard DCOP
model. The first is the position of an agent. We denote the current position of agent Ai

by cur posi. The position of the agent is its current assignment but in DCOP MST it is
a physical position in the area (which can be represented by coordinates).

Second, we define two ranges which are essential in DCOP MST. The first is the
Sensing Range(SR) of agents. The sensing range is the effective coverage range of the
agent, i.e., agent Ai can detect and cover all the targets that are within its sensing range
from cur posi. The Mobility Range (MR) is the range that an agent can move in a



single iteration of the algorithm. We denote the sensing range and the mobility range of
agent Ai by SRi and MRi respectively.

After defining these concepts we can redefine the set D. A domain Di of agent
Ai includes all the alternative positions which are within MRi from cur posi. The
resulting domain is a dynamic set 1.

For each agent Ai a credibility variable Credi is defined. The credibility variable is
a real positive number which is calculated by a reputation model.

We further define an environmental requirement function ER. This function ex-
presses for each point in the area, the required joint credibility amount (the sum of the
credibility variables) of agents with appropriate sensing range so that the given point
can be adequately sensed (i.e. covered). Function Cur DIFF calculates for each point
in the area the difference between the current value of the ER function and the sum
of the credibility values of the agents which are currently covering it. Formally, if we
denote the set of agents within sensing range from point p by SRp then:
Cur DIFF (p) = ER(p)−

∑
Ai∈SRp Credi

The global goal of the agents in DCOP MST is to cover all the area according to ER
(i.e. to reduce the largest value of Cur DIFF to zero). Since this goal cannot always
be achieved, we define a more general goal which is to minimize the largest value of
the Cur DIFF function over all points in the area.

A set E includes all types of events. Each event can have an influence on the credi-
bility of the agents involved in the event and/or on the function ER. A reputation model
is used to define the influence for each event ej ∈ E on the credibility of the agents
involved. An ordered set OE includes the events which occur according to their chrono-
logical order. Each member of the ordered set OE includes the type of event, the time
of occurrence (iteration index), and its location (in case of an environmental event) or
the agents involved (in case of an event which affects agents’ credibility).

As in the standard DCOP model, each agent can send a message to each of the
other agents. We assume that each agent is aware of the current position and credi-
bility of each of the other agents. As in standard DCOPs neighboring agents are the
agents that can be influenced by an assignment change (e.g. constrained agents). Thus,
in DCOP MST, two agents are considered neighbors, if after they both move towards
each other, their sensing ranges overlap. Formally, the set of neighbors of agent Ai is
denoted by cur neii. An agent Aj is included in cur neii iff the distance between
cur posi and cur posj is less than MRi + MRj + SRi + SRj . Like in the case of
the domains, since agents change their current position, the meaning of this definition
is that the set of an agent’s neighbors is dynamic.

4 MGM for DCOP MST

The general design of the state of the art local search algorithms for DCOPs is syn-
chronous. In each step of the algorithm an agent sends its assignment to all its neighbors
in the constraint network and receives the assignment of all its neighbors. The MGM

1 An alternative definition would be that all the possible positions are included in an agent’s
domain but it only considers the ones with in its mobility range. However these two definitions
are equivalent.



algorithm is a simpler version of the DBA algorithm [8, 9]. In every synchronous step,
each agent sends its current value assignment to its neighbors and collects their cur-
rent value assignments. After receiving the assignments of all its neighbors, the agent
computes the maximal improvement (reduction in cost) to its local state it can achieve
by replacing its assignment and sends this proposed reduction to its neighbors. After
collecting the proposed reductions from its neighbors, an agent changes its assignment
only if its proposed reduction is greater than the reductions proposed by all of its neigh-
bors.

The adjustments required to apply MGM to solve DCOP MSTs are as follow: First,
as a self adjusting algorithm, the algorithm should run infinitely, i.e. after the algorithm
converges to a solution it remains active in order to be sensitive to changes [2]. Sec-
ond, the most delicate matter is the definition of the quality of each of the positions an
agent can reach, so that it would serve the global goal. The global goal, as defined in
Section 3 is to minimize the largest value of the Cur DIFF function. The selection of
the agents’ positions must serve this goal. An immediate trivial choice would be a po-
sition which covers the point with the highest Cur DIFF . However, in case there are
a number of positions which enable coverage of this point, we would expect the agent
to choose the most effective one, i.e., the position which enables coverage of additional
points with a smaller Cur DIFF . Therefore, an agent selects its position according to
the following recursive method (its code is presented in Figure 1, method select pos):

1. Each time the recursive method is called it is given a set of possible positions and
a function that defines a value to each point in the sensing range of all the possible
positions. In the first call, the set will include all the positions within the agent’s
mobility range MRself and the function Temp DIFF which is the current differ-
ence function without the current coverage of the agent performing the calculation
(Aself ). Formally, Temp DIFF is defined as follow:
For each point not currently covered by Aself ,
Temp DIFF = CUR DIFF .
For each point currently covered by Aself ,
Temp DIFF = CUR DIFF + Credself .

2. Next, a set (target set) which holds the points with the largest function value in
the sensing range of all of the agent’s possible positions is generated.

3. Two termination conditions are checked:

(a) If there is only one possible position, then it is selected.
(b) If the largest function value is equal to zero (i.e. the target set is empty). In

this case any possible position can be selected.

4. If none of the termination conditions is met, the agent recalls the recursive method.
The new set of possible positions which is passed in the recursive call includes all
the positions in the current set of possible positions which are within the sensing
range of all points in the target set. The function that is passed to the recursive
method is the current function, only without the values of the points in the area
which is within the sensing range of all positions in the new generated possible
positions set. In other words, only areas which are not covered by the agent from
each of the possible positions need to be considered.



MGM MST
1. cur pos← Selected init pos()
2. while (true)
3. send cur pos to each Ai ∈ cur neiself

4. collect positions of each Ai ∈ cur neiself

5. LR← BestPossibleLocalReduction()
6. Send LR to each Ai ∈ cur neiself

7. Collect LRs from each Ai ∈ cur neiself

8. if (LR > 0)
9. if (LR > LRs of each Ai ∈ cur neiself

(ties broken using indexes))
10. cur pos← the position that gives LR

BestPossibleLocalReduction()
11. possible pos← positions within MRself from cur pos
12. Temp Diff ← Cur Diff \ self coverage
13. new pos← select pos(possible pos , Temp Diff )
14. cur cov ← highest Temp Diff among points within SRself

from cur pos and not within SRself from new pos
15. new cov ← highest Temp Diff among points not within

SRself from cur pos and within SRself from new pos
16. return min(cur cov − new cov, Credself )

select pos(pos set , func)
17. if (‖pos set‖ = 1)
18. return pos set.content
19. target set←points within SRself from some pos ∈ pos set

with largest func value (must be larger than zero)
20. if (target set is empty)
21. return some pos ∈ pos set
22. if (no pos ∈ pos set is within SRself from all the points in

target set)
23. target set← largest subset of target set within SRself

from some pos ∈ pos set
24. possible pos← all positions in pos set which are within

SRself from all points in target set
25. intersect area← area within SRself from all

pos ∈ possible pos
26. new func← func \ func.intersect area
27. return select pos(possible pos , new func)

Fig. 1. MGM MST.

Figure 1 presents the code of the MGM MST algorithm. The main loop of the al-
gorithm remains almost unchanged from standard MGM [6, 7] (the standard algorithm
was left out for lack of space). The agents send their assignments (current positions) to



the agents which are currently their neighbors. Notice that according to the assumptions
in Section 3 the agent sends the accurate position 2.

Method BestPossibleLocalReduction calls method select pos to find the best al-
ternative position. After it is found, the method returns the improvement that would be
achieved by changing to the selected alternative position. This improvement (or ”re-
duction”) is the difference between the highest Cur Diff values, not including the
credibility variable of Aself (Temp DIFF ), which are covered by the agent when it
is located in one of the two positions (the current and the new) and uncovered when it
is located in the other (lines 13 - 15). The possible improvement can’t be larger than the
agent’s credibility variable, Credself , since that is the agent’s maximal contribution to
the coverage of any point in the area (line 16).

Method select pos is a recursive method that is first called with the set of all po-
sitions within the mobility range of the agent and function Temp DIFF . First, the
two termination conditions (as described above) are checked (lines 17 - 21). In the pro-
cess, a set called target set is generated which includes all the points with the (same)
highest value of the received function func, which are covered from at least one of the
positions in the received set of possible positions (line 19). If all points in target set
cannot be covered from a single position, then only the largest subset of target set
which can be covered from a single position is left in target set (lines 22,23). Next, a
set is generated which includes all the positions in pos set which enable coverage of
all the points in target set (line 24). In addition, a new function is generated which
is equal to func except for the values of the points in the area which is covered from
all the positions in the new generated set (intersection area) (line 25,26). Finlay, the
recursive method is called with the new generated set and function.

4.1 Exploration methods

Classic local search combines exploitation methods in order to converge to local op-
tima and exploration methods in order to escape them [10]. The MGM MST algorithm
is strictly exploitive (monotone). While it benefits from quick convergence and avoids
costly moves by the sensors, once a target is beyond the agent’s range it remains un-
covered. Algorithms which implement exploration methods were proposed for standard
DCOPs [6, 9, 7, 11]. However, some of the methods which are most effective in standard
DCOP are not expected to be effective for DCOP MST [12].

In order to explore the area for new targets while maintaining coverage of targets
which were previously detected we proposed two simple but powerful exploration meth-
ods which can be combined with the MGM MST algorithm. These two methods
change the parameters of the algorithm temporarily in order to escape local minima.
This approach was found successful for local search in DisCSPs [1].

1. MGM WR MST simply allows an agent to consider points within a larger (double)
range than their MR for a small number of iterations (WR represents Wide Range).

2 This is a reasonable assumption considering that GPSs are used. We assume that the technology
allows an agent to detect the agents which their ranges overlap with its own as defined in
Section 3 and update its set of current neighbors. If not, agents would need to inform all other
agents when they change position so they can update their set of neighbors accordingly.



This method assumes that a wider range is possible even though it is slower. There-
fore the agents consider a wider range only in a small percentage of the algorithm’s
iterations which repeat periodically (in our experiments for example, we allowed
two iterations of a wider, double, range every ten regular iterations).

2. The MGM RC MST algorithm allows agents in some iterations to move to a posi-
tion which results in an increase of the Cur Diff function up to some number c.
More specifically, line 8 of the algorithm is changed in these iterations to:
8. if (LR + c > 0)
Again, this reduced condition (RC) is only temporary and is applied periodically.
This would mean that for a small number of iterations the importance (coverage
requirement) of targets in the area is reduced.

In both of these methods, agents are not expected to leave targets with high impor-
tance in order to search for new targets. In MGM WR MST it is obvious since like in
the case of MGM MST, only moves which result with a gain are performed. In the case
of MGM RC MST, the c parameter defines the reduced importance of the targets which
are already covered. Thus, c is a bound on the increase to the Cur Diff function that the
method can create.

In [12], the exploration methods described above were compared with standard
MGM and two classic exploration methods adjusted to DCOP MST, DSA and DBA.

5 Search and Detection team in DCOP MST

The first step in including a search and detection team in DCOP MST is relaxing the
assumption that there exists an ER function which includes the accurate importance of
every point in the area. Instead, we assume that the function initially includes some
distribution which reflects the probability of the existence of targets in the area. This
assumption makes the model compatible for any level of uncertainty from complete
entropy (as in [5]) to complete knowledge (as in [12]).

This initial ER function is copied to another (initially identical) function we refer
to as the search map (SM). Search agents use the search map SM when they decide on
their path in order to detect targets and they update the ER function with the targets they
find. The surveillance agents use only the ER function, in the same way as described in
Section 4. Thus, the ER function is the device used for communication between the two
teams.

The search agents use the SM function to communicate to each other where they
have recently visited and therefore the probability of the existence of a new target is
low. This is done as follow:

1. The base value of a point in the SM function, Basep, is equal to the value in the
initial ER function. Thus initially, all points in the SM function are equal to their
base value.

2. A search agent sa located in some point p at iteration t, causes a decrease in the
value of all points p′ within the sensor range of p. The new value of these points is
SM(p′, t) = Base′p − Credsa



DSA SAT
1. cur posself ← select init pos()
2. while (true)
3. foreach (point p within SR from cur posself )
4. SM(p)← Basep − Credself

5. ER(p)← importance(p) 3

6. next pos← get best pos()
7. rand← random([0, 1])
8. if (rand < prob)
9. cur posself ← next pos

get best pos()
10. possible pos← positions within MRself from cur pos
11. max val← 0
12. foreach pos ∈ possible pos
13. psr ← p within SR from pos
14. if (

∑
p∈psr SM(p) < max val)

15. next pos← pos
16. max val←

∑
p∈psr SM(p)

Fig. 2. DSA SAT.

3. At each iteration t in which there is no search agent in sensing range from point p,
the SM value of p is incremented as follow:
SM(p, t) = min{SM(p, t− 1) + 1, Basep}.

Figure 2 presents the adjusted DSA algorithm for a team of search agents in DCOP MST,
DSA SAT. In each iteration of the algorithm the SM value of all points within sensor
range of the agent are set to a lower value according to the agent’s credibility (lines
3,4). In addition, the agent updates the ER function with the true importance of the
points in its sensing range. Then, the agent selects the best position it can move to by
calling function get best pos(). The agent moves to this position in probability prob
(lines 7,8).

Function get best pos() selects the point within mobility range, which the sum of
the SM values of points within sensing range from it, is maximal.

6 Cooperation across teams

In the previous sections we described two teams performing in the same area, each with
its own task and means for communication between them via the ER function. However,
it is reasonable to assume that cooperation among agents from the two teams can lead
to better results for the following reasons:

1. Although each team of agents has its own task, they are both working towards a
common goal.



2. Agents’ efficiency depends on their location. Therefore, it may be the case that an
agent from one team is in a position that allows her to serve the task of the other
team best.

Common practice in multi agent systems include hierarchical plan structures that
allow agents to assist others when working towards a common goal [3, 4]. Specifically
to the applications at hand, we assume that search agents have superior technology and
therefore they can perform surveillance with relatively high credibility while surveil-
lance agents cannot define the importance of a target. Thus, we describe the following
possible collaborations among the two teams:

1. Search support (SS): search agents take an active role in the surveillance of targets
within their sensing range.

2. Alert: agents from the surveillance team increase the value of points in the search
map where they suspect their might be a target. Thus, search agents are encouraged
to search at these locations.

3. Avoid Abandoning (AA): search agents do not move to a new location when they
are covering targets which are not reasonably covered by surveillance agents, i.e.,
search agents which locate a target wait for it to be covered by surveillance agents
before they continue their search.

All three modes of cooperation described above require agents to be aware of the
task of the other team. The alert and AA modes further require that agents communicate
with agents in the other team via either the ER or the SM functions.

7 Experimental evaluation

In order to evaluate the performance of the two teams of agents and the effect of the pro-
posed collaborations, we use the same simulator used in [12]. The problem simulated is
of an area in which the possible positions are points on a grid. The size of the grid in all
our experiments was 150 by 150. Each of the points in the area has an importance value
between 0 and 100. The ER function initially had all points equal to 0. The credibility
of search agents was set to 50 and the credibility of surveillance agents was set to 30.
The sensing ranges of all agents were set to 10. The mobility range of search agents
was set to 30 while the mobility range of surveillance agents was set to 10. The algo-
rithm performed by the surveillance agents was MGM WR MST and the DSA SAT
was performed by the search agents. The area included 20 targets which are points with
importance 100. We assume that these targets are revealed to search agents which are
located within sensing range from them. Surveillance agents can perform their task only
on targets which were detected by search agents. However, a target which has not yet
been detected by a search agent raises the suspicion of a surveillance agent. All our
experiments included 10 search agents and 60 surveillance agents. Each reported result
is an average over 50 runs of the algorithm on different random generated problems.
The random elements in each problem were the location of the targets and the initial
location of the agents.

In the first set of experiments we evaluated the success of our proposed search agent
algorithm DSA SAT with respect to the value of the prob parameter. Figure 3 presents



Fig. 3. Number of targets found by search agents using different levels of exploration.

Fig. 4. Number of targets found by search agents using different levels of exploration (Alert).

the number of targets detected by the search agents as a function of the number of it-
erations performed since the search started. The different lines represent different prob
values used by the search agents in the DSA SAT algorithm. It is clear that the algo-
rithm is most successful for high values of prob. In contrast to standard DSA, high



Fig. 5. Coverage difference for different levels of cooperation. (no search).

level of exploration does not cause thrashing. This is because the search agents are not
required to converge to a solution like in standard DCOP but rather keep on searching
for additional targets. However, for large prob values (e.g., 0.7 and 0.9), there is no
notable difference in performance. Figure 4 presents the same phenomenon when Alert
cooperation mode is used. This figure demonstrates the benefit of using this mode of
communication between the surveillance agents and the search agents for faster detec-
tion of targets.

Figure 5 presents the success of the two teams when performing together in order
to reduce the difference of the sum of the ER values of all targets in the area and
the credibility of agents which are performing surveillance in sensing range from the
targets. In this set of experiments the initial ER function included all targets. Thus,
there was no need to perform search. The results in Figure 5 demonstrate the effect
of the different levels of communication on the performance of the surveillance team.
It is clear from the result that when the search agents participate in the surveillance
procedure (SS mode) but are not committed to it, the improvement in performance is
minor. However, when the search agents are aware of the level of coverage on targets
found and leave targets only if they are reasonably covered (AA mode), the performance
in terms of surveillance substantially improves.

Figure 6 presents results of a complete experiment, i.e., target locations are not
known in advance and the results are in terms of surveillance coverage (both sub-teams
need to perform their sub-task). The results presented demonstrate how each additional
level of cooperation among the two sub-teams improves the overall performance of the
entire global team of sensing agents. The effect of the Alert mode is more apparent
in the first iterations when surveillance agents are waiting for targets to be discovered,



Fig. 6. Coverage difference for different levels of cooperation.

Fig. 7. Coverage difference for different levels of cooperation. (a closer look).

while the AA mode triggers the most substantial improvement in coverage. To empha-
size the difference in performance, we focus on Figure 7 and see that after 25 iterations,
in the highest level of cooperation, the coverage of the team is improved by a factor
larger than two.



8 Summary and Conclusions

Recently, DCOP MST, a new model based on DCOP for solving dynamic problems,
was proposed. It represents a dynamic application of a team of mobile sensing agents
which is expected to be robust to changes in the environment in which the sensors
operate, changes in the teams tasks and technology failures. The early work, which
introduced the DCOP MST model [12], assumed that agents are aware of the location
and importance of targets in the area.

In this work we adjusted the model to include two sub-teams of agents performing
towards a common goal. Each team had its own sub-task which serves the common goal.
The first team included agents with high mobility and accurate sensing technology. The
subtask of this team was detection of targets. The second team’s task was to perform
surveillance on the targets which were detected by the first team. The search agents
used an additional function, a search map (SM) to represent locations in which there is
a higher probability to find targets. This SM was dynamically updated according to the
search agents’ movements. Thus, it was also used as a means of coordination among
the search agents. The algorithm used by the search agents was based on DSA and
our results demonstrated that it was most successful with high level of exploration and
concurrency. The information regarding targets that were detected and their importance
was transfered to the surveillance agents via the ER function.

Our results demonstrate the success of the DCOP MST model in representing teams
with different tasks. Furthermore, they demonstrate how increased levels of cooperation
among the teams improve the performance of both sub-teams in fulfilling their sub-tasks
and the result of the global team in achieving the common goal. Clearly, the flexibility
of the model in representing and coping with dynamic elements, allows the teams to ef-
fectively handle additional information supplied to them by agents from the other team.
The most successful results were achieved when all the proposed forms of cooperation
were used.
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