Generalised normal mode expansion method for open and lossy periodic structures

SRAVYA RAO,1* GUILLAUME LE SAUX,2 YONATAN SIVAN,1 AND PARRY Y. CHEN1

1School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, BeerSheva, Israel
2Department of Materials Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, BeerSheva, Israel

Abstract: We describe and demonstrate the extension of permittivity mode expansion (aka generalized normal mode expansion, GENOME) to open and lossy periodic structures. The resulting expansion gives a complete spatial characterization of any open periodic structure, via the quasi-periodic Green’s tensor, by a complete, discrete set of modes rather than a continuum. The method has been validated by comparing our expansion of an open waveguide array with a direct scattering calculation. Good agreement was obtained regardless of source location or detuning from resonance.

1. Introduction

Periodic nanophotonic structures such as photonic crystal fibers [1, 2], photonic crystal waveguides [3–5] and hole arrays [6] enable the generation, control and manipulation of the propagation of light [7–9], making them attractive for various electro-optic applications like inhibition of spontaneous emission for thresholdless lasing [10], slow light propagation [3, 11], enhancing non-linear effects [12, 13], optical switching [14, 15], etc. Optimal design of such nanophotonic structures requires characterization of the complete spatial distribution of local electric fields. In particular, many quantum-optical applications require knowledge of the field distribution and the associated photonic density of states (DOS) [16] in the presence of (single) quantum emitters, which can be obtained directly from the Green’s tensor \hat{G}.

Unfortunately, the characterization of Green’s tensor for any nontrivial geometry requires repeated simulation for every different source position and orientation. An efficient way to treat all these cases simultaneously is to use modal expansion methods, since these provide the Green’s tensor everywhere in space from a single simulation. In modal expansions, we represent the electromagnetic fields and the Green’s tensor as a weighted sum of eigenfunctions of the nanophotonic structure; in many cases, this also has the computational advantage of requiring the use of only a few eigenmodes, a description which may also provide useful physical insights. Modal expansion formalisms are well investigated for lossless and closed periodic structures using eigenfrequency modes. These eigenfrequency modes are stationary states and have real frequencies; this is a manifestation of the closed Hermitian system, which also means these modes form a complete, discrete and orthogonal basis set.

However, when the structure involves absorbing materials or allows radiation leakage to the far-field (i.e., open structures in which the modes couple to free space), the eigenvalue must be complex in order to represent the lack of conservation of energy. Complex eigenfrequency modes are also known as quasi-normal modes (QNMs) [17] or resonant states [18]. Unfortunately, the use of QNMs for open structures creates new problems due to their exponentially diverging far-field behaviour, which requires non-trivial normalization schemes and inclusion of the continuum of background modes to reproduce the physically correct solution in the background medium [17–20]. The details of the calculation and implementation of QNMs/resonant states, together with the discussion of the various solutions to their limitations (e.g., due to the complexity of numerical implementation or incompleteness of the QNM expansion; see [21]) are described
QNM have been successfully employed for various periodic structures (see, e.g., [19, 23–26]). Many of those used plane wave expansion to calculate the quasi-normal Bloch modes (QNBMs), whereby the open sides of the structure were treated with different boundary conditions [19, 20]; others found the modes via the poles of the scattering matrix [25] and via perturbation methods [27]. The latter studies required additional discretization schemes for the continuum of background modes; the standard numerical approach is to use the perfectly matched layer (PML) as the boundary condition in the open directions. However, the resulting non-physical PML modes require a complicated sorting procedure [19, 28]. Furthermore, if the periodic structure has dispersive materials, the associated eigenvalue equation becomes non-linear. Algorithms for non-linear eigenvalue problems tend to require more human intervention and are less reliable. In addition, eigenmodes of dispersive media are linearly-dependent [17, 29], thus requiring a more elaborate basis expansion procedure [17, 30]. An alternative way to treat material dispersion is to use auxiliary fields [31], which linearizes the eigenvalue problem for materials whose permittivity is well-described by a sum of Lorentzian responses. However, this necessitates solving a larger number of differential equations.

One way to circumvent all difficulties associated with complex frequency modes is by using eigenpermittivity modes as the basis for modal expansion [21, 32, 33]. In this approach, the radiative nature of the open structure is compensated by gain via the imaginary part of the eigenpermittivity, yielding modes that are stationary states without field divergences in the background. Furthermore, the eigenpermittivity modes always satisfy the bi-orthogonality property, making them a complete and discrete orthogonal basis set. Even for dispersive materials, these eigenmodes are still generated by a linear eigenvalue equation, thus keeping the computation of Green’s tensor simple and straightforward.

Previous studies of eigenpermittivity modes have treated isolated open resonators (see, e.g., [32, 34–39]). Modal expansion for Green’s tensor via eigenpermittivity modes, known as GENOME, was demonstrated in [21] along with a numerical solver for permittivity modes implemented using commercially available software. The formalism of permittivity modes was further extended to clusters of open resonators through hybridization [32, 33, 40, 41] and its implementation for non-trivially shaped nanoparticle clusters was described in [42]. Hybridization was also used to generate the modes of periodic arrays of particles; this approach proceeded by computing lattice sums over an infinite array [32]. Unfortunately, such approaches can be applied only to isolated scatterers, and not to waveguide-like structures such as in Fig. 1. A different approach applicable to any periodic array was proposed in [43]; it focused on determining the effective index of an array of spherical resonators by solving the equations for the Fourier components originating from the integral form of the eigenvalue equation in the electrostatic limit.

In this paper, we propose a more general formalism to compute the dyadic Green’s tensor of any open and lossy periodic structure using eigenpermittivity modes (i.e., avoiding the electrostatic approximation). This formalism provides a robust and accurate solution, which is exact up to truncation.

The paper is organised as follows. In Section 2, we develop the GENOME formalism for open and lossy periodic structures, obtaining the quasi-periodic Green’s tensor. In section 3, we demonstrate its numerical implementation for a periodic waveguide array [44] along with a comprehensive comparison of GENOME against a direct excitation solution based on COMSOL MULTIPHYSICS. Section 4 summarizes the work and discusses potential next steps.
2. Formulation

In this section, we adapt the derivation of the generalised normal mode expansion of Ref. [21] to periodic systems. We begin with the vector Helmholtz equation,

$$\nabla \times (\nabla \times E(r)) - k^2 \epsilon(r) E = i \omega \mu_0 J(r), \quad (1)$$

where we assumed harmonic $e^{-i\omega t}$ time variation and non-magnetic media. Here, E is the electric field vector, $k = \omega/c$ is the vacuum wavenumber (ω being the photon frequency and c being the speed of light in vacuum), J represents an externally-imposed source and $\epsilon(r)$ is the permittivity profile. For simplicity, we assume that the structure consists of only two constituent materials: an interior with permittivity ϵ_i and a background with ϵ_b. This permits the manipulation of Eq. (1) to yield

$$\nabla \times (\nabla \times E) - k^2 \epsilon_b E = i \omega \mu_0 J + k^2 (\epsilon(r) - \epsilon_b) E. \quad (2)$$

Since the operator on the Left-Hand-Side (LHS) of Eq. (2) is no longer a function of r, Eq. (2) can, in principle, be solved by superposing the “source” terms on the RHS with the appropriate Green’s tensor of uniform space \tilde{G}_0 [45], which results in Lippmann-Schwinger equation,

$$E(r) = E_0(r) + k^2 \int \tilde{G}_0(r - r'; \omega) (\epsilon(r') - \epsilon_b) E(r') \, dr', \quad (3)$$

where $E_0(r)$ represents the known field of the external sources in a uniform background, namely,

$$E_0(r) = i \omega \mu_0 \int \tilde{G}_0(r - r'; \omega) J(r') \, dr'. \quad (4)$$

Then, one could, in principle, follow the GENOME procedure to solve the Lippmann-Schwinger equation as in [21]. However, we now depart from previous derivations to incorporate Floquet-Bloch periodic conditions.

Specifically, we now consider an open periodic structure, with periodicity in at least one dimension and open boundary conditions in at least another. Optionally, the structure can also have continuous translational symmetry along a third dimension. The example shown in Fig. 1 has all three types of the above boundary conditions. As an aside, the formalism below can also be applied to structures with only periodic and translationally invariant conditions.

The periodicity in the structure is represented by the permittivity profile as $\epsilon(r) = \epsilon(r + R^{(p)})$, where

$$R^{(p)} = \sum_{i=1}^{d_\Lambda} n_i a_i, \quad (5)$$

is a translational lattice vector and a_i are the primitive lattice vectors, d_Λ is the number of periodic dimensions and p indexes the unit-cells, represented by a single integer (n_1) for $d_\Lambda = 1$ and a pair of integers (n_1, n_2) for $d_\Lambda = 2$. We can represent the external source $J(r)$ as a coherent superposition of sources in each unit-cell. This enables us to treat the coherent excitation of all unit-cells, such as plane wave illumination, or a coherent excitation of near-field sources, as in a nonlinear wave mixing problem. This coherent excitation relates the sources in each unit-cell via Floquet-Bloch (FB) periodicity, i.e.,

$$J_K(r + R^{(p)}) = J_K(r) e^{iK \cdot R^{(p)}}, \quad (6)$$

\(^{1}\)However, it is relatively easy to generalize the formulation to account, e.g., for a substrate and a superstrate (host) of different permittivities, by computing E_0 using the Fresnel formulae and the modes and Green’s tensor using the explicit formula in [16].
where E_K represents the phase delay between adjacent unit-cells, also commonly known as the Bloch vector. This FB periodicity allows the simulation domain to be reduced to a single unit-cell. The fields also obey FB conditions,

$$E_K(r + R^{(p)}) = E_K(r) e^{iK \cdot R^{(p)}}. \quad (7)$$

![Diagram of a waveguide structure](image)

Fig. 1. An example of an open periodic ridge waveguide structure in 2D space, which is periodic along the x-direction and is open along the y-direction. The structure is excited by a periodic array of phased point dipole sources in each unit-cell whose positions are indicated by $r' + R^{(p)}$. The unit-cell of the waveguide is defined by the step function $\theta^{(p)}(r')$, which is unity inside the interior of the p^{th} index unit-cell and zero elsewhere. The $p = 0$ unit-cell is known as the Wigner-Seitz Cell (WSC) [46].

Then, we can define the quasi-periodic Green’s tensor of uniform space as the solution of

$$\nabla \times (\nabla \times \tilde{\tilde{G}}_{0,K}) - k^2 \varepsilon_b \tilde{\tilde{G}}_{0,K} = \tilde{I} \sum_{p=-\infty}^{\infty} \delta^3(r - r' - R^{(p)}) e^{iK \cdot R^{(p)}}, \quad (8)$$

where \tilde{I} is the identity tensor. Here, $\tilde{\tilde{G}}_{0,K}$ obeys the same boundary conditions obeyed by E_K.

$$\tilde{\tilde{G}}_{0,K}(r + R^{(p)}, r'; \omega) = \tilde{\tilde{G}}_{0,K}(r, r'; \omega) e^{iK \cdot R^{(p)}}, \quad (9)$$

or in terms of the source position,

$$\tilde{\tilde{G}}_{0,K}(r, r' + R^{(p)}; \omega) = \tilde{\tilde{G}}_{0,K}(r, r'; \omega) e^{-iK \cdot R^{(p)}}. \quad (10)$$

Using the quasi-periodic Green’s tensor, we can write the solution of Eq. (3) for a periodic structure as a Lippmann-Schwinger equation,

$$E_K(r) = E_{0,K}(r) + k^2 (\varepsilon_l - \varepsilon_b) \int_{\text{WSC}} \tilde{\tilde{G}}_{0,K}(r, r'; \omega) \theta^{(p=0)}(r') E_K(r') \, dr', \quad (11)$$

where

$$\varepsilon(r) - \varepsilon_b = (\varepsilon_l - \varepsilon_b) \theta^{(p)}(r),$$

and $\theta^{(p)}(r')$ is a step-function that is unity inside the interior of the p^{th} unit-cell and zero elsewhere. For convenience, we have chosen to consider the $p = 0$ unit-cell. Here, the field $E_{0,K}(r)$ produced by external sources in a uniform background is also computed from the central unit-cell. It is given by

$$E_{0,K}(r) = i \omega \mu_0 \int_{\text{WSC}} \tilde{\tilde{G}}_{0,K}(r, r'; \omega) J_K(r') \, dr', \quad (12)$$
where WSC represents integration over the Wigner-Seitz unit-cell. The next step is to define the eigenpermittivity modes and determine the modal expansion solution of the Lippmann-Schwinger equation (11). We define the eigenvalue equation for the eigenpermittivity modes $\epsilon_{K,m}$ of the periodic structure in Appendix 5, and derive the following modal expansion solution,

$$E_K = E_{0,K} + \frac{i}{\omega} \sum_m E_{K,m} \frac{\epsilon_i - \epsilon_b}{(\epsilon_{K,m} - \epsilon_i)(\epsilon_{K,m} - \epsilon_b)} \int_{\text{WSC}} E_{K,m}^\dagger \cdot J_K \, dr,$$

which expresses the total field E_K, as a combination of $E_{0,K}$ from (12) and a sum over the eigenmodes of the structure. The contribution of each eigenmode is weighted by the "detuning" of the corresponding eigenvalue $\epsilon_{K,m}$ from the actual permittivity, ϵ_i, and by the overlap integral $\int_{\text{WSC}} E_{K,m}^\dagger \cdot J_K \, dr$, which represents the interaction between the source and each eigenmode. The explicit form of the adjoint field $E_K^\dagger (r)$ is discussed in Appendix 5. Next, we obtain the desired normal mode expansion of the quasi-periodic Green’s tensor2,

$$\tilde{G}_K(r, r’; \omega) = \tilde{G}_{0,K}(r, r’; \omega) + \frac{1}{k^2} \sum_m \frac{\epsilon_i - \epsilon_b}{(\epsilon_{K,m} - \epsilon_i)(\epsilon_{K,m} - \epsilon_b)} E_{K,m}(r) \otimes E_{K,m}^\dagger (r’),$$

where $\tilde{G}_{0,K}(r, r’; \omega)$ is the quasi-periodic Green’s tensor of the uniform background, Eq. (8).

3. A Numerical Example

In this section, we demonstrate the GENOME formalism derived on the example of a periodic ridge waveguide in 2D space. Its unit-cell is shown in Fig. 2. This structure is periodic in the x-direction, is open in the y-direction and has continuous-translational invariance in the z-direction. In this 2D geometry, the point-dipole source is of infinitesimal extent in-plane (x-y) but is infinite in the z-direction.

![Fig. 2. The simulated geometry, a ridge waveguide with periodicity along horizontal direction and lattice constant $L = 900$ nm. The edges of the ridge are rounded with a radius of curvature of 70 nm. The open sides of the structure (i.e. in the y-direction) are enclosed by perfectly matched layers (PML). The structure is excited by an in-plane point-dipole source (which extends into the out-of-plane dimension) whose position is indicated by the dot on the double headed arrow, and whose orientation is parallel to the arrow.

2For a detailed derivation, refer to Appendix 5.
The first step is to compute the eigenpermittivity modes by the COMSOL MULTIPHYSICS eigensolver using the substitution trick described in [21]. In this simulation, we apply the FB periodicity (with Bloch wavenumber K) in the x-direction. The simulation domain in the y-direction is enclosed by perfectly matched layers to avoid unwanted reflections. Once these eigenmodes are found, they are normalized according to Eq. (23) in Appendix 5 within the inclusion interior.

In Fig. 3, we present the field profile of a few eigenpermittivity modes for $KL = 0.09$ and out-of-plane (z-direction) propagation constant of $\beta = 0$ rad/m. We categorize these modes as either plasmonic or dielectric depending upon the sign of the real part of eigenpermittivity. The first row displays plasmonic modes (with eigenpermittivities of $\text{Re} [\epsilon_m] < 0$) and the second row displays dielectric modes (with $\text{Re} [\epsilon_m] > 0$). Figs. 3(d), 3(e), and 3(h) show bright modes, namely, a relatively high amplitude in the background medium compared to the others; this radiative feature is associated with a large value of $\text{Im} [\epsilon_m]$.

Next, we compute the GENOME solution (14) by projecting the eigenpermittivity modes onto the source, and adding the free-space quasi-periodic Green’s tensor, $\tilde{G}_{0,K} (r,r',\omega)$, for which a rapidly converging solution is derived in Appendix 5. To validate the GENOME solution, we compare it with a direct scattering COMSOL simulation for the given source position, polarisation and Bloch vector. Figure 4 compares the field profiles for the inclusion permittivity $\epsilon_i = 4.7$.
\(KL = 0.09 \) and out-of-plane propagation constant, \(\beta = 0 \text{ rad/m} \). We see that GENOME obtains qualitative agreement with the direct COMSOL simulation for both real and imaginary parts of the Green’s tensor. A similar comparison is shown in Fig. 5 for a different value of inclusion permittivity, \(\epsilon_i = -6 + 2i \), but with the same excitation conditions.

\[V = \frac{\text{OM}}{\text{we see that genome obtains}} \]

\[\text{170} \quad \text{qualitative areeme\text{t} with the direct comsol simula\text{t}ion for both real and imaginary parts of} \]

\[\text{171} \quad \text{the green’s tensor. A similar comparison is show\text{t} in Fig. 5 for a different value of inclusion} \]

\[\text{172} \quad \text{permittivity, } \epsilon_i = -6 + 2i, \text{ but with the same excitation conditions.} \]

\[\text{173} \quad \text{for a waveguide of permittivity } \epsilon_i = 4.7, \text{ with background permittivity } \epsilon_b = 1, \text{ excited by an x-polarised dipole source placed as shown in Fig. 2 with } \lambda = 700\text{mm and } KL = 0.09. \text{ The first row shows the results of GENOME computed from Eq. (14) and the second row shows the results of direct simulation using COMSOL. Each column shows a different component of Green’s tensor corresponding to (a) Re}(G_{xx}), \text{ (b) Re}(G_{xy}), \text{ (c) Im}(G_{xx}) \text{ and (d) Im}(G_{xy}). \text{ We have superimposed an outline of the inclusion geometry.} \]

\[\text{174} \quad \text{In order to obtain a quantitative measure of the agreement, we compute the spatially-resolved} \]

\[\text{175} \quad \text{relative difference between the two approaches, shown in Fig. 6. We use the following metric,} \]

\[\text{176} \quad \text{which is defined, for example, on the real part of the Green’s tensor component } G_{xx}: \]

\[\Delta \text{Re}(G_{xx}) = 10 \log_{10} \left| \text{Re} \left(\frac{G_{xx} - G_{xx, \text{COMSOL}}}{\max(G_{xx, \text{COMSOL}})} \right) \right|. \]

\[\text{177} \quad \text{The first row corresponds to the dielectric inclusion geometry } (\epsilon_i = 4.7) \text{ where the relative} \]

\[\text{178} \quad \text{difference shows that GENOME has achieved good accuracy. However, the agreement of the real} \]

\[\text{179} \quad \text{parts of Green’s tensor is worse near the source; the error originates from the inability of the} \]

\[\text{180} \quad \text{direct COMSOL simulation to reproduce the diverging field at the source origin. Additionally,} \]

\[\text{181} \quad \text{there is limited agreement at the inclusion boundary; this originates from the difficulty of finding} \]

\[\text{182} \quad \text{sufficiently many plasmonic modes using the eigensolver, because of the strong field confinement} \]

\[\text{183} \quad \text{at the metal-dielectric interface. This inaccuracy is more pronounced for the plasmonic inclusion} \]

\[\text{184} \quad \text{case, as shown in the second row of Fig. 6.} \]

\[\text{185} \quad \text{To determine the convergence of GENOME over the entire simulation domain for all Green’s} \]

\[\text{186} \quad \text{tensor components, we use the } L_2\text{-norm metric on the relative difference between the two} \]

\[\text{187} \quad \text{graph.} \]

\[\text{188} \quad \text{Fig. 4. Validation of GENOME against a direct COMSOL simulation for a waveguide of} \]

\[\text{189} \quad \text{permittivity } \epsilon_i = 4.7, \text{ with background permittivity } \epsilon_b = 1, \text{ excited by an x-polarised dipole source placed as shown in Fig. 2 with } \lambda = 700\text{mm and } KL = 0.09. \text{ The first row shows the results of GENOME computed from Eq. (14) and the second row shows the results of direct simulation using COMSOL. Each column shows a different component of Green’s tensor corresponding to (a) Re}(G_{xx}), \text{ (b) Re}(G_{xy}), \text{ (c) Im}(G_{xx}) \text{ and (d) Im}(G_{xy}). \text{ We have superimposed an outline of the inclusion geometry.} \]

\[\text{190} \quad \text{In order to obtain a quantitative measure of the agreement, we compute the spatially-resolved} \]

\[\text{191} \quad \text{relative difference between the two approaches, shown in Fig. 6. We use the following metric,} \]

\[\text{192} \quad \text{which is defined, for example, on the real part of the Green’s tensor component } G_{xx}: \]

\[\Delta \text{Re}(G_{xx}) = 10 \log_{10} \left| \text{Re} \left(\frac{G_{xx} - G_{xx, \text{COMSOL}}}{\max(G_{xx, \text{COMSOL}})} \right) \right|. \]
solutions. Since the real part of Green’s tensor has unavoidable inaccuracies, we only show the norm of imaginary part of Green’s tensor. Figure 7 shows the L_2-norm as a function of the number of modes. From these plots we observe that the agreement between the two methods improves with the number of modes. This convergence behaviour provides evidence for the completeness of the eigenmode set. The observed convergence level is, however, limited to ~ -20 dB, similar to the convergence previously achieved with COMSOL using numerical modes [21, 42]. We mention that the convergence of QNM based numerical methods is provided in [47]. However, that was determined only at a specific position i.e. the scatterer origin, whereas we perform an L_2-norm over the entire simulation domain. As before, we conjecture that the limited accuracy stems from the inability to find all modes with the COMSOL eigensolver; indeed, far better convergence was obtained when the modes were calculated analytically, see [21, 48, 49]. The bulk of the computational time of this GENOME simulation is dedicated to finding the eigenmodes.

4. Summary and discussion

We have shown how to expand the electromagnetic fields and quasi-periodic Green’s tensor $\tilde{G}_K (r, r'; \omega)$ for lossy and open periodic systems using eigenpermittivity (generalized normal) modes. These eigenpermittivity modes are defined by the Lippmann-Schwinger equation (16); existing eigenfrequency solvers can be adapted to find these modes by using a simple substitution trick as described in [21]. The GENOME implementation has numerous advantages. The modes are always discrete and orthogonal, which significantly simplifies the modal expansion representation; the stationary nature of the modes also provides the additional benefit of a trivial normalization scheme. Most importantly, these eigenmodes form a complete basis set, which

Fig. 5. Same as in Fig. 4, but for waveguide permittivity $\varepsilon_i = -6 + 2i$. The first row shows the results of GENOME while the second row shows the results of direct simulation using COMSOL. Each column shows a different component of Green’s tensor corresponding to (a) $\text{Re}(G_{xx})$, (b) $\text{Re}(G_{yx})$, (c) $\text{Im}(G_{xx})$ and (d) $\text{Im}(G_{yx})$.
Fig. 6. The relative difference between GENOME and COMSOL direct simulation on a dB scale. The first row corresponds to $\varepsilon_i = 4.7$ while the second row corresponds to $\varepsilon_i = -6 + 2i$ with columns showing the relative difference in (a) $\text{Re}(G_{xx})$, (b) $\text{Re}(G_{yx})$, (c) $\text{Im}(G_{xx})$, and (d) $\text{Im}(G_{yx})$.

Fig. 7. The L_2-norm of the relative difference between imaginary parts of field profiles of GENOME and direct COMSOL direct simulation for (a) $\varepsilon_i = 4.7$ and (b) $\varepsilon_i = -6 + 2i$.

ensures that the modal expansion solution always converges towards the true scattering solution even in the background medium.

The formalism is implemented for the example of an open waveguide array, by computing the eigenmodes using the COMSOL eigensolver and using the quasi-periodic Green’s tensor of a uniform background medium, derived in Appendix 5. From these components, the total field is assembled using (14). This expansion is then validated by comparing with the direct COMSOL scattering simulation, which showed rapid convergence of 2-3 accurate digits using only a few eigenmodes. However, the eigenmode search entails a lengthy simulation, which may limit the practical utility of the method. Thus, future work should be devoted to devising a more efficient
an approach to compute the modes. This could be based on reduced Brillouin zone expansion [50] or on perturbative (e.g., "re-expansion") techniques [18,48,49,51–53]. Once such an approach is implemented, it would become practical to compute other types of Green’s tensors of interest. In particular, computing the single source Green’s tensor, \(\tilde{G}(r, r'; \omega) \) would be of great importance for the study of many quantum nano-optic effects, but currently requires intensive computation as it requires integration over all modes across the Brillouin zone [54]; GENOME can potentially provide a rapid, efficient way to obtain this Green’s tensor.

5. Backmatter

Acknowledgments. The authors were partially funded by a KAMIN grant and by DFG - Deutsche Forschungsgemeinschaft Award no. WE 5815/5-1.

Disclosures. The authors declare no conflicts of interest.

Appendix A: Generalised normal mode expansion of Green’s tensor

We start with the eigenvalue equation that defines the eigenpermittivity modes of the unit-cell, which is obtained by neglecting \(E_{0,K} \) in (11):

\[
\hat{s}_{K,m} E_{K,m}(r) = -\epsilon_b k^2 \int \hat{G}_{0,K}(r, r'; \omega) \theta^{(\mu=0)}(r') E_{K,m}(r') \, dr',
\]

where \(\hat{s}_{K,m} \) is the \(m \)th eigenvalue,

\[
\hat{s}_{K,m} \equiv \frac{\epsilon_p}{\epsilon_b - \epsilon_{K,m}},
\]

and \(\epsilon_{K,m} \) represents the eigenpermittivity of the inclusion. Choosing an eigenpermittivity contrasts with the more prevalent choice of a frequency as the eigenvalue. The most important consequence of this choice is that our modes are stationary even in the presence of absorption, and even though we choose \(\omega \) (hence \(\hat{k} \)) and \(\hat{K} \) to be real. For a thorough discussion of the significance and advantages of eigenpermittivities, see [21]. The modes of Eq. (16) can be calculated by modifying any existing mode search routine, such as one based on plane wave expansion or finite element, e.g., Comsol Multiphysics [21]. Once the modes are known, we can use them to expand the Lippmann-Schwinger equation (11), a procedure which we now derive.

For notational brevity, we begin by casting Eq. (11) in operator form,

\[
E_K = E_{0,K} + \hat{u} \hat{\theta}^{(0)} E_K,
\]

where \(\hat{u} \) describes the actual permittivity of the structure \(\epsilon_i \),

\[
\hat{u} \equiv \frac{\epsilon_p - \epsilon_i}{\epsilon_p},
\]

\(\hat{\theta}^{(0)} \) is an integral operator incorporating the quasi-periodic Green’s tensor, and \(\hat{\theta}^{(0)} \) is the operator form of step function \(\theta^{(0)} \), i.e.,

\[
\hat{\theta}^{(0)} E_K \equiv -\epsilon_b k^2 \int \hat{G}_{0,K}(r, r'; \omega) \theta^{(0)}(r') E_K(r') \, dr'.
\]

The formal solution of Eq. (18) is

\[
E_K = \frac{1}{1 - \hat{u} \hat{\theta}^{(0)}} E_{0,K}.
\]
Our solution for the unknown field E_K proceeds by projecting $E_{0,K}$ onto the normal modes $E_{K,m}$. Specifically, we define the identity operator $\hat{1}$, which in bra-ket notation is

$$\hat{1} = \sum_m \hat{\theta}^{(0)}|E_{K,m}\rangle\langle E_{K,m}|\hat{\theta}^{(0)}.$$

(22)

This simple form is valid because the modes obey a biorthogonality relation [33]. In this bra-ket notation, the fields are confined to the Weigner-Seitz unit-cell. By including $\hat{\theta}^{(0)}$ in $\hat{1}$, we expand only over the interior fields of a single unit-cell. This avoids an unwieldy integral over all space, and also expands only in the region where the eigenmodes provide a complete basis. Note that this projection operator assumes that the modes are normalized within the volume of a single unit-cell,

$$\langle E_{K,m}|\hat{\theta}^{(0)}|E_{K,m}\rangle = 1.$$

(23)

In that respect, we avoid normalization issues that may arise in other modal expansions since the integral is over a finite domain. We emphasize that the identity operator (22) sums over a set of modes that share a common K, but might belong to different bands and have different levels of confinement in any open directions.

The unknown field $|E_K\rangle$ is then

$$\hat{\theta}^{(0)}|E_K\rangle = \sum_m \hat{\theta}^{(0)}|E_{K,m}\rangle\langle E_{K,m}|\hat{\theta}^{(0)}|E_{0,K}\rangle.$$

(24)

Next is the key step of GENOME. Instead of applying the operator $(1 - u\hat{\Gamma}\hat{\theta}^{(0)})^{-1}$ to $|E_{0,K}\rangle$, which would result in a lengthy numerical calculation via the Born series, we exploit the freedom offered by the unified nature of the Green’s tensor in (12) and (16) to operate on the adjoint field $\langle E_{K,m}|$ \(^3\) instead, immediately yielding a modal expansion. We invoke the adjoint form of eigenvalue equation (16),

$$\langle E_{K,m}|\hat{\theta}^{(0)}\hat{\Gamma} = \langle E_{K,m}|s_{K,m}.$$

(25)

This obtains from Eq. (24) the total interior field $\hat{\theta}^{(0)}|E_K\rangle$,

$$\hat{\theta}^{(0)}|E_K\rangle = \sum_m \hat{\theta}^{(0)}|E_{K,m}\rangle\frac{1}{1 - us_{K,m}}\langle E_{K,m}|\hat{\theta}^{(0)}|E_{0,K}\rangle.$$

(26)

expressed in terms of overlap integrals.

To obtain an expression also valid in the background, Eq. (26) is inserted back into the original Lippmann-Schwinger equation (18), this time operating $\hat{\Gamma}\hat{\theta}^{(0)}$ on $|E_{K,m}\rangle$ to give

$$|E_K\rangle = |E_{0,K}\rangle + \sum_m |E_{K,m}\rangle\frac{us_{K,m}}{1 - us_{K,m}}\langle E_{K,m}|\hat{\theta}^{(0)}|E_{0,K}\rangle.$$

(27)

Thus, with the aid of the Lippmann-Schwinger equation, we have obtained an expansion valid over all space even though we only expanded the fields inside the structure. For convenience, Eq. (27) can be expressed explicitly in terms of permittivities,

$$|E_K\rangle = |E_{0,K}\rangle + \sum_m |E_{K,m}\rangle\frac{\epsilon_i - \epsilon_b}{\epsilon_{K,m} - \epsilon_i}\langle E_{K,m}|\hat{\theta}^{(0)}|E_{0,K}\rangle.$$

(28)

Equation (28) expresses the total fields within the unit-cell in terms of the radiation of the external sources in the uniform background, $E_{0,K}$, and the modes of the structure that are excited. The explicit form of the overlap integral $\langle E_{K,m}|\hat{\theta}^{(0)}|E_{0,K}\rangle$ is presented in Appendix 5. The

\(^3\)see Appendix 5.
solution (28) is exact up to truncation in m, since arbitrary accuracy is possible by increasing m. The one set of eigenmodes $\{E_{K,m}\}$ is applicable to all possible structure permittivities and excitations $\{E_{0,K}\}$, as the expansion requires only the evaluation of the overlap integrals, which represent a small fraction of the total simulation time. The solution (28) is the most suitable form when the source $|E_{0,K}\rangle$ has a known form, such as a plane wave or a beam. If, however, the source is in the near-field, a second formulation is more convenient, expressed directly in terms of sources $J_K(r)$ [55]. This begins by casting Eq. (12) into operator form, yielding

$$|E_{0,K}\rangle = \frac{i}{\omega \epsilon_0} \hat{\Gamma} |J_K\rangle. \quad (29)$$

After inserting into (27), we obtain

$$|E_K\rangle = |E_{0,K}\rangle + \frac{i}{\omega \epsilon_0} \sum_m |E_{K,m}\rangle \frac{u_{s_K,m}}{1 - u_{s_K,m}} \langle \hat{\theta}^{(0)} | \hat{\Gamma} |J_K\rangle. \quad (30)$$

Again, by applying the operator $\hat{\theta}^{(0)} \hat{\Gamma}$ to $\langle E_{K,m} |$ via (25) rather than to $|J_K\rangle$, a simple solution is obtained

$$|E_K\rangle = |E_{0,K}\rangle + \frac{i}{\omega \epsilon_0} \sum_m |E_{K,m}\rangle \frac{u_{s_{K,m}}^2}{1 - u_{s_{K,m}}} \langle E_{K,m} | J_K \rangle. \quad (31)$$

In terms of permittivities, (31) can be rewritten as

$$|E_K\rangle = |E_{0,K}\rangle + \frac{i}{\omega \epsilon_0} \sum_m |E_{K,m}\rangle \frac{e_i - e_b}{(\epsilon_{K,m} - e_i)(\epsilon_{K,m} - e_b)} \langle E_{K,m} | J_K \rangle. \quad (32)$$

The resulting Eq. (32) is largely similar to (28), but the integral $\langle E_{K,m} | J \rangle$ is now no longer restricted to the interior of the structure, and receives contributions from all locations where $J_K(r)$ is non-zero. Nevertheless, (32) remains a rigorous solution of the Lippmann-Schwinger equation and still benefits from the completeness of the eigenmodes within the interior.

Finally, the desired normal mode expansion of the quasi-periodic Green’s tensor, applicable to periodic arrays of resonators in open and lossy systems, is obtained by choosing $J_K(r)$ to be a localized Dirac-delta source so that the weight factor $\langle E_{K,m} | J \rangle$ is simply the amplitude of the adjoint mode at the source location, $E_{K,m}^\dagger(r)$. The quasi-periodic Green’s tensor is then

$$\tilde{G}_K(r, r'; \omega) = \tilde{G}_{0,K}(r, r'; \omega) + \frac{1}{k^2} \sum_m \frac{e_i - e_b}{(\epsilon_{K,m} - e_i)(\epsilon_{K,m} - e_b)} E_{K,m}(r) \otimes E_{K,m}^\dagger(r'). \quad (33)$$

Appendix B: Adjoint modes

We give the explicit forms for the overlap integrals in (28),

$$\langle E_{K,m} | \hat{\theta}^{(0)} | E_{0,K}\rangle = \int_{\text{WSC}} \theta^{(0)}(r) E_{K,m}^\dagger(r) \cdot E_{0,K}(r) \, dr, \quad (34)$$

and in Eq. (32),

$$\langle E_{K,m} | J_K \rangle = \int_{\text{WSC}} E_{K,m}^\dagger(r) \cdot J_K(r) \, dr. \quad (35)$$

We know that the adjoint field $E_{K,m}^\dagger(r)$ is the left eigenstate of operator $\hat{\Gamma} \hat{\theta}^{(0)}$:

$$s_{K,m} E_{K,m}^\dagger = \langle E_{K,m} | \hat{\Gamma} \hat{\theta}^{(0)} \rangle. \quad (36)$$

and $\hat{\Gamma}$ is anti-symmetric with respect to Bloch vector K as

$$\tilde{G}_{0,K}(r, r') = \tilde{G}_{0,-K}(r', r), \quad (37)$$
which can be proved using the equation (8). So the adjoint field in the equations (34) and (35) takes the form of

$$E_{K,m}^\dagger(r) = E_{-K,m}(r).$$ \hfill (38)

Appendix C: Quasi-periodic free space Green’s tensor

Here, we determine a rapidly converging solution of the quasi-periodic free-space Green’s tensor, defined by Eq. (8), for the example shown in Fig. 1. In this 2D example, the point-dipole sources are of infinitesimal extent in two dimensions and infinite in extent in the third dimension (i.e., the z-direction). The source has harmonic variation of $e^{i\beta z}$ along the third dimension.

We proceed by using the relation with the quasi-periodic Green’s scalar for the scalar Helmholtz equation, [16],

$$\tilde{G}_{0,K}(r) = \left(\vec{I} + \frac{1}{k^2} \nabla \nabla\right) G_{0,K}(r),$$ \hfill (39)

where without loss of generality, we assumed that the source in the central unit-cell is at the coordinate origin, so r itself represents the displacement vector from the source in the central unit-cell. Also, we extend this Green’s tensor expression of free space to the uniform background medium by simply absorbing the permittivity value ε_p into k^2. As our 2D example has translation invariance in the third dimension, we can write

$$\nabla = \nabla_\perp + i \beta \hat{z},$$

where ∇_\perp applies only to in-plane directions. The simplest expression of the quasi-periodic Green’s scalar, $G_{0,K}$ is given by

$$G_{0,K}(r) = \sum_p G_0(r - R^{(p)}) e^{iK \cdot R^{(p)}}.$$ \hfill (40)

where $G_0(r - R^{(p)})$ represents the Green’s scalar of a isolated point source at $R^{(p)}$ and the appropriate expression for $G_0(r - R^{(p)})$ in 2D is $iH_0(\alpha| r - R^{(p)}|)/4$. Therefore,

$$G_{0,K}(r) = \frac{i}{4} \sum_p H_0(\alpha |r - R^{(p)}|) e^{iK \cdot R^{(p)}},$$ \hfill (41)

where α is the in-plane propagation constant, given by $\alpha^2 + \beta^2 = k^2$.

Eq. (41) converges very slowly, so we employ Ewald’s method [56] which gives the solution as a sum of two rapidly converging components, i.e.,

$$G_{0,K} = G_1 + G_2.$$ \hfill (42)

For our one-dimensional lattice example in Fig. 1, with Lattice constant L, Bloch wavevector $K = K\hat{x}$ and the displacement vector $r = x\hat{x} + y\hat{y}$, we have [57].

$$G_1 = \frac{1}{4L} \sum_{p=\infty}^{\infty} e^{iK_p x} \frac{e^{\gamma_p x}}{\gamma_p} \left[\frac{\gamma_p L}{2a} + \frac{a y}{L} \right] + e^{-\gamma_p x} \left[\frac{\gamma_p L}{2a} - \frac{a y}{L} \right],$$

$$G_2 = \frac{1}{4\pi} \sum_{p=\infty}^{\infty} e^{iK_p x} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\alpha L}{2a} \right)^{2n} E_{n+1} \left(\frac{a \gamma_p^2}{L^2} \right),$$ \hfill (43)

where

$$K_p = K + \frac{2\pi}{L}, \quad \gamma_p = (K_p^2 - \alpha^2)^{1/2}, \quad \text{and} \quad r_p = \sqrt{(x - pL)^2 + y^2}. $$
Here, erfc is the error complementary function, E_{n+1} is exponential integral function of order $n + 1$. For optimal convergence, the parameter a in Eq. (43) is chosen to be $\sqrt{\pi}$ as suggested in [57].

Using these G_1 and G_2 expressions, we can determine the quasi-periodic Green's tensor. In explicit form, we can write the nine components of $\tilde{G}_{0,k}(r)$ in Cartesian form as

$$
\tilde{G}_{0,k}(r) = \frac{1}{k^2} \begin{bmatrix}
\partial_x^2 + \partial_y^2 & \partial_x \partial_y & i\beta \partial_x \\
\partial_y \partial_x & \partial_y^2 + \partial_x^2 & i\beta \partial_y \\
i\beta \partial_x & i\beta \partial_y & a^2
\end{bmatrix} (G_1 + G_2). \quad (44)
$$

Finally, we determine the derivatives of G_1 and G_2. For G_1:

$$
\begin{align*}
\partial_x G_1 &= i \frac{L}{4} \sum_p K_p T_p, \\
\partial_y G_1 &= i \frac{L}{4} \sum_p \gamma^p e^{i\gamma^p x} \left[e^{\gamma^p \gamma^p} \text{erfc} \left(\frac{\gamma^p L}{2a} + \frac{ay}{L} \right) - e^{-\gamma^p \gamma^p} \text{erfc} \left(\frac{\gamma^p L}{2a} - \frac{ay}{L} \right) \right], \\
\partial_y^2 G_1 &= -i \frac{L}{4} \sum_p \gamma^p K_p T_p, \\
\partial_x G_1 &= i \frac{L}{4} \sum_p \gamma^p e^{i\gamma^p x} \left[e^{\gamma^p \gamma^p} \text{erfc} \left(\frac{\gamma^p L}{2a} + \frac{ay}{L} \right) - e^{-\gamma^p \gamma^p} \text{erfc} \left(\frac{\gamma^p L}{2a} - \frac{ay}{L} \right) \right],
\end{align*}
$$

where

$$
T_p = \frac{e^{i\gamma^p x}}{\gamma^p} \left[e^{\gamma^p \gamma^p} \text{erfc} \left(\frac{\gamma^p L}{2a} + \frac{ay}{L} \right) + e^{-\gamma^p \gamma^p} \text{erfc} \left(\frac{\gamma^p L}{2a} - \frac{ay}{L} \right) \right].
$$

The partial derivatives of G_2 are:

$$
\begin{align*}
\partial_x G_2 &= -i \frac{L}{4} \sum_{p=-\infty}^{\infty} e^{i\gamma^p x} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{aL}{2a} \right)^n E_n \left(\frac{a^2 \gamma^2 p}{L^2} \right) \frac{2a^2(x - pL)}{L^2}, \\
\partial_y G_2 &= -i \frac{L}{4} \sum_{p=-\infty}^{\infty} e^{i\gamma^p x} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{aL}{2a} \right)^n E_n \left(\frac{a^2 \gamma^2 p}{L^2} \right) \frac{2a^2 \gamma}{L}, \\
\partial_x^2 G_2 &= -i \frac{L}{4} \sum_{p=-\infty}^{\infty} e^{i\gamma^p x} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{aL}{2a} \right)^n \left[\frac{2a^2}{L^2} E_n - \frac{4a^4(x - pL)^2}{L^4} E_{n-1} \left(\frac{a^2 \gamma^2 p}{L^2} \right) \right], \\
\partial_y^2 G_2 &= -i \frac{L}{4} \sum_{p=-\infty}^{\infty} e^{i\gamma^p x} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{aL}{2a} \right)^n \left[\frac{2a^2}{L^2} E_n - \frac{4a^4 \gamma^2}{L^4} E_{n-1} \left(\frac{a^2 \gamma^2 p}{L^2} \right) \right], \\
\partial_{xy} G_2 &= \partial_{yx} G_2 = i \frac{L}{4} \sum_{p=-\infty}^{\infty} e^{i\gamma^p x} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{aL}{2a} \right)^n \left(\frac{a^2 \gamma^2 p}{L^2} \right) \frac{4a^4(x - pL)y}{L^4}.
\end{align*}
$$

