Extensions of Flux Theory

Reuven Segev

Department of Mechanical Engineering
Ben-Gurion University

Department of Mechanical and Aerospace Engineering
U.C.S.D.
February 2009
Objects of Interest

- **Fluxes and stresses**: as fundamental objects of continuum mechanics.
- **Geometric aspects**: Formulations that do not use the traditional geometric and kinematic assumptions. For example, Euclidean structure of the physical space, mass conservation. Materials with micro-structure (sub-structure), growing bodies.
- **Analytic aspects**: Irregular bodies and flux fields. Fractal bodies.
Flux Theory?

Derive the existence of the flux vector field \(j \), e.g., the heat flux vector field or the electric current density, and its properties from global balance laws, e.g., balance of energy or conservation of charge.

Relevant Operations:

- **Total Flux (Flow) Calculation:**
 \[
 \int_{A} j \cdot n \, dA.
 \]

- **Gauss-Green Theorem:**
 \[
 \int_{\partial B} j \cdot n \, dA = \int_{B} \text{div} \, j \, dV.
 \]
Questions Regarding the Operations

- **Total Flux Calculation:**
 \[\int_A j \cdot n \, dA. \]
 - How irregular can \(A \) be?

- **Gauss-Green Theorem:**
 \[\int_{\partial B} j \cdot n \, dA = \int_B \text{div} \, j \, dV. \]
 - How irregular can \(B \) be?
 - How irregular can \(j \) be?
Examples:
Balanced Extensive Properties

In terms of scalar extensive property p with density ρ in space, one assumes for every “control region” $B \subset \mathcal{U} \cong \mathbb{R}^3$:

- Consider β, interpreted as the \textit{time derivative} of the density ρ of the property, so for any control region B in space, $\int_B \beta \, dV$ is the rate of change of the total content of the property inside B.

- For each control region B there is a \textit{flux density} τ_B such that $\int_{\partial B} \tau_B \, dA$ is the \textit{total flux (flow)} of the property out of B.

- There is a function s on \mathcal{U} such that for each region B

$$\int_{B} \beta \, dV + \int_{\partial B} \tau_B \, dA = \int_{B} s \, dV.$$

Here, s is interpreted as the \textit{source density} of the property p (e.g., $s = 0$ for mass and electric charge).
Fluxes: Traditional Cauchy Postulate and Theorem

Cauchy’s postulate and theorem are concerned with the dependence of τ_B on B.

- It uses the metric properties of space.
- $\tau_B(x)$ is assumed to depend on B only through the unit normal to the boundary at x.
- The resulting Cauchy theorem asserts the existence of the flux vector j such that $\tau_B(x) = j \cdot n$.
Assumptions Again:

In terms of a scalar extensive property with density ρ in space, one assumes that there are operators $T(\partial B)$, the \textit{total flux operator}, and $S(B)$ the \textit{total content} operator, such that for every “control region” $B \subset \mathcal{U} \cong \mathbb{R}^3$ (we take $s = 0$):

- **Balance:** $T(\partial B) + S(B) = 0$
- **Regularity:** $S(B) = \int_B \beta_B \, dV$, and $T(\partial B) = \int_{\partial B} \tau_B \, dA$
- **Locality (pointwise):** $\beta_B(x) = \beta(x)$, and $\tau_B(x) = \tau(x, \mathbf{n})$
- **Continuity:** $\tau(\cdot, \mathbf{n})$ is continuous.

\textbf{Note:} It follows from the balance and regularity assumptions that

- $|\partial B| \to 0$ implies $T(\partial B) \to 0$,
- $|B| \to 0$ implies $T(\partial B) \to 0$

$| \cdot |$ being either the area or volume depending on the context.
The Results:

Cauchy’s Theorem

asserts that \(\tau(x, n) \) depends linearly on \(n \). There is a vector field \(j \) such that

\[
\tau = j \cdot n.
\]

Considering smooth regions and flux vector fields such that Gauss-Green theorem may be applied, the balance may be written in the form of a differential equation as

\[
\text{div } j + \beta = s.
\]
Traditional Proof:

- Consider the infinitesimal tetrahedron. Since the area is in an order of magnitude larger than the volume, the volume terms are negligible.
- Thus, $\sum_i A_i \tau(n_i) = 0$.
- Also, $\sum_i A_i n_i = 0$.
- Hence,

$$\tau \left(\frac{A_1}{A_4} n_1 + \frac{A_2}{A_4} n_2 + \frac{A_3}{A_4} n_3 \right) = \frac{A_1}{A_4} \tau(n_1) + \frac{A_2}{A_4} \tau(n_2) + \frac{A_3}{A_4} \tau(n_3)$$
Contributions in Continuum Mechanics

- Gurtin & Williams: 1967,
- Gurin & Martins: 1975,
- Gurtin, Williams & Ziemer: 1986,
- Noll & Virga: 1988,
- Degiovanni, Marzocchi & Musesti: 1999, . . .
The Proposed Formulation

- Building blocks: r-dimensional oriented cells in E^n.
- Formal vector space of r-cells: polyhedral r-chains.
- Complete w.r.t a norm: Banach space of r-chains.
- Elements of the dual space: r-cochains.

Relevance to Flux Theory

- The total flux operator on regions is modelled mathematically by a cochain.
- Cauchy’s flux theorem is implied by a representation theorem for cochains by forms.
Features of the Proposed Formulation

- It offers a common point of view for the analysis of the following aspects: class of domains, integration, Stokes’ Theorem, and fluxes.
- Allows irregular domains and flux fields.
- The co-dimension not limited to 1. Allows membranes, strings, etc. Not only the boundary is irregular, but so is the domain itself.
- Compatible with the formulation on general manifolds where no particular metric is given.
Outline

- Cells and polyhedral chains
- Algebraic cochains
- Norms and the complete spaces of chains
- The representation of cochains by forms:
 - Multivectors and forms
 - Integration
 - Representation
 - Coboundaries and differentiable balance equations
Cells and Polyhedral Chains
A cell, σ, is a non empty bounded subset of E^n expressed as an intersection of a finite collection of half spaces.

The **plane of** σ is the smallest affine subspace containing σ.

The **dimension** r of σ is the dimension of its plane. Terminology: an r-cell.

The boundary $\partial \sigma$ of an r-cell σ contains a number of $(r-1)$-cells.
Recall: An orientation of a vector space is determined by a choice of a basis. Any other basis will give the same orientation if the determinant of the transformation is positive. A vector space can have 2 orientations.

An oriented r-cell is an r-cell with a choice of one of the two orientations of the vector space associated with its plane.

The orientation of $\sigma' \in \partial \sigma$ is determined by the orientation of σ:

- Choose independent (v_2, \ldots, v_r) in σ'.
- Order them such that given v_1 in the plane of σ which points out of σ', (v_1, \ldots, v_r) are positively oriented relative to σ.

![Diagram of oriented cells](https://via.placeholder.com/150)
Polyhedral Chains: Algebra into Geometry

- A **polyhedral r-chain** in E^n is a formal linear combination of r-cells
 \[A = \sum a_i \sigma_i. \]

- The following operations are defined for polyhedral chains:
 - The polyhedral chain 1σ is identified with the cell σ.
 - We associate multiplication of a cell by -1 with the operation of inversion of orientation, i.e., $-1\sigma = -\sigma$.
 - If σ is cut into $\sigma_1, \ldots, \sigma_m$, then σ and $\sigma_1 + \ldots + \sigma_m$ are identified.
 - Addition and multiplication by numbers in a natural way.

- The space of polyhedral r-chains in E^n is now an **infinite-dimensional vector space** denoted by $A_r(E^n)$.

- The **boundary of a polyhedral r-chain** $A = \sum a_i \sigma_i$ is $\partial A = \sum a_i \partial \sigma_i$. Note that ∂ is a linear operator $A_r(E^n) \longrightarrow A_{r-1}(E^n)$.

R. Segev (Ben-Gurion Univ.)
Extensions of Flux Theory
M.A.E.@U.C.S.D., Feb. 2009
Polyhedral Chains: Illustration

\[A = A_1 + A_2 \]
\[\partial A = \partial A_1 + \partial A_2 \]
\[\partial A \]

\[\partial : \mathcal{A}_r \rightarrow \mathcal{A}_{r-1} \]
A Polyhedral Chain as a Function

\[A = \sum a_i \sigma_i \]

\[\partial A = \sum a_i \partial \sigma_i \]
Total Fluxes as Cochains

Basic Idea:

Regard the flux through a 2-dimensional chain as the action of a linear operator—a co-chain—on that chain.

A cochain: Linear $T: \mathcal{A}_r \rightarrow \mathbb{R}$. We write $T(B) = T \cdot B$.

Algebraic implications:

- additivity,
- interaction antisymmetry.

\[
T \cdot (-\sigma) = -T \cdot \sigma, \quad T \cdot (\sigma_1 + \sigma_2) = T \cdot \sigma_1 + T \cdot \sigma_2
\]
Norms and the Complete Space of Chains:
Analysis into Geometry
The Norm Induced by Boundedness

Boundedness: $|T_{\partial B}| \leq N_2 |\partial B|$, $|T_{\partial B}| \leq N_1 |B|$. Setting $A = \partial B$, ...

As a cochain: $|T \cdot A| \leq N_2 |A|$, $|T \cdot \partial D| \leq N_1 |D|$, $A \in \mathcal{A}_r$, $D \in \mathcal{A}_{r+1}$.

Thus, for any $D \in \mathcal{A}_{r+1}$, and $A \in \mathcal{A}_r$:

$$|T \cdot A| = |T \cdot A - T \cdot \partial D + T \cdot \partial D|$$

$$\leq |T \cdot A - T \cdot \partial D| + |T \cdot \partial D|$$

$$\leq N_2 |A - \partial D| + N_1 |D|$$

$$\leq C_T (|A - \partial D| + |D|),$$

Basic Idea (revised)

Regard the flux as a *continuous linear functional* on the space of chains w.r.t. a norm

$$|T \cdot A| \leq C_T \|A\|,$$

where the *flat norm* (smallest) is given as

$$\|A\| = |A|^b = \inf_D \{|A - \partial D| + |D|\}.$$
Flat Chains

- The *mass* of a polyhedral r-chain $A = \sum a_i \sigma_i$ is $|A| = \sum |a_i| |\sigma_i|$.
- The *flat norm*, $|A|^\flat$, of a polyhedral r-chain:

$$|A|^\flat = \inf\{|A - \partial D| + |D|\},$$

using all polyhedral $(r + 1)$-chains D.

- Taking $D = 0$, $|A|^\flat \leq |A|$.
- If $A = \partial B$, taking $D = B$ gives $|A|^\flat \leq |B|$. Hence, $|\partial B|^\flat \leq |B|$.

- Completing $\mathcal{A}_r(E^n)$ w.r.t. the flat norm gives a Banach space denoted by $\mathcal{A}_r^\flat(E^n)$, whose elements are *flat* r-chains in E^n.
- Flat chains may be used to represent continuous and smooth submanifolds of E^n and even irregular surfaces.
- The *boundary of a flat $(r + 1)$-chain* $A = \lim^\flat A_i$, is the a flat r-chain $\partial A = \lim \partial A_i$. The boundary operator is continuous and linear.
Flat Chains, an Example (Illustration - I):

\[|A_i| = 2L, \]
\[|A_i|^b \leq (L + 2)d_i \rightarrow 0. \]
\[|A_i|^b \leq 2d_i + d_i^2 \rightarrow 0. \]
Example: The Staircase

The dashed lines are for reference only.

\[|A_i|^b \leq 2^{i-1}2^{-2i} = 2^{-i}/2 \quad \implies \quad (B_i) \text{ a convergent series.} \]

Note, \[|B_i - B_j| = \left| \sum_{k=j+1}^{i} A_k \right| \leq \sum_{k=j+1}^{i} |A_k| \leq \sum_{k=j+1}^{\infty} |A_k| \leq \sum_{k=j+1}^{\infty} 2^{-k}/2, \quad \forall \quad i > j. \]
Example: the Van Koch Snowflake

A_i contains 4^i triangles of side length 3^{-i}. Each time the length increases by $2 \cdot 3^{-i} \cdot 4^i = 2 \left(\frac{4}{3} \right)^i$. Hence, $|B_i| \to \infty$.

\[
|A_i|^b \leq 4^i \frac{\sqrt{3}}{2} 3^{-i} 3^{-i} = \frac{\sqrt{3}}{2} \left(\frac{2}{3} \right)^i
\]
The Representation of Cochains by Forms

Objectives:

- Create an algebraic language to treat chains and cochains,
- A representation theorem for cochains in terms of fields and integration.
Multivectors

- A **simple r-vector** in V is an expression of the form $v_1 \wedge \cdots \wedge v_r$, where $v_i \in V$.

- An **r-vector** in V is a formal linear combination of simple r-vectors, together with:

 1. $v_1 \wedge \cdots \wedge (v_i + v'_i) \wedge \cdots \wedge v_r$

 $= v_1 \wedge \cdots \wedge v_i \wedge \cdots \wedge v_r + v_1 \wedge \cdots \wedge v'_i \wedge \cdots \wedge v_r$;

 2. $v_1 \wedge \cdots \wedge (av_i) \wedge \cdots \wedge v_r = a(v_1 \wedge \cdots \wedge v_i \wedge \cdots \wedge v_r)$;

 3. $v_1 \wedge \cdots \wedge v_i \wedge \cdots \wedge v_j \wedge \cdots \wedge v_r$

 $= -v_1 \wedge \cdots \wedge v_j \wedge \cdots \wedge v_i \wedge \cdots \wedge v_r$.

- The r-vector vanishes if the vectors are linearly dependent.

- The collection, V_r, of r-vectors is a vector space and \(\text{dim } V_r = \frac{n!}{(n-r)!r!} \).

- Given a basis $\{e_i\}$ of V, the r-vectors $\{e_{\lambda_1 \ldots \lambda_r} = e_{\lambda_1} \wedge \cdots \wedge e_{\lambda_r}\}$, such that $1 \leq \lambda_1 < \cdots < \lambda_r \leq n$, form a basis of V_r.
The Representation of Polyhedral Chains by Multivectors

- Given an oriented r-simplex σ in E^n, with vertices $\{p_0 \ldots p_r\}$, the r-vector of σ, $\{\sigma\}$, is $\{\sigma\} = v_1 \wedge \cdots \wedge v_r / r!$, where the v_i are defined by $v_i = p_i - p_0$ and are ordered such that they belong to σ’s orientation.

$\{\sigma\}$ represents the plane, orientation and size of σ—the relevant aspects.

- The r-vector of a polyhedral r-chain $\sum a_i \sigma_i$, is

$$\{\sum a_i \sigma_i\} = \sum a_i \{\sigma_i\}.$$
Why an \(r \)-covector?

For the 3-dimensional example, we want to measure the flux through any infinitesimal cell \(\sigma \), \(\{ \sigma \} = v \wedge u \).

- Denote by \(T(\sigma) \) the flux through that infinitesimal element.
- As \(T(\sigma) \) depends only the plane, orientation and area, we expect
 \[
 T(\sigma) = \hat{T}(\{ \sigma \}).
 \]

- Balance: \(\hat{T} \) is linear
 \[
 \hat{T}(\sigma) = \tau \cdot \{ \sigma \},
 \]
 where \(\tau \) is a linear mapping of multi-vectors to real numbers—an \(r \)-covector.
Rough Proof

Consider the infinitesimal tetrahedron X, A, B, C generated by the three vectors u, v, w.

— Use right-handed orientation.

— Balance implies:

$$T(v, u) + T(v, w) + T(u, v + w) - T(u + v, w) = 0.$$

— Same for X, B, C, E and X, C, D, E

$$T(w, u) + T(u + v, w) + T(v, u) - T(v, w + u) = 0$$

$$T(w, u) - T(v + w, u) - T(v, w) + T(v, w + u) = 0.$$

— Add up to obtain: $T(u, v + w) = T(u, v) + T(u, w)$.

R. Segev (Ben-Gurion Univ.)

Extensions of Flux Theory

M.A.E. @ U.C.S.D., Feb. 2009
Or Using Multi-Vectors

- Consider the infinitesimal tetrahedron D generated by the three vectors u, v, w and let $A = \partial D$.
- $|A|^b \leq |A - \partial D| + |D| \to 0$, as the volume of the tetrahedron decreases.
- Thus, $\lim T(\{A\}) = 0$.

--- Use right-handed orientation.

Thus: $T(u \wedge v) + T(v \wedge w) + T(w \wedge u) + T((w - v) \wedge (v - u)) = 0$.

Using: $(w - v) \wedge (v - u) = w \wedge v - w \wedge u + v \wedge u = -u \wedge v - v \wedge w - w \wedge u$,

we conclude: $T(u \wedge v + v \wedge w + w \wedge u) = T(u \wedge v) + T(v \wedge w) + T(w \wedge u)$.
Reminder: Dual Spaces of Vector Spaces

- For a vector space \mathcal{W}, \mathcal{W}^*—the *dual space*—is the collection of all linear mappings, $T : \mathcal{W} \rightarrow \mathbb{R}$ (also *linear functionals, covectors*).

- In our case, flat chains are in $\mathcal{A}_r^\flat (E^n)$, and the total fluxes, being continuous linear functionals of chains, are $T \in \mathcal{A}_r^\flat (E^n)^*$.

- For an infinite dimensional vector space on which a norm $\|w\|$ is defined, one also requires that T is continuous. The condition for continuity (assuming linearity) is

$$|T(w)| \leq C_T \|w\|.$$

- This provides a procedure for generating new mathematical objects. Define a vector space and a norm and consider its dual space.

- *Representation Theorems*: represent the action of the linear functionals on vectors by known mathematical operations (inner products, integration).
Multi-Covectors

- An r-covector is an element of V^r—the dual space of V_r.
- r-covectors can be expressed using covectors:

$$V^r = (V^*)_r$$

$(V^*)_r$ is the space of multi-covectors, i.e., constructed as V_r using elements of the dual space V^*:

$$\tau = f_{\lambda_1 \ldots \lambda_r} e^{\lambda_1} \wedge \cdots \wedge e^{\lambda_r}, \quad \lambda_i < \lambda_{i+1}.$$

- r-covectors may be identified with alternating multilinear mappings:

$$V^r = L_A^r(V, \mathbb{R}), \quad \text{by} \quad \tau(v_1 \wedge v_2 \wedge \cdots \wedge v_r) = \bar{\tau}(v_1, \ldots, v_r).$$

- This is a simple example of a representation theorem for functionals.
Riemann Integration of Forms Over Polyhedral Chains

- An *r-form* in $Q \subset E^n$ is an r-covector valued mapping in Q.
- An r-form is continuous if its components are continuous functions.
- The *Riemann integral* of a continuous r-form τ over an r-simplex σ is defined as
 \[
 \int_{\sigma} \tau = \lim_{k \to \infty} \sum_{\sigma_i \in S_k \sigma} \tau(p_i) \cdot \{\sigma_i\},
 \]
 where $S_i \sigma$ is a sequence of simplicial subdivisions of σ with mesh $\to 0$, and each p_i is a point in σ_i.
- The Riemann integral of a continuous r-form over a polyhedral r-chain $A = \sum a_i \sigma_i$, is defined by
 \[
 \int_A \tau = \sum a_i \int_{\sigma_i} \tau.
 \]
Lebesgue Integral of Forms over Polyhedral Chains

- An r-form in E^n is *bounded and measurable* if all its components are bounded and measurable.

- The **Lebesgue integral** of an r-form τ over an r-cell σ is defined by

$$\int_{\sigma} \tau = \int_{\sigma} \tau(p) \cdot \left\{ \sigma \right\} \frac{dp}{|\sigma|},$$

where the integral on the right is a Lebesgue integral of a real function.

- This is extended by linearity to domains that are polyhedral chains by

$$\int_{A} \tau = \sum a_i \int_{\sigma_i} \tau,$$

for $A = \sum_i a_i \sigma_i$.

R. Segev (Ben-Gurion Univ.)

Extensions of Flux Theory

M.A.E.@U.C.S.D., Feb. 2009 37 / 45
The Cauchy Mapping

- The Cauchy mapping, D_T, for the cochain T, gives $D_T(p, \alpha)$, at the point p in the direction α defined by the cell σ, defined as:

$$D_T(p, \alpha) = \lim_{i \to \infty} T \cdot \frac{\sigma_i}{|\sigma_i|}, \quad \alpha = \frac{\sigma_i}{|\sigma_i|}$$

where all σ_i contain p, have r-direction α and $\lim_{i \to \infty} \text{diam}(\sigma_i) = 0$.

- The Cauchy mapping for a given cochain T, of r-directions is analogous to the dependence of the flux density on the unit normal.
The Representation Theorem

Whitney:

- **The analog to Cauchy’s flux theorem.** For each flat r-cochain T there is an r-form $\tau = \tau_T$ that represents T by

$$T \cdot A = \int_A \tau_T,$$

for every flat r-chain $A.$
Coboundaries and Balance Equations

- The *coboundary* dT of an r-cochain T is the $(r+1)$-cochain defined by
 \[dT \cdot A = T \cdot \partial A. \]

 A very general form of “Stokes’ theorem”.

- Thus, d is the *dual of the boundary operator*:
 \[
 \mathcal{A}^b_{r+1}(E^n) \xrightarrow{\partial} \mathcal{A}^b_r(E^n)
 \]
 \[
 \mathcal{A}^b_{r+1}(E^n)^* \leftarrow d=\partial^* \mathcal{A}^b_r(E^n)^*.
 \]

- The coboundaries of flat cochains are flat, as the boundary operator is continuous.

- Hence, there is a flat cochain S satisfying the global balance equation:
 \[S \cdot A + T \cdot \partial A = 0, \quad \forall A, \quad \implies \quad dT + S = 0. \]

 A very general form of the balance equation.
The Local Balance Equation

If \(\tau_T \) is a form that represents the total flux operator \(T \), then, by the representation theorem applied to \(dT \), there is a form representing \(dT \)

\[
d_0\tau = \tau_{dT}.
\]

Thus,

\[
dT \cdot B = T \cdot \partial B \quad \text{is represented by} \quad \int_B d_0\tau = \int_{\partial B} \tau_T.
\]

Let \(\beta \) be the \(r \)-form representing the rate of content operator \(S \) so

\[
T(\partial B) + S(B) = 0 \quad \text{is represented by} \quad \int_{\partial B} \tau_T + \int_B \beta = 0.
\]

One obtains the local expression

\[
d_0\tau + \beta = 0.
\]
Stokes’ Theorem for Differentiable Forms on Polyhedral Chains

- The exterior derivative of a differentiable \(r \)-form \(\tau \) is an \((r + 1) \)-form \(d\tau \) defined by

\[
d\tau(p) \cdot (v_1 \wedge \cdots \wedge v_{r+1}) = \sum_{i=1}^{r+1} (-1)^{i-1} \nabla_{v_i} \tau(p) \cdot (v_1 \wedge \cdots \wedge \hat{v}_i \wedge \cdots \wedge v_{r+1})
\]

where \(\hat{v}_i \) denotes a vector that has been omitted, and \(\nabla_{v_i} \) is a directional derivative operator.

- Stokes’ theorem for polyhedral chains, based on the fundamental theorem of differential calculus, states that

\[
\int_A d\tau = \int_{\partial A} \tau
\]

for every differentiable \(r \)-form \(\tau \) and an \((r + 1) \)-polyhedral chain \(A \).
The Local Balance Equation for Differentiable Cochains

- Reminder:
 - If τ_T is a form that represents the total flux operator T, then, by the representation theorem applied to dT, there is a form representing dT
 \[d_0 \tau = \tau_{dT}. \]
 - One obtains the local expression
 \[d_0 \tau + \beta = 0. \]

- If τ_T is differentiable, then, $d_0 \tau = d\tau$, the exterior derivative.
Thanks