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Abstract: Distributed Constraint Optimization Problems (DCOPs) are an elegant model for
representing and solving many realistic combinatorial problems that are distributed by nature.
DCOPs are NP-hard and therefore many recent studies consider incomplete algorithms for solv-
ing them. Distributed local search algorithms, in which agents in the system hold value assign-
ments to their variables and iteratively make decisions on whether to replace them, can be used
for solving DCOPs. However, because of the differences between the global evaluation of a
system’s state and the private evaluation of states by agents, agents are unaware of the global
best state that is explored by the algorithm. Previous attempts to use local search algorithms for
solving DCOPs reported the state held by the system at the termination of the algorithm, which
was not necessarily the (global) best state explored.

A general framework that enhances distributed local search algorithms for DCOPs with the
anytime property is proposed. The proposed framework makes use of a BFS-tree in order to
accumulate the costs of the system’s state during the algorithm’s iterative performance and to
propagate the detection of a new best state when it is found. The proposed framework does not
require additional network load. Agents are required to hold a small (linear) additional space
(beside the requirements of the algorithm in use).

We further propose a set of increased exploration heuristics that exploit the proposed anytime
framework. These exploration methods implement different approaches towards exploration.
Our empirical study considers various scenarios including random, realistic, and structured prob-
lems. It reveals the advantage of the use of the proposed heuristics in the anytime framework
over state-of-the-art local search algorithms.1

Key Words: Distributed Constraint Optimization, Incomplete search, Exploration
Heuristics.

1. Introduction

The Distributed Constraint Optimization Problem (DCOP) is a general model for
distributed problem solving that has a wide range of applications in Multi-Agent Sys-

1This paper is an extension of [1]. Besides an extended description and examples, it proposes new
exploration heuristics that exploit the anytime framework and an intensive empirical study that reveals the
advantages in using the proposed framework.
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tems and has generated significant interest from researchers [2, 3, 4, 5, 6, 7, 8, 9].
DCOPs are composed of agents, each holding one or more variables. Each variable has
a domain of possible value assignments. Constraints among variables (possibly held
by different agents) assign costs to combinations of value assignments. Agents assign
values to their variables and communicate with each other, attempting to generate a
solution that is globally optimal with respect to the costs of the constraints [4, 10].

There is a wide scope in the motivation for research on DCOPs, since they can be
used to model many everyday combinatorial problems that are distributed by nature.
Some examples are the Nurse Shift assignment problem [11, 12], the Sensor Network
Tracking problem [7], and the Log-Based Reconciliation problem [13].

DCOPs represent real life problems that cannot or should not be solved centrally
for any of several reasons, among them lack of autonomy, single point of failure, and
privacy of agents.

A number of studies on DCOPs presented complete algorithms [4, 5, 14]. However,
since DCOPs are NP-hard, there has been growing interest in the last few years in local
(incomplete) DCOP algorithms [15, 7, 1, 16, 17]. Although local search does not
guarantee that the obtained solution is optimal, it can be applied to large problems and
is compatible with real-time applications.

The general design of most state-of-the-art local search algorithms for DCOPs is
synchronous [18, 7, 19, 20] (a notable exception was presented in [21]). In each step
(or iteration) of the algorithm an agent sends its assignment to all its neighbors in the
constraint graph and receives the assignments of all its neighbors. They differ in the
method agents use to decide whether to replace their current value assignments to their
variables, e.g., in the max gain messages algorithm (MGM) [15], the agent that can
improve its state the most in its neighborhood replaces its assignment. A stochastic de-
cision whether to replace an assignment is made by agents in the distributed stochastic
algorithm (DSA) [7].

In the case of centralized optimization problems, local search techniques are used
when the problems are too large to perform a complete search. Traditionally, local
search algorithms maintain a complete assignment for the problem and use a goal
function in order to evaluate this assignment. Different methods that balance between
exploration and exploitation are used to improve the current assignment of the algo-
rithm [22, 23, 24]. An important feature of most centralized local search algorithms is
that they hold the best assignment that was found throughout the search. This makes
them anytime algorithms, i.e., the quality of the solution can only remain the same
or increase if more steps of the algorithm are performed [25]. This property cannot
be guaranteed as easily in a distributed environment where agents are only aware of
the cost of their own assignment (and maybe that of their neighbors too), but no one
actually knows when a good global solution is obtained.

In [7], DSA and DBA are evaluated solving sensor network DCOPs. Apparently
these algorithms perform well on this application even without a pure anytime property.
The algorithms were compared by evaluating the state held by agents at the end of the
run. However, Zhang et al. [7] do not offer a way to report the best state explored
by the algorithms as proposed in this study. This limits the chances of local search
algorithms implementing an exploring heuristic to be successful.

In order to implement anytime local search algorithms that follow the same syn-

2



chronous structure of DSA and DBA for distributed optimization problems, the global
result of every synchronous step must be calculated and the best solution must be
stored. A trivial approach would be to centralize in every step the costs calculated
by all agents to a single agent. This agent would then inform the other agents each
time a solution that improves the results on all previous solutions is obtained. How-
ever, this method has drawbacks both in the increase in the number of messages and in
the violation of privacy caused from the need to inform a single agent (not necessarily
a neighbor of all agents) of the quality of all other agents’ states in each step of the
algorithm.

The present paper proposes a general framework for enhancing local search al-
gorithms for DCOPs that follow the general synchronous structure with the anytime
property. In the proposed framework the quality of each state is accumulated via a
spanning tree of the constraint graph. Agents receive information about the quality of
the recent states of the algorithm from their children in the spanning tree, calculate
the resulting quality including their own contribution according to the goal function,
and pass it to their parents. The root agent makes the final calculation of the cost of the
system’s state in each step and propagates down the tree the index of the step in which
the system was in the most successful state. When the search is terminated, all agents
hold the assignment of the best state according to the global goal function.

The proposed framework can be combined with any synchronous incomplete al-
gorithm such as MGM, DSA, DBA, or Max-Sum. The combination allows any such
algorithm to report the best solution it traversed during its run, i.e. it makes it an any-
time algorithm.

In order to produce the best state out of m steps, the algorithm must run m + 2h
synchronous steps where h is the height of the tree used. Since the only requirement
of the tree is that it is a spanning tree on the constraint graph, i.e., that it maintains a
parent route from every agent to the root agent, the tree can be a BFS-tree and its height
h is expected to be small (in the worst case h equals the number of agents n). Our
experimental study reveals that starting from very low density parameters, the height
of the BFS-tree is indeed very small (logarithmic in the number of agents). Previous
studies on distributed systems have used BFS trees, e.g., for maintaining shortest paths
in a communication network [26]. However, to the best of our knowledge we are the
first to use it for aggregating local state information in order to make a decision on the
global best solution.

The proposed framework does not require agents to send any messages in addition
to the messages sent by the original algorithm. The additional space requirement for
each agent is O(h).

We study the potential of the proposed framework by proposing a set of explo-
ration methods (heuristics) that exploit the anytime property by introducing extreme
exploration to exploitive algorithms. We present an extensive empirical evaluation of
the proposed methods on three different benchmarks for DCOPs. The proposed meth-
ods find solutions of higher quality than state-of-the-art algorithms when implemented
within the anytime local search framework.

The rest of the paper is organized as follows: Related work is presented in Sec-
tion 2. Section 3 describes the distributed constraint optimization problem (DCOP).
State-of-the-art local search algorithms for solving DCOPs are presented in Section 4.
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Section 5 presents ALS DCOP, the proposed anytime local search framework for DCOPs.
In Section 6 we present the theoretical properties of the proposed framework. Sec-
tion 7 proposes innovative exploration methods for distributed local search. Section 8
presents an experimental study that evaluates the proposed explorative algorithms when
combined with the proposed anytime framework in comparison with existing local
search algorithms. Section 9 presents a discussion of the experimental results and
Section 10 presents our conclusions.

2. Related Work

A number of complete algorithms were proposed in the last decade for solving
DCOPs. The simplest algorithm among these was the Synchronous Branch and Bound
(SynchB&B) algorithm [27], which is a distributed version of the well-known central-
ized Branch and Bound algorithm. Another algorithm that uses a Branch and Bound
scheme is Asynchronous Forward Bounding (AFB) [14], in which agents perform se-
quential value assignments that are propagated for bound checking and early detection
of a need to backtrack. A number of complete algorithms use a pseudo-tree, which is
derived from the structure of the constraints network, in order to improve the process
of acquiring a solution. ADOPT and BnB-ADOPT [4, 28] are two such asynchronous
search algorithms in which assignments are passed down the pseudo-tree. Agents com-
pute upper and lower bounds for possible assignments and send costs, which are even-
tually accumulated by the root agent, up to their parents in the pseudo-tree. Another
algorithm that exploits a pseudo-tree is DPOP [5]. In DPOP, each agent receives from
the agents that are its children in the pseudo-tree all the combinations of partial solu-
tions in their sub-tree and their corresponding costs. The agent calculates and generates
all the possible partial solutions, which include the partial solutions it received from its
children and its own assignments, and sends the resulting combinations up the pseudo-
tree. Once the root agent receives all the information from its children, it identifies
the value assignment that is a part of the optimal solution and propagates it down the
pseudo-tree to the rest of the agents, allowing them to find their own value assignment
and thus, produce the optimal solution. The DPOP algorithm is a GDL algorithm [29],
i.e., it stems from the general distributive law that allows accumulation of costs and
utility calculation operations performed by different agents in a distributed system for
a mutual decision on the optimal solution. A number of recent studies investigate this
paradigm and propose improvements to the DPOP algorithm [30, 31]. A very differ-
ent approach was implemented in the OptAPO algorithm [3, 32] in which agents that
are in conflict choose a mediator to whom they transfer their data and which solves
the problem. This algorithm benefits when the underlying constraint graph includes
independent sections that can be solved concurrently.

All of the algorithms mentioned above are complete. While this is an advantage
in the sense that they guarantee to report the optimal solution, this is also a drawback
since DCOPs are NP-hard; thus, in order to validate that an acquired solution is optimal
they must traverse the entire search space in the worst case. This drawback limits the
use of these algorithms to relatively small problems.

Some of the complete algorithms mentioned above use a tree structure and, like
in the framework we propose in this paper, aggregate information to the root agent in
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order to allow it to make a global decision on the optimal solution. However, our work
is the first to suggest such an aggregation that can apply to any synchronous incomplete
algorithm, even if the algorithm itself does not use a tree structure. Moreover, the
tree structure used in complete algorithms must be a pseudo-tree while the proposed
framework can use any spanning tree. This allows us to make use of a BFS tree which
evidently has a much smaller (logarithmic) height.

One common approach towards incomplete methods for solving DCOPs is dis-
tributed local search. The general design of most local search algorithms for DCOPs
is synchronous [18, 7, 20]. In each step of the algorithm an agent sends its assign-
ment to all its neighbors in the constraint network and receives the assignments of all
its neighbors. In Section 4 we present in detail two leading algorithms from this class
of algorithms – the Distributed Stochastic Algorithm (DSA) [7] and the Distributed
Breakout Algorithm (DBA) algorithm [18]. These algorithms were selected because
many other algorithms such as MGM and DisPeL [33] are very similar to them and can
be considered their descendants. In addition, the most successful exploration heuristics
we propose in this paper are variations of these algorithms.

In [15, 34], a different approach towards local search was proposed. In these stud-
ies, completely exploitive algorithms are used to converge to local optima solutions,
which are guaranteed to be within a predefined distance from the global optimal solu-
tion. The approximation level is dependent on a parameter k, which defines the size of
coalitions that agents can form. These k-size coalitions transfer the problem data to a
single agent, which performs a complete search procedure in order to find the best as-
signment for all agents within the k-size coalition. As a result, the algorithm converges
to a state that is k-optimal [34], i.e., no better state exists if k agents or fewer change
their assignments. While this approach guarantees that the outcome of the algorithm
is k-optimal, the algorithms proposed to date that guarantee convergence to k-optimal
solutions, such as MGM [15], include very limited exploration if at all (in contrast to
algorithms that include intensive exploration that are within scope and aim of this pa-
per). Recently, this approach of using monotonic local search algorithms in small local
environments in order to produce quality guarantees on the solution was extended to
environments dependent on the distance of nodes in the constraint network [21] and
environments that are bounded both by distance and size [35].

A different approach towards incomplete distributed problem solving is imple-
mented by the Max-Sum algorithm. Max-Sum [8] is a GDL algorithm that operates
on a factor graph, which is a bipartite graph in which the nodes represent variables
and constraints. Although Max-Sum is completely exploitive, it is not guaranteed to
converge in problems with factor graphs that include cycles [8]. On such problems
it performs implicit exploration. We present the details of the Max-Sum algorithm in
Section 4 following the descriptions of DSA and DBA. In addition, we demonstrate in
this paper the advantages of using Max-Sum within the proposed anytime framework.

A recent study has investigated the usefulness of increasing the level of exploration
in DSA and DBA [36]. It proposed versions of DSA in which the probability for
changing an assignment is higher than in standard DSA. These experiments compared
with Distributed Simulated Annealing (DSAN), in which the probability to take an
explorative step was dependent on a decreasing temperature. Beside standard DBA and
MGM, this study also compared with the DisPeL algorithm, which is a penalty-driven
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algorithm that increments unary constraints instead of binary constraints, as DBA does.
We demonstrate that the explorative methods we propose in this paper outperform these
alternative approaches when combined with the anytime framework.

Another recent study proposed intelligent functions for selecting the probability to
replace assignments in DSA [37]. The proposed methods considered the potential for
reduction in cost (the slope of improvement) and as a result gave agents with a higher
probability to improve the global cost a higher probability to perform assignment re-
placements. The resulting versions of the algorithms were reported to converge faster
and in implementations where only assignment replacements are exchanged, reduce
significantly the number of messages exchanged. However, the quality of the obtained
solutions was not improved when using the proposed functions. Nevertheless, the most
successful method we propose in this paper combines this approach with the approach
taken in DSAN that allows explorative assignment selection under some conditions and
with monitored random restarts. This combination, when implemented within the pro-
posed anytime framework, was found to dominate on all benchmarks we experimented
with.

Both studies, [37] and [36], reported results on the number of messages sent be-
tween agents (triggered by assignment changes) because they considered an asyn-
chronous version of DSA. In our work, we consider synchronous local search algo-
rithms that perform in an asynchronous environment; thus, agents must exchange mes-
sages with all neighbors in every step of the algorithm.

3. Distributed Constraint Optimization

A distributed constraint optimization problem (DCOP) is a tuple 〈A,X ,D,R〉. A
is a finite set of agents A1, A2, ..., An. X is a finite set of variables X1,X2,...,Xs. Each
variable is held by a single agent (an agent may hold more than one variable). D is
a set of domains D1, D2,...,Ds. Each domain Di contains the finite set of values that
can be assigned to variable Xi. R is a set of relations (constraints). Each constraint
Ci ∈ R defines a non-negative cost for every possible value combination of a set of
variables, and is of the form Ci : Di1 × Di2 × . . . × Dik → Z+ ∪ {0}. Each agent
Aj involved in constraint Ci holds a part of the constraint Cij so that

∑
j Cij = Ci. In

this paper we will assume that for each pair of agentsAj andAj′ involved in constraint
Cij , Cij′ are equal, i.e., problems are symmetric. However, our proposed framework
applies to the asymmetric DCOP framework as well [38]. A binary constraint involves
exactly two variables and is of the form Ci : Di1 ×Di2 → Z+ ∪{0}. A binary DCOP
is a DCOP in which all constraints are binary. An assignment (or a label) is a pair of
a variable and a value from that variable’s domain. A partial assignment (PA) is a set
of assignments, in which each variable appears at most once. vars(PA) is the set of
all variables that appear in PA, vars(PA) = {Xi | ∃a ∈ Di ∧ (Xi, a) ∈ PA}. A
constraint Ci ∈ R of the form Ci : Di1 ×Di2 × . . .×Dik → Z+ ∪ {0} is applicable
to PA if Xi1 , Xi2 , . . . , Xik ∈ vars(PA). The cost of a partial assignment PA is the
sum of all applicable constraints to PA over the assignments in PA. A full assignment
is a partial assignment that includes all the variables (vars(PA) = X ). A solution is a
full assignment returned by a DCOP algorithm.
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In this paper, we assume each agent holds a single variable and use the term “agent”
and “variable” interchangeably. We also assume that constraints are at most binary and
that the delay in delivering a message is finite [4, 39]. Agents are aware only of their
own local topology (i.e., only of their own neighbors in the constraint network and the
constraints that they individually and privately hold).

We use the term step for a synchronous iteration of a local search algorithm. The
state of an agent in each step includes its value assignment and the local cost, which
is the sum of costs incurred according to constraints with the value assignments of its
neighbors. The global state in each step includes the full assignment and the costs of
all constraints violated by the full assignment.

4. Local Search for Distributed Constraint Problems

The general design of most state-of-the-art local search algorithms for Distributed
Constraint Satisfaction Problems (DisCSPs) and Distributed Constraint Optimization
Problems (DCOPs) is synchronous. In each step of the algorithm an agent sends its
value assignment to all its neighbors in the constraint network and receives the value
assignment of all its neighbors. Two of the most known algorithms that apply to this
general framework are the Distributed Stochastic Algorithm (DSA) [7] and the Dis-
tributed Breakout Algorithm (DBA) [40, 7]. In our presentation of the algorithms we
follow the recent versions of [7]. Notice that these algorithms were first designed for
distributed constraint satisfaction problems in which a solution must not violate any
constraint, but they can be applied without any adjustment to Distributed Max-CSPs
(DisMaxCSPs) (where the optimal solution is the complete assignment with the small-
est number of violated constraints), which is a specific type of DCOP. Thus, in our
description we consider an improvement to be a decrease in the number of violated
constraints (as in DisMaxCSPs).

4.1. Distributed Stochastic search Algorithm (DSA)

The basic idea of DSA is simple. After an initial step in which agents select a
starting value for their variable (randomly according to [7]), agents perform a sequence
of steps until some termination condition is met. In each step, an agent sends its value
assignment to its neighbors in the constraint graph and receives the value assignments
of its neighbors.2 After collecting the value assignments of all its neighbors, an agent
decides whether to keep its value assignment or to change it. This decision, which is
made stochastically, has a large effect on the performance of the algorithm. According
to [7], if an agent in DSA cannot improve its current state by replacing its current value,
it does not replace it. If it can improve (or keep the same cost, depending on the version
used), it decides whether to replace the value using a stochastic strategy (see [7] for
details on the possible strategies and the differences in the resulting performance). A
sketch of DSA is presented in Figure 1. After a random value is assigned to the agent’s

2In this paper we follow the general definition of a DCOP and a DisCSP, which does not include a
synchronization mechanism. If such a mechanism exists, agents in DSA can send value messages only in
steps in which they change their assignments.
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DSA
1. value← ChooseRandomValue()
2. while (no termination condition is met)
3. send value to neighbors
4. collect neighbors’ values
5. if (ReplacementDecision())
6. select and assign the next value

Figure 1: Standard DSA.

Figure 2: DCOP example.

variable (line 1), the agent performs a loop (each iteration of the loop is a step of the
algorithm) until the termination condition is met. In each step the agent sends its value
assignment to all its neighbors and collects the assignments of all its neighbors (lines
3,4). According to the information it receives, it decides whether to replace its value
assignment; when the decision is positive it assigns a new value to its variable (lines
5,6). The version of the algorithm we used in our experiments was DSA-C in which
the replacement decision is to replace its current value assignment with probability p if
the alternative assignment does not deteriorate the local state (i.e., it either improves it
or keeps the cost the same).

An example of a DCOP in which each constraint has the same cost (DisMaxCSP)
is presented in Figure 2. Each of the agents has a single variable with the values a and b
in its domain. Dashed lines connect constrained agents and all constraints are equality
constraints. Although DSA is a uniform algorithm, i.e., the algorithm does not assume
the existence of agents’ identifiers; we added identifiers to the figure to make it easier
to describe.

Before the first step of the algorithm each agent selects a random value. Assume
agents 1, 3, and 5 selected a and agents 2 and 4 selected b. In the first step all agents can
change their assignment without increasing local cost. Following a stochastic decision
only agents 2 and 5 replace their assignment. Now agents 1, 2, and 3 hold a and agents
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4 and 5 hold b. At this step only agent 4 can replace its assignment and if it does so, in
the next step only agent 5 can replace its assignment. In the resulting state, all agents
assign a to their variable and the algorithm converges.

4.2. Distributed Breakout Algorithm (DBA)

DBA manipulates the weights of the DCOP constraints. As in DSA, in every step
each agent sends its current value assignment to its neighbors and collects their current
value assignments. After receiving the value assignments of all its neighbors, the agent
computes the maximal weighted cost reduction it can achieve by changing its value
assignment and sends this proposed reduction to its neighbors. After collecting the
proposed reductions from its neighbors, an agent changes its value assignment only if
its proposed reduction is greater than that of its neighbors. If ties occur they are broken
using the agents identifiers. When an agent detects a quasi-local optimum, i.e., neither
it nor any of its neighbors offer a reduction of weighted cost, it increases the weights
of its current constraint violations. The sketch of the DBA algorithm is depicted in
Figure 3. After initializing the constraint weights to one and assigning a random value
to its variable (lines 1,2), the agent enters the loop where, as in the DSA algorithm,
each loop iteration is a step of the algorithm. After sending its value assignment to
its neighbors and collecting their value assignments (lines 4,5), the agent calculates
its best weight reduction and sends it to its neighbors (lines 6,7). After receiving the
possible weight reduction of all of its neighbors the agent decides whether to replace
its assignment and on a positive decision assigns its variable (lines 8-11). If it detects a
quasi-local optimum it increases the weights of all its violated constraints (lines 13,14).

The Maximum Gain Messages (MGM) algorithm is a simplified version of DBA.
It includes the same step structure as DBA, i.e. sending the maximal reduction in
cost to neighbors and then sending the value assignment, but it does not include the
manipulation of constraint weights to break out of quasi-local optima. In other words,
MGM is completely monotonic. The code of MGM is similar to the code presented in
Figure 3 excluding lines 12-14.

4.3. Max-Sum

A different incomplete approach for solving DCOPs is implemented by the Max-
Sum algorithm. The Max-Sum algorithm [8] is a GDL algorithm [29] that operates
on a factor graph [41], a bipartite graph in which both variables and constraints are
represented by nodes.3 Each node representing a variable of the original DCOP is
connected to all function-nodes that represent constraints that the variable is involved
in. Similarly, a function-node is connected to all variable-nodes that represent vari-
ables in the original DCOP that are included in the constraint it represents. Agents in
Max-Sum perform the roles of different nodes in the factor graph. Variable-nodes and
function-nodes are considered “agents” in Max-Sum, i.e., they can send messages, read
messages and perform computation.

3We preserve the terminology of [8] and call constraint-representing nodes in the factor graph “function-
nodes”.
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DBA
1. Set the local weights of constraints to one
2. value← ChooseRandomValue()
3. while (no termination condition is met)
4. send value to neighbors
5. collect neighbors’ values
6. WR← BestPossibleWeightReduction()
7. Send WR to neighbors
8. Collect WRs from neighbors
9. if (WR > 0)
10. if (WR > WRs of neighbors

(ties broken using indices))
11. value← the value that gives WR
12. else
13. if (no neighbor can improve)
14. increase violated constraints’ weights by one

Figure 3: Standard DBA.

Max-sum (node n)
1. Nn ← all of n’s neighboring nodes
2. while (no termination condition is met)
3. collect messages from Nn

4. for each n′ ∈ Nn

5. if (n is a variable-node)
6. produce message mn′

using messages from Nn \ {n′}
7. if (n is a function-node)
8. produce message mn′

using constraint and messages from Nn \ {n′}
9. send mn′ to n′

Figure 4: Standard Max-Sum.

10



Figure 4 presents a sketch of the Max-Sum algorithm. The code for variable-nodes
and function-nodes is similar apart from the computation of the content of messages
to be sent. For variable-nodes only data received from neighbors is considered. In
messages sent by function-nodes the content is produced considering data received
from neighbors and the original constraint represented by the function-node.

It remains to describe the content of messages sent by the factor graph nodes. A
message sent from a variable-node x to a function-node f at iteration i, includes for
each of the values d ∈ Dx the sum of costs for this value it received from all function-
node neighbors apart from f in iteration i−1. Formally, for value d ∈ Dx the message
will include: ∑

f ′∈Fx,f ′ 6=f

cost(f ′.d)− α

where Fx is the set of function-node neighbors of variable x and cost(f ′.d) is the
cost for value d included in the message received from f ′ in iteration i − 1. α is a
constant that is reduced from all costs included in the message (i.e., for each d ∈ Dx) in
order to prevent the costs carried by messages throughout the algorithm from growing
arbitrarily. Selecting α to be the average on all costs included in the message is a
reasonable choice for this purpose [8, 42]. Notice that as long as the amount reduced
from all costs is identical, the algorithm is not affected by this reduction since only the
differences between the costs for the different values matter.

A message sent from a function-node f to a variable-node x in iteration i includes
for each possible value d ∈ Dx the minimal cost of any combination of assignments
to the variables involved in f apart from x and the assignment of value d to variable x.
Formally, the message from f to x includes for each value d ∈ Dx:

minass−xcost(〈x, d〉, ass−x)

where ass−x is a possible combination of assignments to variables involved in f not
including x. The cost of an assignment a = (〈x, d〉, ass−x) is:

f(a) +
∑

x′∈Xf ,x′ 6=x

cost(x′.d′)

where f(a) is the original cost in the constraint represented by f for the assignment a,
Xf is the set of variable-node neighbors of function-node f , and cost(x′.d′) is the cost
that was received in the message sent from variable-node x′ in iteration i − 1, for the
value d′ that is assigned to x′ in a.

In contrast to DSA, DBA and MGM, Max-Sum is not a search algorithm, i.e., the
selection of value assignments to variables is not an inherent part of the algorithm and
is not used to generate the messages in the algorithm. However, in every iteration an
agent can select its value assignment. Each variable-node selects the value assignment
that received the lowest sum of costs included in the messages that were received most
recently from its neighboring function-nodes. Formally, for variable x we select the
value d̂ ∈ Dx as follows:

d̂ = mind∈Dx

∑
f∈Fx

cost(f.d)
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Notice that the same information used by the variable-node to select the content of the
messages it sends is used for selecting its value assignment.

5. Anytime Local Search Framework for DCOPs

Local search algorithms as presented in Section 4 combine exploration and ex-
ploitation properties in order to converge to local optima, and escape from them in order
to explore other parts of the search space. When a centralized constraint optimization
local search algorithm is performed, the quality of the states (i.e., full assignments) of
the algorithm are completely known and therefore there is no difficulty in holding the
best state that was explored. In a distributed constraint optimization problem, agents
are only aware of their own private state (the violated constraints they are involved in
and their costs) and, thus, a state that can seem to have high quality to a single agent
might have low global quality and vice versa. In the case of Distributed Constraint Sat-
isfaction Problems (DisCSPs), the problem is easier, since in the global optimal state
all agents are in a private optimal state as well with no violated constraints. This is not
the case in Distributed Constraint Optimization Problems (DCOPs) where the global
optimal state can include a number of violated constraints. In this case the evaluation
of the states according to the private preferences of an agent can be different from the
evaluation of the states according to the global quality of states.

We note that the algorithms presented in Section 4 were originally designed for
DisCSPs and have subsequently been adapted for solving DCOPs [7]. The problem
is that even if the optimal state is reached, none of the agents will be aware of it.
Since none of the agents are aware of the quality of the global state, the termination
condition must be independent of the states’ quality, for example, stopping after the
algorithm performs a limited number of steps [7]. Moreover, the algorithm can only
report the final state reached, not the state with the highest quality that it has explored.

We propose a framework, ALS DCOP, that enhances DCOP local search algo-
rithms with the anytime property. In the proposed framework, a spanning tree on the
constraint graph is used, similar to ADOPT [4] and DPOP [5]. However, while ADOPT
and DPOP require the use of a pseudo-tree in which every pair of constrained agents
must be on the same branch in the tree, the only requirement in ALS DCOP is that
the tree is indeed a spanning tree on the constraint graph, i.e., every agent has a parent
route to the root agent and all parents in the tree are neighbors of their children in the
constraint graph. Thus, a Breadth First Search (BFS) tree on the constraint graph can
be used.

A BFS-tree is a spanning tree (in this case it spans the constraints graph) that in-
cludes the shortest path from the root to each of the graph’s nodes [43]. A BFS-tree
can be generated efficiently using the following distributed procedure proposed in [26]
for maintaining shortest routes in networks:

1. Each agent Ai holds a private variable δi which is initially set to∞.
2. The root agent (e.g., agent with smallest index) sets δroot to zero and sends to all

its neighbors a message that includes this number (zero).
3. Each agent Ai that receives a message with a number j, smaller than δi, sets
δi ← j + 1, sets the agent it received the message from to be its parent in the
tree, and sends messages with the new value of δi to each of its other neighbors.
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4. After h steps, every agent knows its parent in the BFS-tree with height h.
5. Another h steps are needed so that every agent knows its height in the tree (sim-

ilarly, leaves send height zero to parents, etc).
6. After 2h steps the BFS-tree is ready to be used by the algorithm.

The BFS-tree structure is used in order to accumulate the costs of agents’ assign-
ments during the execution of the algorithm. Each agent calculates the cost of the
sub-tree it is a root of in the BFS-tree and passes it to its parent. The root agent calcu-
lates the complete cost of each state and if some state is found to be the best state so
far, propagates its step index to the rest of the agents. Each agent Ai is required to hold
its assignments in the last h+ di steps where di is the length of the route of parents in
the BFS-tree from Ai to the root agent and is bounded by the height h of the BFS-tree.

Next, we describe in detail the actions agents perform in the ALS DCOP frame-
work regardless of the algorithm in use. These actions are also described by the pseu-
docode in Figure 5. In the initialization phase, besides choosing a random value for the
variable, agents initialize the parameters that are used by the framework (lines 1-10 in
Figure 5). The root initializes an extra integer variable to hold the cost of the best step
(line 10). In order to find the best state out of m steps of the algorithm, m+h steps are
performed (notice that for each agent the sum of hi and di is equal to h, which is the
height of the entire BFS-tree). This is required so that all the information needed for
the root agent to calculate the cost of the m steps will reach it (line 11). In each step of
the algorithm an agent collects from its children in the BFS-tree the calculation of the
cost of the sub-tree of which they are the root (line 15). When it receives the costs for
a step j from all its children, it adds its own cost for the state in step j and sends the
result to its parent (line 17). When the root agent receives from all its children the costs
of step j of the subtrees they are the roots of, it calculates the global state cost (lines
18–22). If it is better than the best state found so far, in the next step it will inform
all its children that the state in step j is the best state found so far. Agents that are
informed of the new best step store their value assignment from that step as the best
assignment and propagate the step number that was found to be best to their children
in the next step (lines 23–25). After every synchronous step the agents can delete the
information stored about any of the steps that were not found to be the best and are not
of the last h + di steps (lines 28–29 in Figure 5). When the local search algorithm is
terminated, the agents must perform another h steps in which they do not replace their
assignment to make sure that all the agents are aware of the same index of the best step
(lines 31–36).

An example of the performance of the ALS DCOP framework is presented in Fig-
ures 6 to 8. To keep the example simple, we only demonstrate the accumulation of the
cost of a complete assignment in a single step and the propagation of its index once it
is found to be the best so far. The figures do not show that while the costs of the agents’
states in step i are being accumulated, costs and indices of adjacent steps are also being
passed by agents in the BFS-tree.

A DCOP in which the dashed lines connect neighbors in the constraint network and
the arrows represent the BFS-tree arcs (each arrow is from parent to child) is presented
on the left side of Figure 6. The costs in the figure are the local (private) costs calculated
for each agent in its state at step i. In the next step, all the leaf agents in the BFS-tree
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ALS DCOP
1. hi ← height in the BFS-tree
2. di ← distance from root
3. best← null
4. best step← null
5. step← 0
6. costi ← 0
7. local coststep ← 0

8. valuestepi ← selectValue()
9. if (root)
10. best cost←∞
11. while (step < (m+ di + hi))
12. send message including costi to parent
13. send messages to non tree neighbors
14. send message best step to children
15. collect neighbors’ values
16 local coststep ← CalculateLocalCost()
17. costi ← CalculateStepCost(step− hi)
18. if(root)
19. if(costi < best cost)
20. best cost← costi
21. best← valuestepi

22. best step← step
23. if (message from parent includes a new best step j)
24. best← valueji
25. best step← j
26. if (ReplacementDecision())
27. select and assign the next value
28. delete value

(step−(h+di))
i

29. delete local cost(step−hi)

30. step++
31. for (1 to di + hi)
32. receive message from parent
33. if (message from parent includes a new best step j)
34. best← valueji
35. best step← j
36. send best step to children

Figure 5: ALS DCOP framework.

(agents 3, 4, and 5) send their local costs to their parents in the tree and the parents
add their private costs to the costs they receive from their children. The resulting state
is depicted on the right side of Figure 6, in which agent 2 added the costs for step i
it received from its children, agents 4 and 5, to its own local cost of step i and got a
cost of 8 for step i. Agent 1 received the cost of agent 3 and added it to its own local
cost but it still did not receive the cost for step i from agent 2. At the next step, agent
1 receives the cost of step i from agent 2 and can calculate the total cost of step i for
the complete assignment (see the left side of Figure 7). Since it is smaller than the best
cost achieved so far, agent 1 updates the new best cost to be 15 and in the next step
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Figure 6: On the left - Private costs of agents in step i. On the right - Calculations of the cost of step i at step
i+ 1.

Figure 7: On the left - Calculations of the cost of step i at step i+ 2. On the right - Propagation of the new
best step, step i+ 3.

Figure 8: Propagation of the new best step, step i+ 4.

sends a notification about a new best step in its messages to its children in the BFS-tree
(see the right side of Figure 7). In the next step (Figure 8), the rest of the agents receive
the notification that they should preserve the assignment they held in step i. Since the
height of the BFS-tree is 2, the process of accumulating the cost of step i by the root
agent and the propagation of the information that was found to be the best step took 4
steps.
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6. Properties of the ALS DCOP framework

ALS DCOP is a framework for implementing local search algorithms for DCOPs.
Regardless of the algorithm being used, the ALS DCOP framework offers properties
that ensure preservation of the algorithm’s behavior.

6.1. Anytime property

The main goal of the ALS DCOP framework is to enhance a distributed local search
algorithm with the anytime property (i.e., that the cost of the solution held by the algo-
rithm at the end of the run would monotonically decrease if the algorithm is allowed to
run for additional steps [25]). In order to prove that ALS DCOP is an anytime frame-
work for distributed local search algorithms, we first prove the following lemma:

Lemma 1. At the i+h step, the root agent holds all the needed information for calcu-
lating the quality of the assignment held by the agents in step i.

Proof: We prove by induction on the height of the tree h. If h = 0, the root is the only
agent in the system and thus it holds all the relevant information. For h > 0, assume
the lemma holds for every tree of height less than h. After i + h − 1 steps, according
to the assumption, all the children of h hold all the information needed to compute the
costs of the sub-tree that they are the roots of. In step i+ h, the root agent will receive
these costs and it will be able to add its own private cost for step i to the sum of the
costs of all the other agents in the DCOP in step i. �

Next, we prove that at the end of the run (after m+ 2h steps) the best assignments
held by all agents are value assignments that they held in the same step during the
algorithm run.

Lemma 2. When the algorithm terminates after m + 2h steps, all the assignments of
the best state held by all the agents in the system were the values they assigned to their
variables in the same step (in other words the best step for all agents is equal).

Proof: According to Lemma 1, after m + h steps of the algorithm, the root agent
holds the index of the best step in the first m steps of the algorithm. In the final h steps
only messages including the best step are passed. Since no new best step is found
by the root in these steps and h steps are enough for all the agents in the BFS-tree to
receive a new best step, then even if a best step was found in the mth step of the
algorithm, its propagation is completed. �

Now we are ready to state the main theorem:

Theorem 1. The ALS DCOP framework is anytime, i.e., when it runs form+2h steps
it reports the best state among the first m steps.

Proof: This follows directly from Lemmas 1 and 2. h steps after each step is
performed, the root agent holds the information needed to evaluate its global quality
(the aggregated cost) and can propagate its index to all other agents in case it is the
best. Since we require that agents hold the value assignments of the last h + di steps
(where di is the length in a route of parents of an agent from the root and is at most h,
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see Section 5), they can get the update on the index of the best step before they delete
the relevant assignment and hold it until they receive another update. Thus, afterm+h
steps, the root agent holds the index of the step with the best state among the first m
steps and, according to Lemma 2, at the end of the algorithm run, all agents hold the
value assignment of the step that was found by the root to be the best. If the algorithm
is run for an additional k steps (i.e., the termination condition is met after m+ k + 2h
steps), in the k steps performed after the first m steps either a better solution is found
or the same solution that was found best in the first m steps is reported. �

6.2. Performance analysis

Distributed algorithms are commonly measured in terms of time for completion and
network load. Time in a synchronous system is counted by the number of synchronous
steps, and network load by the total number of messages sent by agents during the
algorithm run [44]. When considering a local search algorithm for DCOPs, since it
is not complete and the agents cannot determine that they are in an optimal state, the
time for termination is predefined, i.e., we select in advance the number of steps that
we intend to run the algorithm for. However, we note that in the proposed framework,
in order to get the best state among m steps the algorithm needs to run for m + 2h
steps. However, the tree that is used by ALS DCOP has different requirements than
the pseudo-trees that are used by complete algorithms (such as ADOPT and DPOP).
In a pseudo-tree that is used in complete algorithms, constrained agents must be on
the same parent route (in every binary constraint, one of the constrained agents is an
ancestor of the other). This requirement makes the pseudo-tree less effective when the
constraint graph is dense. In contrast, the only requirement in ALS DCOP is that every
agent has a parent route to the root agent, allowing us to use a BFS-tree. Since a BFS-
tree includes a shortest route from each node to the root, the height of the resulting
tree (especially when the constraint graph is dense) is expected to be small. In our
experimental study we demonstrate that starting from very low density parameters the
height of the BFS-tree for randomly-generated problems is logarithmic in the number
of agents.

In terms of network load, the ALS DCOP framework does not require any addi-
tional messages. In standard local search algorithms (such as DSA and DBA), agents
at each step send at least one message to each of their neighbors. The ALS DCOP
framework does not require more. The additional information that agents add to mes-
sages is constant (costs or best step indices).

In terms of space, an agent i is required to hold the value assignments of the last
h + di steps (again, di is the distance in tree edges of an agent from the root) and to
hold the cost of its own state and probably of its neighbors in the last hi steps (where
hi is the height of the agent in the BFS-tree). This results in a O(h) additional space
(linear in the number of agents the worst case, logarithmic in practice) requirement for
each agent.

6.3. Privacy of ALS DCOP

Local search algorithms require different amounts of information to be passed be-
tween the agents. In DSA, only the assignments are passed by agents to neighboring
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agents, while in DBA, agents also pass their proposed reduction to the cost of the cur-
rent state. ALS DCOP requires, in addition, that each agent will pass the cost of a
state in the sub-tree of which it is the root. As in other algorithms that use a tree (such
as ADOPT and DPOP), the main problem with privacy in ALS DCOP concerns the
information passed by leaves in the tree to their parents [45].

When a non-leaf agent Aj passes the cost of its sub-tree to its parent, the parent
does not know how many children Aj has and the contribution of each of these agents
to the reported cost. On the other hand, when a leaf agent reports a cost, its parent
knows that it is the cost of a single agent (the leaf itself). However, agents are not
aware of the system’s topology except for their own neighbors. So in fact, even though
the parent of a leaf receives its cost in every step of the algorithm, the parent does
not know how many neighbors its leaf child has in the constraint network and which
constraints were violated; therefore the privacy violation is minor.

7. Exploration Heuristics

The standard use of local search algorithms for DisCSPs and DCOPs prior to the
proposal of the ALS DCOP framework includes running an algorithm for some number
of steps (m) and reporting the complete assignment (solution) held by the agents after
the m′th step. This use of the algorithm favored exploitive algorithms such as MGM
and DSA over explorative algorithms like DBA [7].

7.1. Exploration in Existing Incomplete Algorithms

MGM is quintessentially exploitive: it is a monotonic algorithm that implements
distributed hill climbing and converges to a local minimum without exploration. Its
successors MGM-2, DALO and K-opt [15, 21] are similarly monotonic.

DSA also implements distributed hill climbing and so is exploitive by design, but it
is not monotonic because simultaneous updates by constrained agents may result in an
increase in cost. With an appropriately selected probability for replacing an assignment
by the agents (parameter p), the algorithm performs mostly exploitive (very limited
exploration) and converges quickly [7]. However, as long as p < 1, DSA will converge
to a local minimum in finite time, although it may take impractically long if p is set to
be too great.

Agents in DSAN perform biased random walks by randomly choosing new value
assignments and always adopting cost-decreasing changes while adopting cost-increasing
changes with a probability that decreases over time. After a period of initial explo-
ration, DSAN eventually converges to a local minimum.

Penalty-driven approaches like DBA and DisPeL modify the cost structure that the
agents reason over by adding penalties when they can no longer reduce their local
costs. DBA adds these penalties to constraints, while DisPeL adds them to values
(i.e., unary constraints); the penalties eventually cause the agents to shift to different
value assignments, thereby escaping the local minima. However, the subsequent local
minima according to the modified cost structure that the algorithms converge to may
not be local minima in the problem. This is a more radical form of exploration which
may not converge.

18



In contrast to the existing local search algorithms whose levels of exploitation and
exploration depend on their search strategies, Max-Sum performs a completely ex-
ploitive search strategy, always propagating the best costs and selecting the best as-
signment, but it is still not guaranteed to converge [8, 46]. When it fails to converge it
acts exploitively but actually explores low quality states.

7.2. Innovative Exploration Methods

The ALS DCOP framework allows the selection of the best solution traversed by
the algorithm and thus can encourage the use of explorative methods. We propose
both algorithm-specific and algorithm-independent heuristics implementing different
approaches towards exploration.

7.2.1. Algorithm-Specific Exploration Heuristics
The algorithm-specific heuristics that we propose extend DSA and DBA.

• The first heuristic type we propose combines two exploration strategies that were
found to be successful in previous studies. The first is a periodic increase in the
level of exploration for a small number of steps. This approach was found to
be successful for the DCOP model proposed for mobile sensing agent teams
DCOP MST [19]. The second is periodically restarting, which in the case of
local search methods results in a periodic selection of a random assignment. The
random-restart strategy is commonly used in constraint programming methods,
e.g., [47]. We incorporated this strategy with the DSA-C version of DSA. In
DSA-C, an agent replaces its assignment with probability p (in our experiments
we used p = 0.4) if its best alternative value assignment does not increase the
cost of its current assignment. In the proposed heuristic, every k steps the proba-
bility of replacing an assignment is increased from p to p∗ for k∗ steps. In order
to combine the restart strategy, every r steps agents select a random assignment.
In our experiments we used two combinations of the parameters k, k∗, p, p∗,
and r, which were found to be most successful. We refer to it as DSA-PPIRA.
PPIRA stands for Periodic Probability Increase and Random Assignments.

• The second exploration approach we implemented formulates a dependency be-
tween the probability for replacing an assignment and the potential for improve-
ment that this replacement offers. Such a dependency was suggested for the
DSA algorithm in the DSA-B version [7]. In DSA-B, agents do not replace
assignments if the number of violated constraints is zero. This method is com-
patible with distributed CSP problems where the aim is to satisfy all constraints.
However, it is not applicable when solving DCOPs where there is always some
incurred cost for a pair of assignments of constrained agents. Thus we propose
the DSA-SDP heuristic, where SDP stands for Slope Dependent Probability: If
there is an improving alternative, the probability of replacing the assignment is
calculated as follows:

p = pA +min

(
pB ,
|current cost− new cost|

current cost

)

19



where new cost is the cost of the best alternative value assignment. Thus, the
explorative value of parameter p is determined by the proportion of the new
assignment in comparison to the current assignment. In order to maintain the
explorative nature of the algorithm, pA bounds p from below.4

If the alternative does not improve the current cost, the probability q is used for
replacing the value assignment, calculated as follows:

q =

{
0, |current cost−new cost|

current cost > 1

max
(
pC , pD − |current cost−new cost|

current cost

)
, |current cost−new cost|

current cost ≤ 1

Intuitively, although an improving assignment could not be found, we still want
some means of exploration. However, we do not want to deteriorate the current
result significantly. Thus, we consider the proportion between the new best pos-
sible utility (least worst) for an alternative assignment and the current utility. If
this proportion is not too large (in the above formula the threshold was set to
an addition of 100%) we avoid changing an assignment. Otherwise, we select a
probability with respect to this proportion.5

In this case (where the best alternative does not provide improvement) we change
probability p only every k steps (we were most successful with k = 40 but this
might be application dependent) to allow the algorithm time to converge.

The proposed approach combines ideas proposed in [37] for constructing a re-
lation between the potential of improvement and the probability of an agent re-
placing its value assignment and for a dependent probability for replacing value
assignments as in the Distributed Simulated Annealing algorithm [48, 36]. How-
ever, here the increasing probability of replacing an assignment is used for calcu-
lating the potential of improving the solution and not the time (as in [48]). It also
includes monitored random selections that increase the exploration level further.

Our experimental study includes a justification for the use of the slope-dependent
formula, which allows reasoning between the selection of multiple options of
replacement probability, as opposed to a constant probability.

• The third approach stems from the DBA algorithm. We extend the possibilities
for agents to break out of a quasi-local optima. However, we avoid the weak-
nesses of the DBA algorithm that made it inferior to DSA. While DBA is more
explorative than other existing algorithms, its breakout mechanism changes the
problem permanently. Thus, in many cases, after a few quasi-local optima are
detected from which agents break out by increasing the weights of violated con-
straints they are involved in, the search space has changed so much that the states
traversed by DBA are of low quality. We propose two alternative breakout meth-
ods. In the first, an agent detecting a quasi-local optima selects a random value

4In our experiments the most successful version had pA = 0.6 and pB = 0.15. Since SDP was the most
successful heuristic found we present experiments that justify this selection in Section 8.

5In our experiments we used pC = 0.4 and pD = 0.8.
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assignment for its variable. We call this method Distributed Random Breakout
(DRB). This method attempts to replicate the success of random-restart meth-
ods that was reported in the case of centralized algorithms for solving constraint
problems [47]. In the second proposed method we use the best value assignment
found during the search from the agent’s point of view. When the agent detects
a quasi-local optimum it replaces its value assignment with this best value. Here
we implement an approach of balancing exploration with exploitation of knowl-
edge that was accumulated during search [9]. While the best assignment pre-
viously found may not be compatible with the current state of the other agents,
it has evident potential to be part of a successful solution. We call this method
Distributed Breakout Best Assignment Retrieval (DB BAR).

7.2.2. Algorithm-Independent Exploration Heuristics
We propose a Random Restart algorithm-independent heuristic to demonstrate the

general ability of the ALS DCOP framework to facilitate exploration in incomplete
DCOP algorithms. In Random Restart exploration, the agents occasionally alter execu-
tion of their algorithm as if starting anew; this involves clearing any accumulated state
and choosing a new, random assignment. Random Restart is well-suited for problems
where the quality of local minima are heavily dependent on the starting assignment and
where there are relatively many starting locations that can lead to low-cost solutions.

We consider two techniques to determine when to initiate exploration. The first
triggers exploration after a fixed period of time, similar to the approach that we used in
DSA-PPIRA and DSA-SDP. The second is to trigger exploration only when the search
has converged to a local minimum, similar to the approach used with DRB. Detecting
convergence can be achieved very naturally in ALS DCOP because the root computes
the total, global cost of solutions. We adopt a simple threshold-based convergence
detector that decides that a local minimum has been reached when the computed global
cost does not change for a number of steps T . When convergence has been detected,
the root sends a Restart message to all of its children, who in turn propagate it to their
children and so on. The Restart message instructs agents to randomly restart at the
time when all agents receive the message; this is h steps after convergence is detected,
where h is the height of the ALS tree. This guarantees that the exploration occurs
simultaneously for all agents.

Random restart (and other algorithm-independent exploration heuristics) can be
also incorporated into DCOP algorithms in an ad hoc fashion; for example, DSA PPIRA
and DRB both make use of random restarts. The goal here, however, is to consider how
such heuristics can leverage the ALS DCOP framework to add exploration in a way
that is independent of the specific DCOP algorithm being used.

8. Experimental Evaluation

In order to demonstrate the impact of the ALS DCOP framework on distributed
local search, we present a a set of experiments that shows the effect of the proposed
framework when combined with intensive exploration methods. We evaluate these
methods on three different types of problems: unstructured random problems, struc-
tured graph-coloring problems, and realistic meeting-scheduling problems. Except
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Figure 9: The average heights of the tallest BFS-trees and DFS-trees and the average number of connected
components in unstructured random DCOPs as a function of the constraint density p1.

where otherwise noted, each data point represents the average over 50 independently
generated problems.

8.1. Unstructured Random Problems

The unstructured, uniformly random problems in our experiments were minimiza-
tion random binary DCOPs in which each agent holds a single variable. The network
of constraints in a problem was generated randomly by adding a constraint for each
pair of agents/variables independently with probability p1. The cost of any pair of as-
signments of values to a constrained pair of variables was selected uniformly at random
from a finite, discrete range. Such uniformly random DCOPs with n variables, k val-
ues in each domain, a constraint density of p1, and a bounded range of costs/utilities,
are commonly used in experimental evaluations of centralized and distributed algo-
rithms for solving constraint optimization problems (e.g., [14]). In our experiments we
considered problems with n = 120 agents, k = 10 values in each domain, and costs
chosen from the range {1, 2, . . . , 10}.

8.1.1. BFS vs. DFS Spanning Trees
Our first set of experiments demonstrates the benefit of using a BFS-tree within

the proposed framework. We generated 10000 uniformly random problem instances
for each value of p1 from 0.005 to 0.1 in increments of 0.005. For each problem
instance we computed both breadth-first search and depth-first search spanning trees
to find the connected components of the constraint network. Because the overhead
of the ALS DCOP framework is determined by the height of the tallest tree, for each
problem instance we recorded the maximum tree height and averaged this maximum
height across all 10000 problem instances with the same p1 value. The results are
shown in Figure 9. The average number of connected components for each density is
also shown using columns plotted on the secondary y-axis.

DFS and BFS find trees of similar maximum heights when p1 = 0.005 because the
constraint graph is very sparse and most of the components have only a single agent;
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Figure 10: The cost in each step of standard incomplete algorithms solving random DCOPs, p1 = 0.1.

on average the tallest trees for both approaches have height of 4.4. As p1 increases
the number of components drops rapidly. The average height of the tallest BFS-tree
increases as the components become larger, peaking just under 12 for p1 = 0.015. The
average height of the tallest BFS-trees then decreases as p1 increases further, averaging
under 6 for p1 = 0.035 (when there are fewer than 3 components on average), below 4
for p1 = 0.065 (when there are only a 1.0398 components on average), and continuing
to decline to an average maximum height of 3.0347 for p1 = 0.1. This shows that when
the constraint density is sufficiently high enough for there to be a single connected
component, BFS tends to find trees that have only logarithmic height.

In contrast, the average height of the tallest DFS-trees continues to increase with the
constraint density. Indeed, when p1 = 0.04, the tallest DFS-tree averages a height of
more than 83, and out of the 10000 randomly generated instances the tallest DFS-tree
was never shorter than 63. The reason is that as the constraint graphs become denser,
DFS is less likely to have to backtrack, resulting in taller trees. This is consistent
with known results from random graph theory. For example Pósa [49] found that for
a sufficiently large, finite constant c, the probability that random graphs with p1 =
c log(n)/n are Hamiltonian tends to 1 as n goes to infinity, and hence DFS may find
a tree of height n − 1. It is true that other, shorter DFS-trees may also exist and that
ordering heuristics (which we did not consider here) may help in finding shorter DFS
trees. However, a DFS-tree starting from a given root will never be shorter than a BFS-
tree starting from the same root, and no ordering heuristic is needed for the BFS. The
simplicity of BFS and the superiority of its generally logarithmic-height trees make it
clearly preferable for use in the ALS DCOP framework.

8.1.2. Sparse Unstructured Problems
Our next set of experiments compared the performance of local search algorithms

on sparse, unstructured random DCOPs with constraint density p1 = 0.1. Figure 10
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Figure 11: The cost in each step of DSA variants when solving random DCOPs, p1 = 0.1.

presents the average cost in each step of the states found by the existing incomplete
DCOP algorithms Max-Sum, DBA, MGM, and DSA. The curve of the average costs
for each algorithm is labeled on the right by the name of the algorithm. We also present
the average anytime costs of the best state found prior to each step for Max-Sum and
DBA, as maintained by the ALS DCOP mechanism; these are the curves labeled “Max-
Sum Anytime” and “DBA Anytime,” respectively.

Both DSA and MGM, being exploitive algorithms, produce smooth curves that
decrease before converging. Their exploitive natures are verified by their anytime costs
(not shown), which are very similar to the standard results depicted. MGM’s standard
cost curve and anytime cost curve match exactly, because in a monotonic algorithm the
best solution found is also the most recent solution found. The two curves do not match
exactly for DSA but the differences are not statistically significant. Neither algorithm
performs significant exploration.

In contrast, both Max-Sum and DBA perform considerable exploration after an
initial period of exploitation, as can be seen by their step-by-step costs first decreasing
smoothly (exploitation), then increasing and decreasing (exploration). By comparing
the current-state costs with the anytime costs, it is clear that ALS DCOP allows them
to find significantly better solutions, but these solutions are still of lower quality than
those produced by MGM and DSA. One interesting observation is that while exploring,
the average anytime cost at a step is better than the best average cost of the preceding
steps. This is because different runs of the algorithms find higher-quality solutions
in different steps. These lower- and higher-quality solutions offset each other in the
average cost, but the average anytime cost aggregates the best solutions found in all
previous steps preventing this offsetting; each time a run of an algorithm finds a better
solution, the average anytime cost improves.

Figure 11 presents the results of DSA combined with the exploration methods pro-
posed in this paper, PPIRA and SDP. We used two versions of the PPIRA method in
our experiments that were found to be successful in parameter sensitivity checks. In
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Figure 12: Anytime cost in each step of DSA variants when solving unstructured random DCOPs, p1 = 0.1.

DSA-PPIRA-1, every 15 steps (k = 15) the probability of replacing an assignment was
increased from p = 0.4 to p∗ = 0.8 for k∗ = 5 steps. Random assignment selections
were performed by the agents every r = 35 steps. In DSA-PPIRA-2, the parameters
were k = 8, k∗ = 5, p = 0.4, p∗ = 0.9, and r = 50. PPIRA-1 is more frequent
in its random selections while PPIRA-2 is more frequent in its probability increases.
DSA-SDP is described in detail in Section 7. The parameters of the algorithm in all
our experiments were set to pA = 0.6, pB = 0.15, pC = 0.4, pD = 0.8. Later in this
section we present experiments that justify the use of the slope-dependent formulas.

It is quite clear that the trends in the graphs in Figure 10 and Figure 11 are very
different. The successful existing algorithms are exploitive. On the other hand, it
is apparent that the versions of the DSA algorithm we proposed (and presented in
Figure 11) perform intensive exploration.

Figure 12 presents the anytime results for DSA, DSAN, DSA-PPIRA-1, DSA-
PPIRA-2, and DSA-SDP on the random setup presented in Figure 11. Although DSA
converges more quickly than DSAN, it finds solutions of lower quality. This is ex-
pected because DSAN initially explores (so it does not converge as quickly to a local
minimum) but that exploration allows it to possibly find better local minima. The three
exploration heuristics that we combine with DSA outperform both DSA and DSAN
while retaining the fast convergence of DSA. Among the PPIRA methods, it is apparent
that PPIRA-2, which is the version that performs more frequent probability increases,
is the version that performs better. Both of them are outperformed by the SDP method.

Figure 13 presents the anytime results for penalty-based algorithms solving the
same problems as in Figures 11 and 12. MGM, MGM-2, DisPeL, and DBA are the
existing algorithms while DRB and DB BAR are the versions of the algorithm we
propose in Section 7. The two variants of the algorithm we propose outperform the
existing DBA-family of algorithms. DisPeL ultimately finds solutions of lower cost
than DB BAR, and of statistically similar costs as DRB. However, it is interesting to
note that these three algorithms have very different convergence profiles: DB BAR
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Figure 13: Anytime cost in each step of penalty-driven algorithms when solving unstructured random
DCOPs, p1 = 0.1.

Figure 14: Anytime cost in each step of the best exploration methods compared with existing algorithms
when solving unstructured random DCOPs, p1 = 0.1.

finds lower-cost solutions very quickly while DRB finds them somewhat more slowly
but ultimately finds better solutions. This is an example of the classic tradeoff between
exploitive selection during the breakout procedure (DB BAR) and the explorative, ran-
dom selection of DRB. DisPeL takes the longest, partly due to the costly overhead of
forming its tree, which has considerably greater height than the anytime tree.

Figure 14 presents the anytime results for the best performing existing algorithms
(DisPeL and DSAN) and proposed algorithms (DRB and DSA-SDP) of the penalty-
driven and DSA families of algorithms. DSAN converges much more quickly than
DisPeL and DRB but finds a solution of ultimately lower quality. However, it is clear
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Figure 15: Anytime cost in each step of DSA variants when solving random DCOPs, p1 = 0.6.

that the most successful algorithm is DSA-SDP.

8.1.3. Dense Unstructured Problems
Similar results are presented in Figures 15, 16, and 17 for the same algorithms solv-

ing dense problems (p1 = 0.6). The relative performance of the DSA variants were
similar to that in the sparse problems, with DSA-SDP finding the lowest cost solutions,
but on denser problems DSAN did no better than DSA, despite taking longer to con-
verge. Among the penalty-driven approaches, DRB and DB BAR produced similar
results to each other and outperformed the other algorithms. On these denser problems
convergence was especially problematic for DisPeL, which took hundreds of steps to
build its tree, and MGM-2, which was not even able to find a solution of equal quality
to that found by MGM before termination. It is interesting that in this case the DSA ap-
proaches were superior, as seen in Figure 17: the best penalty-driven approach, DRB,
only matched the solution quality found by DSAN (and hence DSA), and DSA-SDP
found solutions of significantly lower cost than all other algorithms.

8.2. Graph Coloring Problems

In the next set of experiments the algorithms solved graph coloring problems, also
with 120 agents. The number of colors in the problem (i.e., the domain size) was 3
and the density parameter p1 = 0.05. As in standard graph coloring problems, we
set the cost of each broken constraint (two adjacent variables with the same color) to
one. These problems are known to be hard Max-CSP problems, i.e., beyond the phase
transition between solvable and non-solvable problems [50].

For this set of experiments we maintain the three graph presentation of DSA vari-
ants, penalty-driven variants, and the best of our proposed approaches in comparison
with the best existing algorithms. Figures 18, 19, and 20, respectively, depict these
three graphs. For the DSA versions the performance of our proposed algorithms pre-
served the same trend observed for random DCOPs, DSAN found solutions that were
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Figure 16: Anytime cost in each step of penalty-driven algorithms when solving random DCOPs, p1 = 0.6.

Figure 17: Anytime cost in each step of the best exploration methods compared with existing algorithms
when solving random DCOPs, p1 = 0.6.

not statistically significantly worse than DSA-SDP. This strong performance by DSAN
is due to the anytime property, as we show in Section 8.5.1. The DSA-SDP version
still dominated the other DSA variants, with a more apparent advantage over the other
versions than with the dense, unstructured problems. We expand on this advantage of
DSA-SDP later in this section.

In contrast to the results on random problems, the results of the penalty-driven vari-
ants when solving graph coloring problems reveal a clear advantage for DBA. Surpris-
ingly, our two proposed variants perform the worst, finding worse solutions than even
MGM. This suggests that there is considerable room for exploitation in graph coloring.
However, there is also a need for exploration to find low cost solutions, as evidenced by
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Figure 18: Anytime cost in each step of DSA variants when solving graph coloring problems.

Figure 19: Anytime cost in each step of penalty-driven variants when solving graph coloring problems.

DisPeL and DBA outperforming the strictly exploitative MGM and MGM-2. The best
algorithm found for graph coloring problems as for random problems was DSA-SDP
(see Figure 20), converging faster than DBA and also finding solutions of better qual-
ity (although the trend suggests that DBA may be able to possibly find better solutions
if given enough time).

8.3. Meeting Scheduling Problems

The next set of experiments was performed on realistic Meeting Scheduling Prob-
lems (MSPs) [51, 52, 53]. The meeting scheduling problem includes n agents that are
trying to schedule m meetings. Each meeting mi has ki ≤ n specific agents that are
intended to attend it. In addition, for every two meetings we randomly selected a travel
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Figure 20: Anytime cost in each step of the best exploration methods compared with existing algorithms
when solving graph coloring problems.

time that is required to get from the location of one meeting to the other. When the
difference between the time-slots of two meetings with overlapping participants was
less than the travel time, a scheduling conflict occurred for the overbooked agents who
are scheduled to participate in both meetings. Constraints define the cost of scheduling
conflicts and the agent’s preferences for meetings being scheduled at each time. We
designed the problem as a minimization problem. Thus, a scheduling conflict incurs
a cost equal to the number of overbooked agents in the two meetings, and preferences
for meeting times are represented by giving higher costs to meetings at less preferred
times. The setup in this experiment included 90 agents and 20 meetings. There were 20
available time-slots for each meeting. The travel times between meetings were selected
randomly between 6 and 10.

The results in Figure 21 show that our proposed heuristics outperform DSA and
DSAN, and the differences between our algorithms are negligible. Figure 22 shows
that in contrast to the graph coloring problems, DRB does very well in solving meeting
scheduling problems. It is interesting to note that, like with graph coloring, exploration
and exploitation both work well on meeting scheduling, as shown by the second-best
penalty-driven approaches being DisPeL and MGM-2. However, DBA is not able to
strike the right balance for these problem types and finds much worse solutions. Fig-
ure 23 shows that DSA-SDP ultimately finds very similar solutions to DRB, but con-
verges to low-cost solutions much more quickly.

8.4. Algorithm-Independent Heuristic

Our next set of experiments tested the Random Restart algorithm-independent heuris-
tic. To measure its effectiveness, we considered the improvement in the cost of the
solution ultimately found relative to the cost of the standard solution found without the
ALS DCOP framework. We compared this improvement to that achieved with only
the anytime framework and without the algorithm-independent heuristic. We used a
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Figure 21: Anytime cost in each step of DSA variants when solving meeting scheduling problems.

Figure 22: Anytime cost in each step of penalty-driven variants when solving meeting scheduling problems.

threshold of T = 40 steps to detect convergence for convergent exploration, and a
period of 80 steps for periodic exploration.

Figure 24 shows the improvement in cost for the random restart heuristic on sparse,
unstructured random problems (p1 = 0.1). Convergent random restart can be seen
to provide the same or better improvement than the anytime framework without ad-
ditional exploration. It yields the same improvement in cost as the anytime frame-
work for our proposed DSA variants, all variants of DBA, and Max-Sum. This is
because these algorithms perform a considerable amount of exploration already, and
hence convergence is not detected and the random restart exploration is never trig-
gered. In contrast, the algorithms that are monotonic or nearly-monotonic on these
problems (DSA, DSAN, MGM, and MGM-2) show no improvement in cost from the
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Figure 23: Anytime cost in each step of the best exploration methods compared with existing algorithms
when solving meeting scheduling problems.

Figure 24: Percentage improvement of the solution cost due to the anytime mechanism alone and random
restarts with the anytime mechanism on sparse unstructured random problems (p1 = 0.1).

ALS DCOP framework because they are already anytime. When the algorithm con-
verges quickly (DSA, DSAN, and MGM), convergent random restart improves perfor-
mance by allowing it to sample multiple local minima over the course of execution and
choose the one with lowest cost. When it converges slowly (MGM-2) convergent ran-
dom restart has little or no effect because there are correspondingly fewer opportunities
for it to trigger exploration.

In contrast to the “safe” amounts of exploration provided by convergent random
restart, periodic random restart can have negative effects on the quality of the solution
found, indicated by smaller improvement than with the anytime framework. In ex-
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Figure 25: Percentage improvement of the solution cost due to the anytime mechanism alone and random
restarts with the anytime mechanism on dense unstructured random problems (p1 = 0.6).

treme examples (MGM-2 and DisPeL), periodic random restart even worsens perfor-
mance relative to the original algorithm without ALS DCOP at all. This is because it
forces exploration without considering the local state of the algorithm. For the slowly-
converging algorithms like MGM-2 and DisPeL, this means that they are interrupted
before being able to converge, thus worsening performance. It is also harmful to algo-
rithms like DSA-SDP or DRB that already perform algorithm-specific exploration. It
is helpful for rapidly-converging monotonic algorithms like DSA and MGM, but not
significantly more so than convergent random restart.

Figure 25 shows the improvement in costs on dense unstructured problems (p1 =
0.6). The results are broadly similar to those for the sparse problems, except that
periodic random restarts lead to worse solution quality for a wider range of algorithms,
including DBA, DBA BAR, and MGM in addition to MGM-2 and DisPeL. In addition,
it worsens the performance of DRB and DisPeL more than it did in the sparse problems.
This occurs because convergence in dense problems is slower than in sparse problems,
as suggested from a comparison of Figures 13 and 16. By interrupting the local search
algorithms before they can converge to a local minimum, the random restart heuristic
increases solution cost.

Figure 26 shows the improvement in costs on graph coloring problems. The results
are broadly similar to those for the unstructured problems, although MGM-2 and Dis-
PeL both converge quickly enough that both convergent random restart and periodic
random restart provide improvement. A notable difference from the results with un-
structured problems is that periodic random restart greatly improves the solution found
by DBA BAR. This is likely because DBA BAR gets trapped in cycles on graph col-
oring problems, with agents reaching quasi-local minima and reverting to their best
previously value assignment. Because it is a cycle, costs do not converge and hence
convergent random restart shows no effect, but periodic random restart is able to al-
low the algorithm to explore other regions of the search space, leading to improved
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Figure 26: Percentage improvement of the solution cost due to the anytime mechanism alone and random
restarts with the anytime mechanism on graph coloring problems (p1 = 0.05).

Figure 27: Percentage improvement of the solution cost due to the anytime mechanism alone and random
restarts with the anytime mechanism on meeting scheduling problems.

performance.
The results on the meeting scheduling problems are shown in Figure 27. These are

qualitatively similar to those for the graph coloring problems.

8.5. Analysis

8.5.1. Statistical Significance
In order to validate the statistical significance of the presented results we ran a

paired difference test (t-test) comparing the standard results of the algorithms with
their anytime results obtained via the framework proposed in this paper. The results
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Problem Type
DSA

Max-Sum DSAN DSA PPIRA-1 PPIRA-2 SDP

Sparse Unstructured + − − + + +

Dense Unstructured + − − + + +

Graph Coloring + + − + + +

Meeting Scheduling + − − + + +

Table 1: Paired difference statistical significance results for Max-Sum, DSAN, and DSA-family algorithms.

DBA

Problem Type DisPeL MGM MGM-2 DBA DRB DBA BAR

Sparse Unstructured + − − + + +

Dense Unstructured − − − + + +

Graph Coloring + − − + + +

Meeting Scheduling + − − + + +

Table 2: Paired difference statistical significance results for penalty-driven algorithms.

are presented in Tables 1 and 2. For each problem type and algorithm there is a ‘+’
sign if the difference between the anytime results and the standard results were found
to be significant (p-value ≤ 0.01) and a ‘−’ sign if not. The results of the statistical
significance checks were conclusive. The anytime solution cost was found to be sig-
nificantly better than the standard result for every explorative algorithm on every type
of problem. On the other hand, the differences for the monotonic algorithms (MGM,
MGM-2 and DSA) were not found to be significant.

DSAN and DisPeL occupied a middle ground. For DSAN, the average anytime
costs were only significantly better for the graph coloring problems, but as seen in Fig-
ure 18, this is exactly the case where DSAN found very good solutions comparable to
DSA-SDP. It seems that in graph coloring, the exploration performed by DSAN is help-
ful for finding good states that have lower cost than those to which DSAN eventually
converges. On other problem types, DSAN did not use the anytime framework to im-
prove solution quality. In contrast, DisPeL utilized the anytime mechanism to achieve
significantly better results through exploration on the sparse unstructured, graph col-
oring, and meeting scheduling problems, while on dense unstructured problems its
exploration was able to generally guide its search toward improving solutions to the
extent that the anytime framework did not significantly improve the solution quality.
These results emphasize the strong relation between the anytime property and explo-
rative search methods.
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Figure 28: Anytime cost in each step of selective local algorithms in comparison with the optimal solution
when solving small random DCOPs, p1 = 0.3.

Figure 29: Anytime cost in each step of selective local algorithms in comparison with the optimal solution
when solving small random DCOPs, p1 = 0.7.

8.5.2. Comparison with Optimal
In order to evaluate the relation between the quality of the solutions produced by

our proposed methods and the optimal solution, we performed an experiment on a much
smaller problem scenario in which we were able to find the optimal solutions using an
exhaustive search algorithm. Figures 28 and 29 include experiments on random prob-
lems with 10 agents. To avoid multiple components, we chose higher constraint den-
sities than in the experiments performed on larger random problems. The explorative
heuristics proposed in this paper outperformed the existing monotonic algorithms and
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Figure 30: Anytime cost in each step of the DSA-SDP method with a constant probability for periodically
selecting a non-improving value assignment.

in fact found solutions very close to global optima most of the time. This was partic-
ularly true of DRB which converged faster and ultimately found better solutions even
than DSA-SDP.

It is interesting to note that DRB was able to converge to near-optimal solutions
faster on the denser problems than it was on the sparser problems. In these cases the
quasi-local optima are likely to involve most if not all of the agents. However, it is
clear that the quality of the quasi-local optima that are reached depends heavily on the
initial conditions, because the exploration of DRB upon reaching quasi-local optima
leads to far better solutions than the purely monotonic MGM. DRB also outperformed
MGM-2, which converges to provably better solutions than MGM, and due to MGM-
2’s extremely slow rate of improvement, it is not even clear if it would have eventually
converged to the globally optimal solution.

8.5.3. Examination of DSA-SDP
Our experiments demonstrate that DSA-SDP consistently does as well as or bet-

ter than the other existing and proposed algorithms across all large problem scenarios.
Thus, we present a set of experiments that investigate this success. The DSA-SDP al-
gorithm implements two key innovations. First, the probability of an agent updating
its value is dependent on the magnitude of the local-cost change. Second, when an
agent cannot improve its local cost, it periodically chooses the next-best value stochas-
tically, so that in most cases only a subset of the agents make such changes at once.
This is in contrast to DSA-PPIRA, in which all agents periodically choose a random
value (and hence may increase their local costs), or DSAN, in which agents always
(not periodically) make a stochastic choice to increase their local cost if that is their
best alternative. The following set of experiments investigated the importance of the
combination of these two ideas in DSA-SDP.

Figure 30 presents the results of DSA-SDP solving random problems with density
p1 = 0.1 with a small change. The decision whether to change to a non-improving
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Figure 31: Anytime cost in each step of DSA with different probabilities for replacing a value assignment
and a constant probability for periodically selecting a non-improving value assignment.

Figure 32: Anytime cost in each step of DSA, DSA with a constant probability for periodically selecting a
non-improving value assignment, and DSA-SDP solving graph coloring problems.

value assignment every 40 steps of the algorithm was performed with a constant prob-
ability q. This experiment reveals that the algorithm is most successful when q = 0.6.
Figure 31 presents a comparison of DSA-SDP with versions of the algorithm in which
q = 0.6 and the parameter p, for deciding whether to replace a value assignment with
a value that is at least as good, was fixed as in standard DSA. The results demonstrate
that on random uniform problems, fixed probabilities for both decisions are enough to
produce similar results to the results we obtain when using DSA-SDP.

On the other hand, Figures 32 and 33 present the results of DSA and DSA-SDP in
comparison with the DSA version with constant probability for periodically selecting a
non-improving value assignment, which was found most successful in the experiments
presented in Figure 31 (termed DSA-constant in these figures). The results demonstrate
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Figure 33: Anytime cost in each step of DSA, DSA with a constant probability for periodically selecting a
non-improving value assignment, and DSA-SDP solving meeting scheduling problems.

that the DSA-constant version (that was found most successful for uniform problems)
performs poorly on structured and realistic problems. On the other hand, the DSA-
SDP algorithm performs well on all the problem scenarios used in our experiments.
Thus, the slope-dependent approach for stochastic decisions, which we introduced in
DSA-SDP, is apparently sensitive to the problem structure.

9. Discussion

While most of the graphs we present in Section 8 compare the different explo-
ration heuristics we propose in Section 7, the most important contribution in this study
is the significant improvement when combining explorative algorithms with the pro-
posed anytime framework. All graphs presenting the anytime results show monotonic
improvement in contrast to the standard results (as depicted in Figure 11, for example).
This improvement over the standard results can be seen in Figures 24 – 27, and the sig-
nificance of this improvement was validated in the results presented in Tables 1 and 2.

The explorative heuristics we proposed in this study share a common property.
They all behave in an exploitive manner with bursts of explorative actions. In the
methods combined with DSA, these explorative bursts are periodic. In the methods
combined with DBA, the bursts are triggered by a local identification of idleness. The
algorithm-independent exploration heuristics allow either type of triggering. The re-
sults show dominance of methods combined with DSA over methods combined with
DBA, and dominance of algorithm-specific exploration over algorithm-independent ex-
ploration. These advantages are more apparent when solving random, unstructured
problems. It seems that the local idleness detection (of quasi-local minima) performed
by DBA algorithms is more effective in problems with structure.

Among the DSA versions, the DSA-SDP algorithm dominated in most problem
scenarios and was consistently a strong performer. Our investigation of this algorithm

39



revealed that for specific problems it is possible to use constant probabilities for mak-
ing the same decisions made by agents in DSA-SDP, i.e., the decisions on whether to
replace a value assignment for the best alternative or to periodically change to a non-
improving value assignment. However, fixed probabilities tuned for a specific problem
type can result in arbitrarily bad performance when solving problems of different types.
On the other hand, the decisions made by DSA-SDP that are dependent on the poten-
tial for improvement by replacing value assignments are robust over all the problem
scenarios we have experimented with. It is important to note that like the DSA-PPIRA
versions, DSA-SDP includes a number of parameters that were set following a sensi-
tivity analysis; however, in contrast to other exploration methods, DSA-SDP is much
less sensitive to small variations in these parameters because these parameters define
ranges over which DSA-SDP bases its behavior on the specific local improvements
that are possible during execution. This makes it much easier to choose parameters for
DSA-SDP that are broadly acceptable over a wide range of problem types.

10. Conclusions

Distributed Constraint Optimization Problems (DCOPs) can be used to model many
realistic combinatorial problems that are distributed by nature. The growing interest in
this field has motivated intensive study in recent years on search algorithms for solving
DCOPs. Since DCOPs are NP-hard optimization problems, complete algorithms are
useful only for small problems. Larger problems like the ones studied in our experi-
ments require incomplete methods.

Distributed local search algorithms were originally proposed for Distributed Con-
straint Satisfaction Problems and subsequently applied for DCOPs [7]. However, these
algorithms failed to report the best state traversed by the algorithm, due to the challenge
in evaluating global cost from the private, local costs of individual agents.

To meet this challenge, we proposed ALS DCOP, a general framework for perform-
ing distributed local search in DCOPs that provides them with the anytime property. In
the proposed framework, agents use a spanning tree structure in order to accumulate
the costs of a state of the system to the root agent, which compares the cost of each
state with the cost of the best state found so far and propagates the step index of a new
best state, once it is found, to all other agents. At the end of the run the agents hold the
best state that was traversed by the algorithm.

Apart from a small number of idle steps at the end of the run of the algorithm
(twice the height of the spanning tree), the framework does not require any additional
slowdown in the performance of the algorithm. In contrast to complete algorithms that
use a pseudo-tree, the tree used in ALS DCOP can be a Breadth First Search (BFS)
tree. Thus, the height of the tree is expected to be small. In terms of network load, the
only messages used in the ALS DCOP framework are the algorithm’s messages (i.e.,
no additional messages are required by the framework). Agents are required to use
small (linear in the worst case) additional space.

Most existing local search algorithms for DCOPs are either monotonic (completely
exploitive) or perform limited exploration. Thus, there is a limited benefit when com-
bining the ALS DCOP framework with these algorithms. However, we demonstrate
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that the framework enhances existing explorative algorithms such as DBA and Max-
Sum. In order to demonstrate the full potential of the framework we proposed extreme
explorative methods, which are combined with existing local search algorithms (DSA
and DBA), and two algorithm-independent exploration methods that can be combined
with any existing incomplete DCOP algorithms. Our results demonstrate the advantage
of the combination of exploration and the anytime property over standard local search.
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