Supercapacitors


Organic and metallic supercapacitor electrodes and full devices have been fabricated, aimed at addressing the main challenges in the field: attaining high power density and energy density, and operating in high frequencies. We demonstrated varied electrode designs exhibiting exceptional electrochemical properties; in particular we showed that, contrary to the accepted paradigm, the rate of redox reactions at the electrode interface is not a limiting factor for achieving high frequency capacitive performance.


Recent Publications


  1. Nickel Alloying Significantly Enhances the Power Density of Ruthenium-Based Supercapacitors, Ahiud Morag, Nitzan Shauloff, Nitzan Maman, Natalya Froumin, Vladimir Ezersky, Raz Jelinek, Batteries & Supercaps, 2020,3, 946-952.
  2. Polydiacetylene-perylenediimide supercapacitor, A. De Adhikari, A. Morag, J. Seo, J.-M. Kim, Raz Jelinek, ChemSusChem, 2020, 13, 3230.
  3. Nanostructured Nickel/Ruthenium/Ruthenium-Oxide Supercapacitor Operating at Very High Frequencies, Ahiud Morag, Nitzan Maman, Natalya Froumin, Vladimir Ezersky, Katya Rechav, Raz Jelinek, Advanced Electronic Materials, 2019, 1900844.
  4. Flexible asymmetric micro-supercapacitors from freestanding hollow nickel microfiber electrodes, Ahiud Morag and Raz Jelinek, Advanced Electronic Materials, 2019, 5, 1800584.
  5. Carbon nanomaterials in biological studies and biomedicine",Nagappa Teradal, Raz Jelinek, Advanced Healthcare Materials, 2017, 6, 1700574.
  6. Porous Au nanotubes for enhanced methanol oxidation catalysis", Xiuxiu Yin, Nagappa Teradal, Raz Jelinek, ChemistrySelect, 2017, 2, 10961-10964.
  7. Freestanding Gold/Graphene-Oxide/MnO2 Microsupercapacitor Displaying High Areal Energy Density", Ahiud Morag, James Becker, Raz Jelinek, ChemSusChem, 2017, 10, 2736-2741.
  8. Catalytic Au “nano-wool balls", Xiuxiu Yin, Nagappa Teradal, Ahiud Morag, Raz Jelinek, ChemCatChem, 2017, 9, 2473–2479.
  9. ”Bottom-up” transparent electrodes, Ahiud Morag, Raz Jelinek, Journal of Colloids and Interface Science, 2016, 482, 267-289.
  10. High surface area electrodes by template-free self-assembled hierarchical porous gold architecture, A. Morag, T. Golub, J. Becker, Raz Jelinek, Journal of Colloids and Interface Science, 2016, 472, 84-89.
  11. Directed self-assembly of graphene oxide on an elecrtospun polymer fiber template, TP Vinod, X. Yin, J. Jopp, Raz Jelinek, Carbon, 2015, 95, 888-894.
  12. Enhanced Photocatalysis by Hybrid Au/ZnO Nanoparticles Assembled Through a One-Pot Method, J. Manna, TP Vinod, K. Flomin, Raz Jelinek, Journal of Colloids and Interface Science, 2015, 460, 428-434.
  13. Single-step assembly of large-area, transparent conductive patterns induced through edge adsorption of template-confined Au-thiocyanate, Xiuxiu Yin, T. P. Vinod, Dimitry Mogiliansky, Raz Jelinek, Advanced Materials Interfaces, 2015, 2, 1400430.
  14. Transparent, conductive polystyrene in three dimensional configurations, Alexander Trachtenberg, T.P. Vinod, Raz Jelinek, Polymer, 2014, 55, 5095-5101.
  15. Flexible conductive surfaces via "bottom-up" gold nanotechnology, T.P. Vinod and Raz Jelinek, ACS Applied Materials and Interfaces, 2014, 6, 3341-3346.
  16. Nonplanar Conductive Surfaces via “Bottom-Up” Nanostructured Gold Coating, T. P. Vinod, Raz Jelinek, ACS Appl. Mater. Interfaces, 2014, 6 (5), 3341–3346.
  17. Transparent, conductive gold nanowire network assembled from soluble Au thiocyanate, Ahiud Morag, Vladimir Ezersky, Natalya Froumin, Dimitry Mogiliansky, Raz Jelinek, Chem. Comm., 2013, 49 (76), 8552-8554.
  18. Patterned transparent conductive Au films through direct reduction of gold thiocyanate, Ahiud Morag, Natalya Froumin, Dimitry Mogiliansky, Vladimir Ezersky, Edith Beilis, Shachar Richter, Raz Jelinek, Advanced Functional Materials, 2013, 23, 5663-5668.

ody>