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Abstract

Motor proteins are specialized molecules that convert chemical energy into useful mechanical

work and govern many important biological processes. They bind to actin filaments and

microtubules and use them as tracks, on which they propagate in order to transport different

types of cargo across the cell. Among these molecules we find myosin II motors that interact

with elastic actin filaments. Myosin II are non processive motors that exhibit a low duty

ratio, which means that in order to work effectively they need to cooperate with each other.

The collective work of myosin II motors on elastic actin tracks suggests that these filaments

may be subjected to significant tensile stresses. It has been found that the stress applied

on the actin may induce an indirect crosstalk between the motors in order to diminish

the elastic energy, which is expressed by changes in their binding / unbinding statistics.

This type of indirect communication between motors via the elastic track, which has been

termed the elasticity mediated crosstalk (EMC) effect, may significantly affect the motors’

effective processivity. In this thesis, we use a statistical mechanical analysis and Monte

Carlo computer simulations, to explore the magnitude and role of the EMC effect in two

types of systems where the collective action of myosin II motors on actin filament is present:

(i) gliding motility assays and (ii) muscle contraction. In motility assays, we find that the

EMC effect has a small impact on the collective action of motors, and that the duty ratio of

the motors remains effectively unchanged. In muscle contraction, where the actin filament

is subjected to an external force opposing the action of the motors, we find that the EMC

effect leads to a non uniform attachment probability along the actin track. Such duty ratio

variations between motors may have a serious negative influence on the ability of the motors

to perform effectively. Nevertheless, we find that this feature becomes significant only when

the size of the system is larger than the size of the sarcomere (which is the basic contractile

unit of the muscle cell). The EMC effect may, thus, serve as an explanation for the specific

dimensions of the sarcomere, which are found to be essentially identical across different

vertebrate species.
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Chapter 1

Introduction

1.1 The cytoskeleton

The cytoskeleton is a protein scaffold present in all biological cells, which serves as a sup-

porting infrastructure that gives the cell its morphology and mechanical stability. The

cytoskeleton (see Fig. 1.1) is a dynamic structure which has many important functions, such

as cell shape maintenance, cellular locomotion and intracellular cargo transport [1].

Figure 1.1: The cytoskeleton of endothelial cells showing actin filaments (red), microtubules
(green) and the nuclei (blue).

Three main protein filaments compose the cytoskeleton: microtubules, actin filaments
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and intermediate filaments (see Fig. 1.2). The thickest and most rigid filaments are mi-

crotubules, which are hollow, pipe-like filaments. The cylindrical structure of microtubules

is made of 13 circularly arranged protofilaments, each made of successive units of α- and

β-tubulin dimers [2]. The successive assembly of tubulin dimers into microtubules defines

its polarity, where the “plus” and “minus” ends are at the fast and slow growing ends of the

filament respectively. The rigid microtubules provide the cell important mechanical support

and have a key role in intracellular transport [3, 4], cell division [5] and other important

cellular processes. Actin filaments, whose diameter is ∼ 7 nm, are the thinnest filaments of

the cytoskeleton. Actin filaments are relatively flexible cable-like filaments, with a double

helical structure repeating every ∼ 38 nm, composed of G-actin monomers. Actin filaments

are also polar in nature, and they play a significant role in numerous cellular processes,

including cell crawling [6] and cell division [7]. The third type of cytoskeletal filaments are

intermediate filaments, which are a broad class of fibrous crossed-linked proteins with diam-

eter of ∼ 10 nm. The presence and composition of intermediate filaments varies between

cells of different tissues. Different intermediate filaments include cytoplasmic proteins, such

as vimentin and keratin, and nuclear proteins, such as lamins. Like actin filaments, inter-

mediate filaments are relatively flexible rope-like structures. Intermediate filaments do not

have a primary role in cellular processes, but rather provide the cell its physical strength

and serve as an anchoring scaffold for the nucleus and other organelles [8].

While rigid microtubules function as compression resisting filaments to maintain the

cell’s structure, the flexible intermediate and actin filaments do so by functioning as ten-

sion bearing elements. Other than providing physical support and maintaining the cell’s

shape and structure, the polar microtubules and actin filaments also serve as tracks for the

propagation of motor proteins.
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(A) (B) (C)

Figure 1.2: The biological cell has three main cytoskeletal filaments: (A) Microtubules are
composed of tubulin dimers that form a hollow cylindrical structure with diameter ∼ 25 nm.
(B) Actin filaments have a double stranded structure composed of G-actin monomers. (C)
Intermediate filaments are made of tetramer subunits arranged in an anti-parallel fashion,
which makes intermediate filaments non-polar.

1.2 Motors proteins

Motor proteins are specialized molecules that possess the ability to convert chemical energy,

derived from adenosine triphosphate (ATP) hydrolysis, into useful mechanical work [9]. The

biological cell utilizes the action of these nano machines to transport vesicles, organelles

and other kinds of cargo across the cell. This type of active transport is achieved by the

propagation of the motors along microtubule and actin filament tracks within the cell.

Motor proteins can be divided into different classes, characterized by the filament with

which they interact and the preferred direction of motion along the filament. They also vary

in their degree of processivity, which is determined by the duty ratio, i.e. the fraction of

time out of the entire ATP hydrolysis cycle in which a motor remains bound to the filament.

For example, kinesin motors “walk” along microtubules, while myosin motors interact with

actin filaments. Most kinesins and myosins move towards the plus end of the microtubules

and actin filaments, respectively [27]. In contrast, Ncd motors (kinesin-related microtubule

motors) and myosin VI (which propagate along actin filaments) move towards the minus
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end of their associated filament tracks [11,12]. Finally, while processive motors like kinesins

can cover long distances along microtubules without detaching from the track [13], non-

processive motors with a low duty ratio, like most myosin family motors, take only single

steps along the actin filament before disconnection occurs [14].

One abundant non-processive motor protein is myosin II, which plays a significant role

in a diversity of cellular processes. The low duty ratio of myosin II implies that these motors

have a rather poor performance as individuals (unlike kinesins) and, hence, they need to

work in cooperation with each other in order to produce substantial motion. The structure

of myosin II consists of three major parts [see Fig. 1.3(A)]: (i) a head domain, which binds

to binding sites located on the actin filament. This part is responsible for ATP hydrolysis,

which triggers a conformational change that causes the motor head to rotate; (ii) a neck

domain, which serves as a lever arm that amplifies the motion of the rotating head; (iii) a

tail domain, which can attach cargo and organelles for transport.

(A) (B)Head

Neck

Tail

Figure 1.3: (A) Schematics of a myosin II molecule, which consists of three main regions:
a head domain with an ATP hydrolysis site; a neck region that acts as a lever arm for the
rotating head; a tail domain which binds cargo. (B) Myosin II molecules pack together to
form thick filaments from which motor heads project. A single thick filament may consist of
several hundreds of myosin II molecules.

In vertebrate striated muscles myosin II molecules pack together into bipolar myosin

filaments with the tails forming a roughly cylindrical filament backbone and the myosin

heads arranged in a quasi-helical array on the filament surface [see Fig. 1.3(B)].
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1.3 Cooperativity between motor proteins

The collective action of motor proteins is implicated in various important cellular processes.

During mitosis, for instance, interactions between kinesins motors and microtubules (which

comprise the mitotic spindle) are involved in the segregation of chromosomes into two distinct

part of the cell, defining the future daughter cells [15]. Moreover, in cytokinesis (the process

of cell division) actin filaments arrange themselves along the cell’s circumference to form the

contractile ring (see Fig. 1.4). The action of myosin II motors causes the actin filaments to

slide past each other, resulting in the contraction of the ring, which leads to the division of

the cell into the two daughter cells [7].

(A) (B)

Figure 1.4: (A) A fluorescent image of the mitotic spindle showing microtubules (green),
chromosomes (blue) and centrosomes (red) during the metaphase stage of cell division. (B)
Following the segregation of the genetic material into opposite parts of the cell (left), the
contractile ring shrinks due to the action of myosin II motors on actin filaments (right),
dividing the cell into two.

Cooperative work of myosin motors is also found in the adaptation of mechanically

activated transduction channels in stereocilia of hair cells in the inner ear (see Fig. 1.5). In

response to an auditory stimulus, transduction channels open and generate an influx of Ca2+

into the stereocilia (which are composed of parallel cross-linked actin filaments). In turn,

Ca2+ causes myosin 1-c motors to dissociate from the actin, which reduces the channel’s

tension and leads to its closure. When Ca2+ influx ceases, myosin 1-c motors climb back up

the actin filaments to restore the resting tension and the native sensitivity of the hair bundle.

This mechanism allows hair cells to adapt to prolonged stimuli while remaining sensitive to
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new ones [16].

Cooperativity between myosin II motors can also be found in muscle contraction and

in vitro motility assays. These two cases are further discussed below.

Figure 1.5: (A) The cochlea of the inner ear has a spiral structure consisting of three fluid
filled chambers. (B) Cross section of the cochlea showing the hair cells that lie on top of
the basilar membrane. (C) Stereocilia of hair cells arranged in rows of increasing height are
deflected due to the movement of the basilar membrane, increasing tip link tension. (D)
Increased tension within the tip links, connecting stereocilia, opens transduction channels.
The action of myosin 1-c on actin filament restores the resting tension for new stimuli.

1.3.1 Motility assays

In vitro motility assays constitute a very useful experimental technique for studying motor

dynamics in reconstituted model systems. The two main geometries used in motility assays

are the bead assay and the gilding assay. In the former, the filament tracks are fixed to a

coverslip, and motors are adsorbed to micro-sized beads, which are suspended in a solution

with the presence of ATP. The beads first diffuse until they encounter a filament track,

allowing the motors to attach to the track and propagate along it. In gliding motility

assays the filaments glide over a surface covered by immobilized yet active motors (see

Fig. 1.6). In both cases, either the beads (in the bead assay) or the filaments (in the

gilding assay) are flouroscently labeled, and the motion is detected and analyzed by means

of video microscopy. Tracking the motion of the bead or the filament provides important

information, such as motor directionality, filament gliding velocities, and motor proteins
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Figure 1.6: Schematic of a gliding motility assay, in which a flouroscently labeled actin
filament lies on a bed of immobilized, yet active, myosin II motors. The filament’s motion
due to motor forces is recorded and analyzed to extract different data.

kinetic parameters. Motility assays, thus, offer an important and powerful experimental tool

for understanding the nature and dynamics of motor proteins under controlled conditions.

1.3.2 Skeletal muscles

One of the more fascinating examples for the cooperative action of myosin II motors is their

role in skeletal muscle contraction. Skeletal muscles are organized in a hierarchical fashion,

in which the basic contractile unit is the sarcomere. Repeating units of sarcomeres comprise

the myofibril which, in turn, lie parallel to other myofibrils to compose the multi-nucleated

cylindrical muscle cell [also referred as a muscle fiber, or a myocyte (see Fig. 1.7)]. The

sarcomere itself is composed of two types of filaments, actin (thin) and myosin (thick), in an

arrangement that allows them to slide past each other [see Fig. 1.8(A)]. The thick filament

consists of about 300 myosin II molecules, and is surrounded by 12 actin filaments, 6 around

each half [see Fig. 1.8(B)]. The motors heads project out of the thick myosin filament every

14.3 nm, and the angular difference between adjacent motor heads is 40◦ [17]. The thin

filaments in each half sarcomere lie parallel to each other, and their orientation is opposite

to the thin filaments on the other half sarcomere, so that the plus ends of all thin filaments

are found at the ends of the sarcomere (i.e., the Z-line). While thin actin filaments are

anchored at the Z-line, thick myosin filaments are crosslinked at the M-line, which is located

at the center of the sarcomere [see Fig. 1.8(A)].
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Figure 1.7: The skeletal muscle consists of bundles of fascicles made of muscle fibers, each
composed of myofibrils, which are made of repeating units of sarcomeres.

When the muscle is at rest the actin filament is covered by tropomyosin, making the

binding sites unavailable for the attachment of motors. Upon nervous stimulation, Ca2+

ions flow into the muscle cell and unlock the actin-covering tropomyosin, which results in

the exposure of binding sites to the attachment of myosin II motors. Once attached to a

binding site, ATP hydrolysis causes the motor head to rotate and pull the actin filament

towards the M-line. The resulting sliding of thin filaments past thick filaments leads to the

shortening of the sarcomere and muscle contraction.

Thin filaments Thick filament
M−line

(B)

(A)

Z−lineZ−line

Figure 1.8: (A) The sarcomere is made of thin actin and thick myosin II filaments that slide
past each other, causing the sarcomere to shorten. Actin filaments are anchored at the Z-line
at both ends of the sarcomere, while myosin filaments are connected at the M-line, which is
located in the center of the sarcomere. (B) Various cross-section views along the sarcomere,
showing the spatial arrangement of thin and thick filaments.
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1.4 Cooperative bidirectional motion

One of the more interesting outcomes of the cooperative action of molecular motors is their

ability to induce bidirectional (“back and forth”) motion. This dynamical pattern emerges

when filaments (or other objects such as liposomes and organelles) are subjected to the action

of two groups of motors that engage in a “tug-of-war” (TOW) contest, exerting forces in

opposite directions. The “victory” of the motor party that exerts the larger force determines

the instantaneous direction of motion. If the two opposite forces are nearly similar, the

balance of forces may shift between the two motor parties as a result of stochastic binding

and unbinding events of motors to the filament track. Bidirectional motion is not restricted

to cases where two classes of motors apply forces in opposite directions, but may also occur

when a single group of motors interacts with a filament with mixed polarities. In a recent

gliding motility, actin filaments were severed into smaller fragments and then randomly fused

together to form globally a-polar actin with alternating polarities [18]. The actin filament

exhibited bidirectional movement as depicted in Fig. 1.9(A). The velocity histogram of the

actin shown in Fig. 1.9(B) clearly exhibits a bimodal distribution centered around zero.

Fig. 1.9(C) plots a histogram of the time duration of unidirectional intervals of motion. The

histogram is fitted to an exponential distribution p(t) = (1/τrev)exp(−t/τrev), from which

the typical reversal time τrev between unidirectional intervals of motion was extracted. The

measured reversal times were found to be macroscopically large, τrev ∼ 3 − 10 seconds [see

Fig. 1.9(D)], which is two order of magnitude larger than the ATP-ase cycle time [9]. This

observation has indicated that some cooperativity is involved in the dynamics.

One of the earlier models for cooperative bidirectional motion has been presented in

1995 by Jülicher and Prost [19] (see also later versions in [20, 21]). The model has been in-

spired by several ratchet models for single motor proteins [22–24], in which a motor is viewed

as a particle moving in a two state system: In the attached state it experiences a periodic

asymmetric potential, while in the detached state it moves freely (see Fig. 1.10). Jülicher

and Prost extended this model for collective motor dynamics by connecting the motors to
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(A) (B)

(D)(C)

Figure 1.9: (A) The position of the a-polar actin filament with alternating polarities (top).
The filament’s instantaneous direction of motion (bottom). Bar size is 5 µm. (B) Velocity
histogram of the actin filament with alternating polarities, exhibiting a bimodal distribution
centered around zero. (C) Distribution of reversal times of a single filament with alternating
polarities. The distribution is fitted by a single exponential decay function with a charac-
teristic reversal time τrev. (D) The characteristic reversal time τrev of 19 different bundles as
a function of the number of motors N .

a rigid rod that enforces the particles to move together. The fact that the system is not in

thermodynamic equilibrium (due to constant ATP consumption by the motors) is introduced

via the assumption that the attachment and detachment rates (ω1 and ω2, respectively) do

not satisfy conditions of detailed balance - w1(x)/w2(x) 6= exp [−∆U(x)/kBT ]. Specifically,

in ref. [21] the authors assumed that

w1(x)

w2(x)
= exp

(
−∆U(x)

kBT

)
+ ΩΘ(x), (1.1)

where the function Θ(x) and the amplitude Ω characterize the non-equilibrium (ATP-driven)

16



(A)

(B)

Figure 1.10: Schematics representation of the ratchet model for collective motor dynamics
introduced by Jülicher and Prost. (A) The motors are connected to a rigid rod at fixed
spacing q. In the attached state, the motors interact with an asymmetric potential W1

with period l. The detached state is represented by a uniform potential W2. (B) The motors
attachment rate w2 (detachment rate w1) is localized around the potential maxima (minima).

transitions. Bidirectional motion was observed when Θ(x) is defined such as that detach-

ments occur around the minima of the potential wells, while attachments take place around

the potential maxima. For Ω < Ωc (i.e., near thermal equilibrium) the system rapidly os-

cillates between left and right movement. Above a critical value Ωc, the motion becomes

bidirectional with reversal times that diverge exponentially with the number of motors N1.

This is reminiscent of a para-ferro magnetic transition at zero external field, where below

the critical temperature the up-down symmetry is spontaneously broken, with a “flip” prob-

ability that diminishes exponentially with the system size.

The experimental results reported in [18] challenged the prediction regarding the ex-

ponential growth of τrev with N . It was found that the characteristic reversal times of

the bidirectional motion in this motility assay were macroscopically large, but practically

independent of the number of motors [see Fig. 1.9(D)]. This observation implies that the

motors interact (crosstalk) with each other - a feature that was absent in earlier theoretical

studies. Crosstalk between motors may arise from direct interactions between motors that

lead to correlations between their attachment states. Another possibility is that the motors

1The critical value Ωc depends on the form of the ratchet potential. For the asymmetric saw-tooth
potential used in ref. [21] the authors found Ωc ' 0.009ω2

17



indirectly influence each other. This latter scenario is discussed below.

1.5 The elasticity-mediated crosstalk (EMC) effect

A recent theoretical model for bidirectional motion which incorporated the filament’s com-

pliance showed that indirect interaction between motors can be mediated by the elasticity

of the actin filament. According to this model, binding and unbinding events of motors

change the elastic energy stored within the elastic filament, thus altering the transition rates

of motors between states. During bidirectional motion, the elastic filament is subjected to a

tug-of-war between motors that exert opposite forces, which creates large stress fluctuations

along the elastic filament. In order to relieve the tension within the actin and reduce these

stress fluctuations, the attachment and detachment rates of the motors are modified. This

type of crosstalk between motors, in which they indirectly communicate with each other

through the elastic filament, has been termed the elasticity-mediated crosstalk (EMC) effect.

Mathematically, the EMC effect can be understood by considering Eq. 1.1 and noticing that

in the equilibrium term, the energy change includes two contributions,

∆U =
N∑
i=1

∆Umotor
i + ∆Eel. (1.2)

The first term in Eq. 1.2 is the change in the energy of the motor whose state is varied. The

second term ∆Eel is the change in the elastic energy, occurring due to the change in the

force that the motor exerts on the filament. The elasticity term is a collective term because

the elastic energy depends on the states of all the motors (see section 1.5.2 below). It can

be treated as an equilibrium degree of freedom since mechanical equilibrium is established

on time scales that are several orders of magnitude smaller than the ATP-ase cycle.
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1.5.1 System model

In order to quantify the EMC effect, we propose the following model: The actin filament

is represented as a chain of N nodes connected by N − 1 identical elastic springs with

spring constant ks (see Fig. 1.11). In the chain’s reference frame the i-th node is located at

xi = (i− 1)∆l, and, for brevity, we set ∆l = 1. Each node, which represents a binding site

for the myosin II motors, can be in one of two states - detached or attached. In the detached

state there is no interaction between the node and a motor, and the node experiences no

force. In the attached state, the motor exerts a force of magnitude f0 on the node, in a

direction that depends on the local polarity of the filament 1.

Figure 1.11: A schematics of our system model: The elastic actin track is represented by
a chain of N nodes connected by identical springs with spring constant ks. The nodes
can attach to and detach from myosin II motors. An attached node experiences a force
of magnitude f0 in a directions that depends on the local polarity, while a detached one
experiences no force.

The probability of a motor to be in the attached state will be denoted by r, which is

the duty ratio of a single motor. It is important to note that our model uses fixed values for

r and f0. Actually, the values of r and f0 depend on several parameters, most importantly

the instantaneous relative position of the motor head to its binding site. Our model utilizes

a simplified picture, in which the temporal and spatial variations in the duty ratio between

motors (which arise due to the motion of the actin filament and the incommensurability

between the motors and the binding sites) are neglected. A possible way to include variations

between motors is to assume that these values are chosen from certain distributions, which

are centered around r and f0. However, for a large number of working motors N and large

1Depending on the setup, the number of motors may be larger than the number of nodes (see, e.g., our
schematic Fig. 1.11). However, each node can be attached to no more than one motor and, therefore, the
excess motors (which, at a given instance, are spatially hindered from binding to one of the sites) have no
impact on the chain. Thus, we will assume that the number of motors is also N , effectively ignoring the
motors that cannot connect to the nodes.
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times, these variations are expected to average out, thus not altering our results. This is

analogous to the diffusion problem of a particle, whose step size (per unit time) is drawn from

a symmetric Gaussian distribution. One can reproduce the same diffusive behavior using

a different model with steps of fixed size that are made with equal probability in opposite

directions.

Different configurations of the system are defined according to which nodes are con-

nected to motors and which are not. The statistical weight of a configuration with n “at-

tached” motors is given by

w = rn(1− r)N−nexp

(
− Eel

kBT

)
, (1.3)

where T is the temperature and kB is the Boltzmann constant. By averaging over all possible

configurations, one can find the effective duty ratio of the i-th motor 〈r(i)〉, and the mean

effective duty ratio 〈r〉 =
∑N

i=1〈r(i)〉/N .

1.5.2 Calculating the elastic energy

Three types of forces are exerted on the chain’s nodes: (i) the motor forces fmotor
i , (ii) the

spring forces Fi, and (iii) friction drag forces fdrag
i . Because the motion is highly overdamped,

the total instantaneous force on each node vanishes. Thus, for the i-th mass the equation of

motion reads

fmotor
i − fdrag

i + Fi − Fi−1 = 0, (1.4)

with F0 = FN = 0. The drag force includes two contributions - one is due to motor friction

(MF), fMF
i , and the other is due to friction with the surrounding viscous medium, fviscous

i .

The motor friction forces act only on the particles which are connected to the motors.
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Therefore, by redefining the motor forces fi = fmotor
i − fMF

i , we can rewrite Eq. 1.4 as

fi − fviscous
i + Fi − Fi−1 = 0, (1.5)

where fi = f0 or fi = 0 if the i-th motor is attached or detached respectively. For the chain’s

center of mass (CoM), the equation of motion reads

FCoM =
N∑
i=1

fi −
N∑
i=1

fviscous
i = 0. (1.6)

Assuming that the viscous drag force is distributed uniformly along the chain (i.e., it is equal

for all nodes) and, therefore, Eq. 1.6 gives

fviscous
i =

∑N
i=1 fi
N

= f̄ . (1.7)

Using this last result, Eq. 1.5 reads

Fi − Fi−1 = −f ∗i , (1.8)

where f ∗i = fi − f̄ is the excess force. Since F0 = 0, we find that F1 = −f ∗1 . Then,

F2 = F1 − f ∗2 = −f ∗1 − f ∗2 ; and, in general,

Fi = −
i∑

j=1

f ∗j . (1.9)

The elastic energy of the elastic chain, which is the sum of energies of all the springs, is given

by

Eel =
N−1∑
i=1

F 2
i /2ks. (1.10)

If the motion is only partially overdamped (including in the limit of zero friction), all
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the nodes move together at the same acceleration. One can repeat the above calculation and

show that Eq. 1.9 remains valid.

1.5.3 The dimensionless parameter β∗

Substituting Eq. 1.10 into Eq. 1.3 yields

w = rn(1− r)N−nexp

(
−β∗

N−1∑
i=1

F̃i
2

)
, (1.11)

where F̃i is the reduced force exerted on the i-th spring (in units of f0), and the dimensionless

parameter

β∗ =
f 2

0

2kskBT
(1.12)

is the ratio between the typical elastic energy of a spring f 2
0 /2ks and the thermal energy

kBT . Eq. 1.12 relates the dimensionless parameter β∗ to three physical parameters of the

system: the temperature T , the typical force exerted by a motor f0, and the effective spring

constant of the actin filament segment between two binding sites of the motors, ks. The

latter parameter can be further expressed as

ks =
Y A

l
, (1.13)

where Y is Young’s modulus of the actin, A is the cross-sectional area of an actin filament

and l is the distance between binding sites. For myosin II motors, forces in the range of

f0 = 5 − 10 pN have been measured experimentally [25, 26]. The actin-cross sectional area

(including the tropomyosin wrapped around the actin helix) is A = 23 nm2, and the Young’s

modulus of the actin-tropomyosin filament is Y = 2.8 GPa [27,28].

The value of l is somewhat more difficult to assess. One possibility is that l ' 5.5 nm,

which is simply the size of the G-actin monomers, each of which includes one binding site
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for myosin motors [29]. Another possible value is related to the double helical structure of

F-actin and the fact that it completes half a wist about every 7 monomers, i.e. every ' 38.5

nm [30]. Since the binding sites follow a twisted spatial path along the double helix, many

of them remain spatially unavailable to the motors in motility assays, where the motors are

located underneath the F-actin. Thus, in gliding motility assays the distance between the

binding sites along the line of contact with the bed of motors is l ' 38.5 nm. Two other

choices for l, which are more relevant to skeletal muscles, arise from the spatial arrangement

of thin and thick filaments in the sarcomere, where an average of three thick myosin filaments

surround each thin actin filament. Along the thick filament, the separation between collinear

motor heads is ' 43 nm [31–33]. On the other hand, the half pitch of the thin actin filament

is ' 38.5 nm. The last two structural attributes of thick and thin filaments lead to two

other possible values for the effective distance between nodes - l = 43/3 ' 14.3 nm ,and

l = 38.5/3 ' 12.6 nm. Using the above mentioned values of the system parameters, we find

that β∗ lies within the range of 2.5× 10−4 . β∗ . 7× 10−3.

1.5.4 Stress fluctuations

According to Eq. 1.10, the elastic energy of a given spring i is directly related to the sum

of excess forces actin on all the nodes located on one side of the specific spring. Generally

speaking, the elastic energy of the springs becomes larger when the force fluctuations are

larger. In the motility assay described in ref. [18], featuring actin filaments with alternating

polarities, the motors exert forces in opposite directions along the filament, which implies

that the force fluctuations can be quite large [see Fig. 1.12(B)]. This is not the case in

conventional motility assays, where the forces act in the same directions, leading to smaller

force fluctuations [see Fig. 1.12(A)] . Using a scaling argument based on the statistics of

random walks, the authors of ref. [18] show that the elastic energy of a bipolar actin track
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with N nodes and n attached motors scales as 1

Eel

kBT
∝ Nn. (1.14)

Thus, the detachment of a single motor (n→ n− 1) leads, on average, to an energy gain of

∆Eel

kBT
= −αN, (1.15)

where α is some dimensionless parameter (that is closely related to the dimensionless pa-

rameter β∗ described above). Eq. 1.15 implies that if N is large, the elastic energy released

due to the detachment of even a single motor can be large, which is the reason why the EMC

effect is significant in tug-of-war situations. The authors of ref. [18] have incorporated the

EMC effect into their model by introducing an additional detachment rate that depends on

the elastic energy: w3 = w0
3exp

(
−∆Eel/kBT

)
= w0

3exp (−αN). This additional detachment

rate eliminates the exponential dependence of the bidirectional motion reversal time, τrev,

on the system size N , which was predicted by earlier theoretical studies.

f f f f(A) (B)

Figure 1.12: (A) In a conventional motility assays, the motors exert forces in the same
direction and the springs are barely stretched. (B) In contrast, when the motors exert forces
in opposite directions, the springs are more stretched, and have a much larger elastic energy.

1.6 Outline

In bidirectional motion, the origin of the EMC effect are large stress fluctuations along the

actin filament due to opposite motor forces. Overall, the EMC effect reduces the attachment

probabilities of motor, making each motor effectively less processive. In chapter 2 of this

1In chapter 2 we show that, in contrast, in a conventional motility assay with polar filaments the elastic
energy scales only as Eel/kBT ∝

√
Nn.
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thesis we investigate the role of the EMC in the more common case of gliding motility

assays, where polar actin filaments move directionally under the action of unidirectional

forces. We present a statistical-mechanical analysis and derive an analytical expression for

the effective duty ratio of myosin II motors in gliding motility assays. We also conduct

Monte Carlo (MC) computer simulations to verify our model. We show that, in contrast to

the case of bidirectional motion (where the attachment probability is greatly influenced by

the EMC effect), in gliding motility assays the EMC effect has a much weaker impact, and

the effective attachment probability of myosin II motors, 〈r〉, is only slightly smaller than

their duty ratio, r.

In chapter 3 we investigate the role of the EMC effect in muscle contraction. We first

present a simple derivation of Hill’s equation for muscle contraction, based on Newton’s first

law and the experimental data in ref. [34] . We conduct MC simulation to show that the

EMC effect leads to a non-uniform attachment probability along the actin filament. We

argue that while these non-uniformities may impair myosin II to cooperate efficiently, this

effect becomes significant only when the size of the system exceeds that of the sarcomere in

skeletal muscles. This observation may serve as an explanation for the remarkable similarities

in the size of sarcomeres across different vertebrate species. In chapter 4 we summarize our

research and discuss future possible extensions.
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Chapter 2

The EMC effect in gilding motility

assays

For the actin filament with alternating polarities, the EMC is a cooperative effect that

reduces the degree of cooperativity between motors by decreasing their duty ratio (i.e., their

attachment probability). As discussed above, much of the strength of this effect is related

to the large stress fluctuations that develop in the elastic filament due to the opposite

forces applied by the antagonistic motors. Conversely, in conventional motility assays a

single group of motors exert forces in the same direction, leading to much smaller stress

fluctuations along the elastic actin track. Thus, one can expect the EMC effect to have only

a minor impact on the effective attachment probability of the motors. In this chapter we

investigate the importance of the EMC effect in conventional motility assays. In section 2.1

we calculate the effective (mean) attachment probability of the motors, 〈r〉, as a function of

the “bare” attachment probability r and the dimensionless parameter β∗ (see section 1.5).

Our analytical predictions are compared to Monte Carlo simulations in section 2.2. In

section 2.3 we discuss the model parameter values characteristic for actomyosin motility

assays. Specifically, we show that β∗ � 1, which implies that the EMC effect indeed plays

only a minor role in such systems. We summarize and discuss our results in section 2.4.
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2.1 Statistical-mechanical analysis

To analyze the role of the EMC effect in conventional gliding motility assays, we use the

model depicted in section 1.5.1. To properly examine the case of motility assays, we assume

that the chain of nodes represents a polar filament ,i.e., all the motors exert forces in the

same direction. As it is more convenient to analyze this problem using continuous function,

we introduce the function h(x) which, for xi < x < xi+1, has slope +1 if the monomer at xi

is connected to a motor, and a slope 0, otherwise. Thus, h(x) gives the total force applied

on the chain up to the point x (in units of f0), with h(x = 0) = 0 and h(x = N) = n, where

n is the number of nodes connected to motors in a given configuration. The solid line in

Fig. 2.1 shows the function h(x) corresponding to the attachment configuration of five nodes

depicted in Fig. 1.11. To calculate the elastic energy of a configuration, we introduce the

function g(x) = h(x) − (n/N)x, which is depicted by the dashes line in Fig. 2.1 and gives

the total excess force accumulated up to x (in units of f0). From Eq. 1.10 we find that the

Figure 2.1: The function h(x) and g(x) which correspond to the attachment configuration
depicted in Fig. 1.11, with all attached motors exerting forces in the same direction.

elastic energy can then be expressed as:
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Eel
j

kbT
= β∗

N∑
i=1

g2(xi) ' β∗
∫ N

0

g2(x)dx, (2.1)

To determine the mean number of connected motors, one needs to calculate the parti-

tion function

Z =
N∑
n=0

rn(1− r)N−nzn, (2.2)

where r is the “bare” attachment probability of a single motor (i.e., its duty ratio) and zn is

the partition function of all the configurations with exactly n connected motors. The function

zn can be calculated by tracing over all the functions g(x) corresponding to configurations

with n connected motors. Mathematically, the condition that exactly n motors are connected

can be expressed through the following constraint on the function h(x).

lim
α→∞

∫ N

0

∣∣∣∣dhdx
∣∣∣∣α dx = n. (2.3)

To allow an analytical solution, we approximate this constraint by setting α = 2, in

which case Eq. 2.3 can be expressed in terms of g(x) = h(x)− (n/N)x as

∫ N

0

(
dg

dx

)2

dx = N
n

N

(
1− n

N

)
(2.4)

With Eq. 2.4, the partition function zn is given by

zn = B (n,N)

∫
D [g(x)] exp

(
−β∗

∫ N

0

g2(x)dx

)
δ

[∫ N

0

(
dg

dx

)2

dx−N n

N

(
1− n

N

)]
(2.5)

where δ is Dirac’s delta-function, and D [g(x)] denotes a trace over all possible realizations

of the function g(x). The function B (n,N) is introduced in Eq. 2.5 in order to compensate

for the error introduced by the approximated constraint Eq. 2.4. We will determine this
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function through the requirement that for β∗ = 0, i.e. in the absence of elastic crosstalk

between the motors,

zn|β∗=0 =

(
N

n

)
=

N !

n!(N − n)!
, (2.6)

which is simply the number of ways to choose n out of N monomers.

In order to calculate the partition function zn, we use the Fourier space representation

of δ(x),

δ(x− a) =
1

2πi

∫ i∞

−i∞
ew(x−a)dw, (2.7)

and the Fourier series of g(x),

g(x) =

N/2−1∑
k=−N/2

gke
i 2π
N
kx. (2.8)

Substituting Eqs. 2.7 and 2.8 into eq. 2.5 yields:

zn = B (n,N)
1

2πi

∫ i∞

−i∞
dw

∫
D [gk] exp

[
wN

n

N

(
1− n

N

)]
×exp

[
−
∑
k

g2
k

(
8π2

N
k2w + 2Nβ∗

)]
.

(2.9)

Tracing over gk can be readily performed, giving

zn = B (n,N)
1

2πi

∫ i∞

−i∞
dw exp

[
wN

n

N

(
1− n

N

)]
N/2∏
k=0

π

2Nβ∗ + 8π2k2w/N

 . (2.10)

The integral over w can be evaluated using the method of steepest descent, which yields:

zn ' B (n,N) eG(w0), (2.11)

29



where,

G(w) = n
(

1− n

N

)
w −

N/2∑
k=0

ln

[
1

π

(
8π2

N
k2w + 2Nβ∗

)]
(2.12)

' N

{
w
n

N

(
1− n

N

)
− 1

2
ln

[
2e−2N

π

(
π2w + β∗

)]
−
√

β∗

π2w
tan−1

(√
π2w

β∗

)}
,

and w0 satisfying

dG

dw

∣∣∣∣∣
w0

=
n

N

(
1− n

N

)
− 1

2w0

+
1

2

√
β∗

π2w3
0

tan−1

(√
π2w0

β∗

)
= 0. (2.13)

For β∗ � 1, one gets

w0 '
N

2n

(
N

N − n

)
−

√
N

8n

(
N

N − n

)
β∗. (2.14)

From Eqs. 2.6, 2.11, 2.12, and 2.14, one finds that

B (n,N) =

(
N

n

)
e−G(w0) =

(
N

n

)( π
e3

)(N/2)
(

N3

n(N − n)

)N/2
. (2.15)

Inserting Eq. 2.14 into Eq. 2.12, and expanding G(w0) in powers of
√
β∗, yields

G(w0) ' G(w0)|β∗=0 −
√
n(N − n)

2
β∗. (2.16)

Finally, for β∗ � 1, the partition function zn is obtained by substituting Eqs. 2.15 and 2.16

into Eq. 2.11, which gives:

zn '
(
N

n

)
exp

(
−
√
n(N − n)

2
β∗

)
. (2.17)

In order to calculate the partition function Z, one needs to substitute Eq. 2.17 into
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Eq. 2.2, which gives:

Z =
N∑
n=0

(
N

n

)
rn(1− r)N−n exp

(
−
√
n(N − n)

2
β∗

)
. (2.18)

In the thermodynamic limit (N � 1), the sum in Eq. 2.18 is dominated by one term which

corresponds to the mean number of attached motors 〈n〉. This term is given by

〈n〉 = N

[
r − (1− 2r)

√
r(1− r)

8
β∗

]
. (2.19)

From Eq. 2.19 we identify the effective attachment probability as

〈r〉 ≡ 〈n〉
N

= r − (1− 2r)

√
r(1− r)

8
β∗. (2.20)

Notice that the second term on the right hand side of Eq. 2.20 is anti-symmetric

around r = 1/2, and that for r < 1/2 (r > 1/2), the effective attachment probability 〈r〉

is smaller (larger) than r. This observation is directly related to the fact the elasticity-

mediated crosstalk effect is driven by the tendency to reduce the force fluctuations along the

elastic filament. For r < 1/2 (r > 1/2) the force fluctuations are reduced by the detachment

(attachment) of motors, which brings the system closer to the limiting case r = 0 (r = 1)

where the force fluctuations vanish.

2.2 Gliding assay computer simulations

To test the validity and range of applicability of Eq. 2.20, we conducted Monte Carlo (MC)

simulations of elastic chains of N = 1000 monomers with r = 0.05, which is the typi-

cal duty ratio of myosin II motors [26]. Systems corresponding to different values of β∗

were simulated using the parallel tempering method. The simulations include two types of

elementary moves (which are attempted with equal probability) - one in which the state (con-
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nected/disconnected) of a randomly chosen node changes, and the other in which two ran-

domly chosen nodes with opposite states change their states simultaneously. For each move

attempt, the model energy of the chain Eel is recalculated, and the move is accepted/rejected

according to the conventional Metropolis criterion with the statistical weights given by

Eq. 1.3. As discussed in section 1.5, we treat the elastic energy of the actin Eel as an

equilibrium degree of freedom since the mechanical response of the filament to changes in

the attachment states of motors is extremely rapid and occurs on time scales which are far

shorter than the typical attachment time of motors. The assumption that the actin fila-

ment is at mechanical equilibrium is also made in theoretical studies of intracellular cargo

transport [35] and muscle contraction [36].

Figure 2.2: The effective attachment probability as a function of the dimensionless parameter
β∗. The circles denote he results of the MC simulations, while the solid line depicts the
analytical approximation for β∗ � 1, Eq. 2.20.

Our MC results are summarized in Fig. 2.2. For β∗ < 0.2, we find an excellent agree-

ment between our computational results and Eq. 2.20 (which has been derived for β∗ � 1).

Notice that Eq. 2.20 does not include any fitting parameters. For larger values of β∗, Eq. 2.20

overestimates the decrease in 〈r〉.
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2.3 Actin-Myosin II systems

For the duty ratio r, the range of experimental values is scattered and varies from r =

0.01− 0.02 [9] to r = 0.05 [26]. The uncertainty may be partially related to the EMC effect

discussed here. It also stems from the fact that r also depends on the distance and orientation

of the motor head (both in space and time) with respect to the associated binding site. These

may vary between the motors which, hence, should have different attachment probabilities 1.

Setting the duty ratio of myosin II to r = 0.05 (as used in the MC simulations) we find

that for the range of β∗ estimated in section 1.5.3, the effective duty ratio is slightly lower

than r and lies within the range of 〈r〉 = 0.97r (for β∗ = 2.5 × 10−4) and 〈r〉 = 0.88r (for

β∗ = 7 × 10−3). Using a lower estimate for the duty ratio r = 0.02 [9], we find that the

effective duty ratio drops to 0.80r . 〈r〉 . 0.96r for the same range of β∗.

As stated earlier, the cooperative action of myosin motors “compensates” for the non-

processive character of the individual motors. The mean force generated by a group of N

motors is 〈F 〉 = N〈r〉f0. Which force f0 maximizes the effective force per motor feff = 〈F 〉/N

and, hence, the force production of the collectively working motors? From Eq. 1.12 and 2.20

we find that the maximum value of feff is achieved when the force of the individual motors

is

fmax
0 =

2r

1− 2r

√
kskBT

r(1− r)
(2.21)

Setting the values of the system parameters as above (Y = 2.8 GPa, A = 23 nm2, l = 38 nm)

and taking r = 0.02 as the duty ratio of a single motor, we find that fmax
0 ' 25 pN, for which

feff ' 0.25 pN. For forces in the range of f0 ' 5 − 10 pN, which are typically measured

for myosin II motors [26], the effective mean force per motor is feff ' 0.1 − 0.15 pN, which

is about half of the optimal effective force feff (fmax
0 ). We, thus, conclude that myosin II

1In our statistical-mechanical analysis, r represents the typical duty ratio of individual myosin II motors,
which are all assumed to have the same r. It is possible that accounting for the variations in r in the model
will result in a slight increase in the magnitude of the elasticity crosstalk effect.
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motors work quite close to conditions that maximize their cooperative force generation.

2.4 Summary

The growing interest in the collective behavior of molecular motors have led to numerous

theoretical studies over the past years, especially in relation to cooperative dynamics of

cytoskeletal filaments in motility assays. Most of these studies have focused on the bidirec-

tional motion arising when the filament is driven by two groups of antagonistic motors, or

when a single motor party works against an external force. The findings of ref. [18] have

demonstrated that the duty ratio of motors (and, hence, the degree of cooperativity between

them) is effectively reduced by the elasticity of the actin filament.

In this chapter we have extended our studies and analyzed the role of the EMC effect

in gliding motility assays, where similar motors act on a polar filament in the absence of a

counter external force. We used a statistical-mechanical calculation to derive an analytical

expression for the effective attachment probability 〈r〉. from the partition function associated

with the filament elastic energy. The analysis shows that due to the EMC effect, 〈r〉 takes

a slightly smaller value than the “bare” attachment probability of a motor r. This result is

quite different from the previous findings for motility assays of bidirectional motion, where

the EMC effect has a much greater impact. Within the range of small values of β∗ (which

is the case for myosin II motors), the presented model is in a very good agreement with the

results from our computer simulations.

In order to single out the EMC effect from other possible collective effects (e.g. those

associated with non-equilibrium ATP-assisted processes and the elasticity of the motors

themselves [37–39]), we neglect motor to motor variations and use a model in which the

motors are characterized by two mean quantities: the bare attachment probability to a non-

elastic rigid filament r, and the mean applied force f0 (see discussion in section 1.5.1). This

mean field description is expected to hold when the number of motors N becomes large.
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However, the characterized mean duty ratio of a motor r and the motor force f0 actually do

depend on the filament sliding velocity v. In the next chapter we discuss how this notion

is related to the EMC effect and what does it imply on the effective attachment probability

of motors 〈r〉, when the filament is subjected to an external force, as in the case of muscle

contraction.
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Chapter 3

The EMC effect in muscle contraction

Skeletal muscle contractility is governed by interactions between thick myosin II filaments

and thin actin filament tracks. Over the past century, several important theoretical studies

have emerged in the attempt to better understand the underlying mechanisms of myosin

II cooperative work in skeletal muscle. Similar to the case of bidirectional motion where

antagonistic motor parties exert forces in opposite directions on the elastic actin filament,

muscle contraction also displays a tug-of-war contest between a single group of motors and

an external force. What effect does the EMC has in this kind of a setup, and what are the

consequences regarding muscle contraction? The following chapter aims to address these

questions. In section 3.1 we review the key developments in our current understanding of

muscle contractility, starting from the early work of Hill and his phenomenological equation

for the load-velocity relationship of muscles, and reaching to modern mechano-chemical

models. In section 3.2 we return to Hill’s equation and rederive it in light of some new

experimental findings (which we will investigate in our review section 3.1. Finally, we will

investigate the relevance of the EMC to the problem of muscle contraction in sections 3.3

and 3.4. Our results are summarized and discussed in section 3.5.
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3.1 Muscle contraction models

Comparison of skeletal muscle cells in different vertebrates reveals that the lengths of their

sarcomeres are almost identical. More specifically, the length of the thick filament is usually

found to be close to 1.6 µm, while the length of the thin filament is typically in the 0.95−

1.25 µm range [40]. The fact that the dimensions of the sarcomere have been preserved

through the course of evolution is remarkable, considering the different tasks that different

muscles perform in different species. As discussed in section 1.3.2, coordinated action of

motors is ubiquitous for muscle contractility (as well as other processes described above) due

to the low processivity of myosin II.

The structure of the acto-myosin sarcomere was fully resolved by the late 60s’ [41];

but our current understanding of the mechanics of muscle contraction is actually very much

influenced by two earlier classical works. The first one is A. V. Hill’s work (1938) [42], in

which the muscle was represented through a combination of elastic, contractile, and resistive

(viscous) elements. Hill postulated that in overcoming the viscous resistance, the contracting

muscle does work and produces heat. Through a general notion of energy balance and some

empirical relations between the rate of heat production during muscle contraction and the

contraction velocity, Hill derived his famous equation:

(P + a)(v + b) = (P0 + a)b, (3.1)

where P is the load opposing the contraction, v is the contraction velocity, P0 is the isometric

load (i.e., the load for v = 0) and a and b are constants. Eq. 3.1 describes a hyperbolic

relation between P and v. Although generally considered as a phenomenological force-

velocity relationship rather than a thermo-mechanical expression, Hill’s equation has drawn

much attention because of its simplicity and the agreement it shows with experimental

measurements [43].

The second milestone paper was published in 1957 by Huxley, where he laid out his
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crossbridge theory [44]. The crossbridge model provides a molecular-level interpretation for

muscle contraction. Within the model, the myosin motor heads interact with specific binding

sites along the actin filament to form elastic crossbridges. When a motor is attached to a

binding site, the crossbridge stretches and force is applied on the actin filament, resulting

in the relative movement of the actin (thin) and myosin (thick) filaments past each other.

The attachment and detachment of motor heads to and from the actin filament are governed

by “on” and “off” rate functions that regulate the fraction of crossbridges (i.e., attached

motors), and which depend on the stretching energy of the crossbridges. The “on” and

“off” rates were chosen by Huxley to obtains a good fit with Hill’s experimental data for the

force-velocity (P − v) relationship (Eq. 3.1).

Huxley’s work, together with the development of improved methods for experimental

determination of the sarcomere’s micro-structure [45], as well as new biochemical measure-

ments of ATP activity [46], have provided a fruitful field for further investigations. A large

body of work has been devoted to expanding Huxley’s two-state model into more sophis-

ticated schemes that describe more adequately the working cycle of the myosin motors.

The most important chemical states comprising the mechanochemical cycle of myosin II

are described by Lymn-Taylor four-state scheme [47]. According to this scheme, which is

schematically depicted in Fig. 3.1, a myosin motor captures an ATP molecule and hydrolyzes

it into a phosphate unit (Pi) and ADP. It then binds to a proximal binding site of the actin.

Release of the Pi triggers a conformational change during which the motor head rotates.

This stage is known as the “power stoke” that propels the myosin II motor along the actin

filament. At the end of the power stroke, ADP is released, ATP rebinds to the myosin

motor that rapidly dissociates from the actin, ready to repeat the cycle. One of the first

models that integrated the Lymn-Taylor scheme into Huxley’s crossbridge theory was intro-

duced by Duke [36]. Duke’s stochastic-elastic model (which inspired several other works) is

based on two key principles which already existed in Huxley’s theory. The first one is the

assumption that the motor heads are elastic elements whose chemical on and off rates are
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Figure 3.1: The Lymn-Taylor model for the cross bridge cycle. (1) The motor head binds
ATP and dissociates from the actin. (2) ATP is hydrolyzed into ADP and Pi. (3) The motor
head binds to the actin. (4) Release of the hydrolysis products causes the motor head to
rotate and pull the actin filament. At the end of the cycle myosin rebinds ATP and the cycle
is ready to repeat.

strain-dependent. The second key assumption is to neglect the viscous friction force in the

equation of motion of the contracting muscle. The last assumption can be justified by a

simple fluid-mechanics calculation for the motion of a thin rod in a medium with viscosity

similar to water [48]. One can easily check that the friction force on a thin rod (with diameter

' 5.5 nm and length ' 1.1 µm) is in the fN-range, which is 3-4 order of magnitude smaller

than the typical motor forces which are in the pN-range [26]. The last assumption implies

that when the muscle contracts at constant velocity , the sum of motor forces exactly balances

the external force opposing the contraction. To solve his stochastic model and obtain the

force-velocity relationship, Duke used kinetic Monte Carlo (MC) simulations [49,50] in which:

(i) the elastic energy and the associated reaction rates are calculated for each motor, (ii) the

state of one randomly chosen (with probability proportional to the corresponding reaction

rate) motor is changed, which disrupts the balance of forces in the system, and (iii) the actin

filament is advanced to a new position where mechanical equilibrium is reestablished.

Following Duke’s work, several stochastic-elastic models with increased level of com-

plexity were published [51–56], which succeeded in reproducing Hill’s force-velocity relation-

ship. Another major success of this class of models is their ability to show that the fraction

of working (force-producing) motors, r, increases with the load P . This interesting feature
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of skeletal muscles has been recently observed by Lombardi and co-workers [34]. Using X-ray

scattering and mechanical measurements on tibialis anterior muscles of frogs, they showed

that r increases from roughly r = 0.05 for P = 0 (which is comparable to the duty ratio

measured for myosin II motors in motility gliding assays [57]) to r = 0.3 for the maximal

isometric load. However, despite the successes of the stochastic-elastic models, controversy

remains concerning the purely elastic nature of these models. How can the sarcomere func-

tion as a low Reynolds number system with constant velocity in the absence of significant

friction forces? To restate this puzzle, consider the aforementioned kinetic MC simulations

of the stochastic-elastic model, where a change in the state of one motor takes the actin

filament out of mechanical equilibrium and causes it to move. But if friction forces can be

neglected in favor of the motor forces, why should the actin filament stop at the new position

of mechanical equilibrium and not continue past this point with inertia? Obviously, one may

argue that the motion is erratic only on the microscopic time scales of the motor cycle, but

appears smooth on the larger time scales corresponding to sarcomere shortening. However,

this explanation is somewhat unsatisfactory considering the fact that the elastic-stochastic

models are based on detailed descriptions of the transitions between different mechanochem-

ical states of the motors. Thus, it is not surprising that alternative theories incorporating

viscous effects have been also proposed for the contractile process. One of the first such

theories is the “impulsive model” of Worthington [58] which, in stark contrast to Huxley’s

view, assumes that the motors operate by exerting impulsive forces on the actin. Accord-

ing to this theoretical approach, the viscous force for active muscles is comparable to the

motor forces, i.e. 3-4 orders of magnitude larger than Huxley’s hydrodynamic estimate [59].

Presumably, the relevant viscosity is that of the cytoplasmatic environment, which is indeed

much larger than the viscosity of water [60,61]. More recently, Landesberg et al. introduced

a four-state model in which the motors are represented as viscoelastic, rather than purely

elastic, elements [62]. The transition rates between the different states of the viscoelastic

motors depend on the sliding velocity (strain rate) and not on the displacement (strain) of
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the motor heads. This model has been capable of reproducing many features of muscles,

including the derivation of Hill’s equation, as well as the increase in the number of working

motors with the load. The model neglects the viscous friction with the embedding medium

(which is taken to be water), and proposes that the friction originates from the crossbridges

themselves. Accordingly, the force applied on the filament by the motors decrease linearly

with the sliding velocity v, and vanishes in the absence of an external load. Nevertheless,

this feature of the model is not supported by Lombardi’s finding that the force per motor

depends only weakly on v (see Fig. 4(B) in ref. [34]).

The increase in the fraction of attached motors with the load can be considered as a

reflection of motor cooperativity. A careful inspection of the different existing models reveals

that the origin of this effect is the increase in the duration of the power stroke step of the

motor cycle with P or, in other words, the increase in the detachment rate of the motors with

v. As discussed in section 1.4, related patterns of collective behavior also emerge in physical

ratchet models for motor protein motility assays [20,21]. Specifically, several ratchet models

have shown that when motors are engaged in “tug-of-war” competitions, their detachment

rates may be considerably varied [35,63].

One of the factors that significantly contributes to the changes in the detachment rates

during tug-of-war is the EMC effect [31]. The opposite forces engaged in a tug-of-war contest

can be applied by two groups of antagonistic motors (as in the motility assay described in

ref. [18]) but also by a single class of motors that work against the force produced by an

optical trap [30]. The latter scenario is obviously very closely related to muscle contractility.

In this chapter, we consider the latter scenario which is more relevant to muscle contractility,

where the tug-of-war contest takes place between one class of similar motors working against

an opposite load pulling at the end of the actin filament. In section 3.2 we discuss in more

detail the observed increase in r with P , and show that this feature is directly related to

Hill’s equation for muscle contraction. In sections 3.3 and 3.4 we present our model for

sarcomere shortening, based on the system model described in section 1.5.1, and present our
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computer simulations of muscle contraction. As will be shown, we find that the EMC effect

leads to a polarized attachment probability along the actin filament, which might disrupt

muscle performance. Interestingly, these feature becomes significant only in system whose

size is larger than that of the sarcomere.

3.2 A simple derivation of Hill’s equation

In this section we examine more closely the experimental results of ref. [34] regarding

the increase in r with P . To this end, it is useful to define the dimensionless variables

0 ≤ x ≡ P/P0 ≤ 1, and 0 ≤ y ≡ v/vmax ≤ 1, where vmax is the maximum contraction

velocity at P = 0. When expressed in terms of these variables, Hill’s equation (3.1) takes

the dimensionless form:

y =
1− x
1 + cx

, (3.2)

where c is a constant. Notice that Eq. 3.2 satisfies both the relation that y = 1 for x = 0

(load-free contraction) and y = 0 for x = 1 (isometric contraction). The other important

notion in relation to muscle contraction is the observed (see, e.g., Fig. 3(D) in ref. [34])

increase in r with P , which is well approximated by the linear relationship

r = r0 + (r1 − r0)x, (3.3)

where r0 and r1 denote the attachment probability for x = 0 and x = 1, respectively. To

match the experimental data in ref. [34], we set r0 = 0.05 and r1 ' 0.3. From Newton’s first

law of motion, the fact that the sarcomere contracts at a constant velocity implies that the

forces generated by the motors are balanced by the external load P and the friction forces in

system. The latter originate from two sources: the surrounding medium and the attachment
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of motors. The balance of forces reads

r(fm − λmv) = λv +
P

N
. (3.4)

The expression in brackets on the left hand side of Eq. 3.4 can be identified as the force per

motor

f0(v) = fm − λmv. (3.5)

It includes a positive “active force”, fm, and a negative “motor-friction force” characterized

by the motor friction coefficient λm. On the right hand side of Eq. 3.4 we have the counter

external load per motor P/N , and the friction force due to the viscous drag, λv (λ 6= λm),

normalized per motor.

An interesting point, which to the best of our knowledge has not been recognized

before, is the fact that Hill’s dimensionless equation (Eq. 3.2) can be derived from Eqs. 3.3

and 3.4 without any further assumptions. Explicitly, upon substitution of Eq. 3.3 in Eq. 3.4

and rearrangement of the resulting equation, one arrives to the following expression for the

contraction velocity

v =
fmr0(1− x)

λ+ λm[r0 + (r1 − r0)x]
. (3.6)

Also, for P = 0, Eq. 3.4 takes the form

fmr0

vmax

= λ+ λmr0. (3.7)

Dividing Eq. 3.6 by vmax, and using Eq. 3.7 as well as the relation P/N = xP0/N = xfmr1,
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one arrives to Eq. 3.2 with

c =
λm(r1 − r0)

λ+ λmr0

. (3.8)

We further note that for y = 1 (v = vmax), the following expression can be derived for f0 if

Eq. 3.7 is used in Eq. 3.5

f0|y=1 = fm
λ

λ+ r0λm
. (3.9)

The experimental data [34] gives fm = 6pN, f0|y=1 = 4pN, and r0 = 0.05 which, upon

substitution in Eq. 3.9, yields λm = 10λ. When this last result, together with the values for

r0 and r1 are used in Eq. 3.8, one arrives to c = 5/3, which is within the range 1.2 < c < 4

where the constant c is typically found for skeletal muscles [64]. Notice that we included

viscous damping terms in our derivation which, as discussed earlier, is a matter of controversy.

Nevertheless, it is important to recognize that Eq.(3.8) has a well defined limit when both

λ and λm vanish, provided that λ/λm converges to a finite limit. The experimental results

of ref. [34] seem to support the idea that the viscous forces are non-negligible.

3.3 System model

We now turn to our discussion on the relevance of the EMC effect to skeletal muscle con-

traction. To model muscle contraction we use the same model described in section 1.5.1 and

add an external force P , that opposes the action of the motors, at the end of the elastic

chain (i.e., the load P is applied on the N -the monomer of the chain). We set the distance

between the monomers to l ' 43/3 = 14.3 nm, where the numerator is set by distance

between collinear motor heads along the thick filament and the denominator comes from the

fact that each thin filament is surrounded by three thick filaments [64]. As in our motility

assay model presented in chapter 2, we use the term “attached” to refer to a motor head
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that exerts force on the actin filaments at a given instance. In doing so, we adopt Huxley’s

simple two-state scheme that only distinguishes between force-producing (“attached”) and

non force-producing (“detached”) motors. As discussed above, more recent models expand

this scheme by introducing more states (e.g., strongly and weakly attached states), but this

expansion is not necessary for our purpose, which is to examine the relevance of the EMC

effect to muscle contraction. Thus, we assume that a motor exerts a force of magnitude f0

on the actin filament in the attached state, and no force in the detached state. The other

model parameter is the attachment probability of the motors, r. As discussed above, both f0

and r vary with v. We do not, however, consider the spatial (motor-to-motor) and temporal

variations of r and f0 at a given v. Thus, these two quantities represent the typical attach-

ment probability and motor force, respectively. As we will demonstrate below, it is the EMC

effect that leads to spatial variations in the effective (mean) attachment probability of the

motors, 〈r〉. Strictly speaking, the bare attachment probability r in Eqs. 3.3 and 3.4 should

be replaced with the effective attachment probablity 〈r〉, which is, in fact, the experimentally

measured quantity. However, as depicted later on, we find that the difference between the

two is quite small in the case of muscle contraction.

3.4 Monte Carlo computer simulations

We study the system by using Monte Carlo simulations that include two types of elementary

moves (as in the gliding assay simulations): one in which the state (connected or discon-

nected) of a randomly chosen motor changes, and the other in which two randomly chosen

motors with opposite states change their states simultaneously. For each move attempt, the

elastic energy Eel of the chain is recalculated, and the move is accepted or rejected according

to the conventional Metropolis criterion with the statistical weights given by Eq. 1.3.
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3.4.1 A Polarized attachment probability due to the EMC effect

In half sarcomere, each thick filament has about 150 motor heads [1]. To simulate muscles

operating under conditions of optimal force generation, we assume that there is a full overlap

between the thick and thin filaments [65], and consider a chain with N = 150/2 = 75

monomers (where the factor of 2 in the denominator originating from the 1:2 ratio between

thin and thick filaments) 1. We also simulate larger systems of N = 150 and N = 300 nodes

and fix the model parameters to r = 0.05, f0 = 6 pN, and ks ' 4.5 N/m 2. Our simulation

results for the mean attachment probability, 〈r(i)〉, as a function of i (1 ≤ i ≤ N), the

position of the monomer along chains, are depicted in Fig. 3.2 for N = 75 (A), N = 150

(B), and N = 300 (C). The simulations reveal that due to the EMC effect, the attachment

probability becomes a monotonically increasing function of i. The origin of this feature is the

fact that the springs are not equally stretched (as can be inferred from the derivation of the

elastic energy in section 1.5.2). Generally speaking, attachment of a motor to a certain node

i leads to a reduction in the energy of the springs with j < i. This reduction in the elastic

energy makes statistically more favorable the configurations with polarized attachment of

motors. For each N , there is a single node (i = i∗) where the attachment probability, 〈r(i∗)〉,

is independent of P and takes a value which is very close to the bare attachment probability

r. The difference between the attachment probabilities at both ends of the chain (i.e., for

i = 1 and i = N) increases with both N and P . For N = 75, the variation in 〈r(i)〉 is

quite small, becoming meaningful only at near-stall forces P/(f0N) ' 0.05. In contrast, for

1Due to the incommensurability between the motor heads and the actin binding sites there is, at each
instance, a small fraction of motors that are practically unable to bind to the actin. Thus, the number of
motors per filament in half sarcomere should be probably set to a somewhat smaller number (N ∼ 65). We
also ignore the fact that the length of the thin filament (∼ 1 µm) is larger that half the length of the thick
filament (∼ 0.8 µm), which means that, even at full overlap, the external force is applied a certain distance
away from the position of the nearest motor head. Introducing these features into the simulations does not
alter significantly our results.

2The spring constant is given by ks = Y A/l, where Y is the filament Young’s modulus, A the cross
sectional area, and l the distance between motors. The Young’s modulus of the thick filament is similar to
that of the thin filament, Ythick ∼ Ythin. However, Athick ∼ 10Athin, and lthick = 0.5lthin (due to the 2:1
number ratio between them). Thus, ks−thick � ks−thin, which means that to a very good approximation the
compliance of the thick filament can be ignored.
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N = 150, the variations in 〈r(i)〉 are significant and may be as large as 〈r(N)〉/〈r(1)〉 & 4.

The mean attachment probability, 〈r〉 ≡ [
∑N

i=1〈r〉(i)]/N , is plotted in Fig. 3.2(D) as a

function of P/(f0N). For both N = 75 and N = 150 and for all values of P , we find that

〈r〉 ' r, which shows that the decrease in 〈r(i)〉 for i < i∗ is almost offset by the increase

in 〈r(i)〉 for i > i∗. This is not the case for N = 300, where 〈r〉 exhibits a steady increase

with P . The increase in 〈r〉 is due to the fact that at large forces (notice that the applied

loads are proportional to N), the attachment probability 〈r(i)〉 becomes a rapidly increasing

function of i. The implication of the rise in 〈r〉 is that the stall force per motor increases to

' 0.1f0 (from ' 0.05f0 for N = 75 and N = 150), which explains why in Fig. 3.2(D), the

range of forces simulated for N = 300 is larger than for N = 75 and N = 150.

3.4.2 Sarcomere shortening simulations

The above results seem to indicate that for N > 75, the variations in 〈r(i)〉 may be sufficient

to disrupt muscle performance. However, one needs to recall that the simulation results

depicted in Fig. 3.2 correspond to fixed values of r and f0, while in reality the values of these

quantities vary with the shortening velocity v. To correctly evaluate the significance of the

EMC effect in muscle contraction, one needs to run simulations where for each value of P ,

the appropriate value of v is chosen and, accordingly, the values of r and f0 are set. This

is done by using Eqs. 3.2, 3.3 and 3.5. Specifically, for a given value of y, the value of x is

determined from Hill’s Eq. 3.2

y =
1− x

1 + (5/3)x
, (3.10)

while the value of f0 is set according to Eq. 3.5

f0 = 6(1− y

3
) [pN]. (3.11)

The determination of r is slightly more complicated. The complication arises due to the
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Figure 3.2: The attachment probability 〈r(i)〉 to the i-th chain node, calculated for chains
consisting of (A) N = 75, (B) N = 150, and (C) N = 300 nodes. For each N , the attachment
probability is plotted for various values of the load P . (D) The effective attachment proba-
bility 〈r〉 as a function of the dimensionless load per motor P/(f0N) for N = 75 (triangles),
N = 150 (squares), and N = 300 (circles).

fact that the bare attachment probability r appearing in Eqs. 3.3 and 3.4 should be replaced

with the effective attachment probability, 〈r〉, which is the experimentally measured quantity

and which is not known a-priori. Therefore, for each value of y we simulated different values

of r and, using linear interpolation, determined the value of r that yields the desired 〈r〉.

Our results for the sarcomere simulations are summarized in Fig. 3.3 which shows the

position-dependent attachment probability, 〈r(i)〉, calculated for a chain of size N = 75 and

for different loads. It is important to note that in the simulations presented in Fig. 3.2 the

motor force is taken as f0 = fm = 6 pN, while the spring constant ks = 4.5 N/m. This

means that at physiological temperature of T = 310K, β∗ ' 10−3, which is the value of
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Figure 3.3: The attachment probability 〈r(i)〉 to the i-th chain node, calculated for different
values of the rescaled velocity y.

β∗ used in the simulations depicted in Fig. 3.2. In Fig. 3.3, we use the above Eq. 3.11 to

evaluate f0. This means that for each curve in Fig. 3.3, the dimensionless parameter β∗ has

been redefined to β∗ = 10−3(1− y/3)2.

Similarly to the results plotted in the above Fig. 3.2(A), the results depicted in Fig. 3.3

indicate that for 1 ≤ i ≤ N = 75, 〈r(i)〉 remains fairly uniform for high and medium velocities

and that, consequently, the difference between r and 〈r〉 is quite small. This observation is

consistent with the idea that at high and medium velocities v, the detachment of motors

occurs after the completion of the power stroke. The associated detachment rate, which can

be estimated by τ−1
det ∼ v/δ, where δ is the step size (δ ∼ 6 nm) which is the same for all the

motors [34]. This picture is relevant only for high and medium velocities where the motors

attach, execute the power stroke, and then unbind. At very low velocities (y ' 0) close to

the isometric load (x ' 1), the motors may detach and reattach multiple times before the

power stroke is completed [66]. The number of attachments per power stroke need not be

the same for all the motors and, therefore, variations in the attachment probabilities [which

are indeed observed in Fig. 3.3(B) at small values of y] can be tolerated in this limit without
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negative consequences for muscle contractility.

3.5 Summary

In this chapter we examined the thoroughly studied problem of muscle contraction in light

of the growing interest in collective dynamics of motor proteins. The basic contractile unit

of the muscle is the sarcomere which appears to have almost the same length in different

muscle cells of different vertebrates. We argue that the origin of this remarkable feature

of muscle cells may be the elasticity-mediated crosstalk (EMC) effect, which is related to

the changes in the attachment/detachment rates of the myosin II motors in response to the

tensile stress that they (collectively) generate in the F-actin. The associated changes in

the duty ratio of the motors can impair their ability to cooperate efficiently during muscle

contraction. Specifically, the major problem originating from the EMC effect is that it

leads to an increases in the attachment probability of motors located near the Z-line while,

simultaneously, decreasing the attachment probability of the motors in the central part of

the sarcomere (M-line). The resulting variations in the duty ratios of the motors along

the thick filament pose a serious problem in light of the fact that the detachment rate of

the motors is primarily a function of the step size and the muscle shortening velocity and,

therefore, should be fairly uniform. Using computer simulations of a simple bead-spring

model we demonstrated that this undesired effect can be almost neglected for half-sarcomeres

consisting of less than approximately 2N = 150 motors. Remarkably, this is precisely the

“universal” size of half a sarcomere in muscle cells across vertebrates.

Another notable result of our study is the derivation of the celebrated Hill’s equation

for the muscle force-velocity relationship. The basic assumptions in our derivation are given

by Eqs. 3.3 and 3.4. The former describes the experimentally measured linear relationship

between the attachment probability and the load, while the latter is simply Newton’s first

law for an object (the actin filament in this case) moving at constant velocity. As a bonus,
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we obtain an expression relating the constant c in the dimensionless form of Hill’s equation

to some of the system parameters.

51



Chapter 4

Discussion

Motor proteins are a key component in virtually all eukaryotic cells. They are involved in

various important biological processes such as cell division and muscle contraction. Over

the past years, our knowledge concerning how these molecules operate and interact with

the cytoskeletal filament has increased dramatically, as a result of theoretical studies and

improved experimental techniques. Recently, there has been an increased interest in the

collective action of motor proteins, particularly in the way that cooperative effects change

their duty ratios. One notable example is the elasticity-mediated crosstalk (EMC) coupling

between myosin II motors, whose origin is the tensile stress that they collectively generate

in actin filaments. The EMC effect was originally proposed in order to explain the observed

distribution of reversal times in motility assays of myosin II motors and actin filaments with

alternating polarities [18]. Such filaments exhibit bidirectional motion due to the action of

motors exerting opposite forces on actin segments with opposite polarities. The “tug-of-war”

between the two antagonistic motor parties leads to large stress fluctuations along the elastic

actin track. As a result, the motors change their attachment/detachment statistics in order

to relieve the strain energy in the filaments. More specifically, during bidirectional motion,

the motors duty ratio decreases and, on average, each one of them becomes effectively less

processive. The EMC between motors in bidirectional motion, thus, is a collective effect that
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decreases their degree of cooperativity.

The aforementioned motility assay for bidirectional motion constitute a rather unusual

experimental setup. In this thesis we explored the role of the EMC effect in two more com-

mon scenarios. The first one is that of conventional motility gliding assays where myosin

II motors work on polar actin filaments. In this case, the filaments move unidirectionally

because all the motors exert forces in the same direction. Unlike in the “tug-of-war” case,

the force fluctuations along the filament are limited when all the forces are applied in the

same direction and, therefore, the EMC effect is expected to be quite small. Our statistical

mechanical analysis of this problem, presented in chapter 2, demonstrates this point. The

magnitude of the EMC effect is quantified by introducing the dimensionless parameter β∗

[see Eq. 1.12] that characterizes the ratio between the typical elastic energy per actin seg-

ment and the thermal energy. Our analysis reveals that the effective attachment probability

〈r〉 of non processive myosin II motors drops linearly with
√
β∗ (see Eq. 2.20) from the value

of r, the bare attachment probability, at β∗ = 0 (i.e., for an infinetly rigid filament that does

not exhibit EMC). Our calculation holds for small values of β∗, which is indeed the case for

actomyosin motility assays where β∗ ∼ 0.002. This means that in this conventional acto-

myosin gliding assays the EMC effect has only a small impact on the attachment probability

of the motors, i.e. 〈r〉 ' r.

The second system under investigation in this thesis is skeletal muscles. As in the case

of the motility assays for bidirectional motion, this system features a tug-of-war competition

between opposite forces. But while in bidirectional motion two motor parties work against

each other, in the case of muscle contraction, the tug-of-war takes place between the motors

and an external opposite force that pulls at the end of the sarcomere. This type of tug-of-ear

also creates larger stress fluctuations along the actin track, specifically near the end where

the external force is applied. Our analysis of this system, presented in chapter 3, reveals

that the stress fluctuations can be reduced by inhomogeneous attachment of the motors.

Specifically, the motors will tend to attach at a higher (lower) rate close to (away from) the
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end of the sarcomere where the external load is applied. In other words, the EMC leads

to a polarized attachment probability, where the motors in proximity to the last monomer

attach with higher probability than motors far away from this point. The problem with

this observation, however, is that the duty ratio variations between motors may seriously

impair their ability to efficiently cooperate with each other (see discussion in chapter 3).

Nevertheless, we find that the polarization of the attachment probability becomes significant

either when a large external force is applied, or when the system size is larger than the

“universal” size of sarcomeres in vertebrates (i.e., N > 75). Thus, our analysis proposes

a possible solution for the long standing puzzle concerning the similarity of the sarcomere

length in different species in nature. Recent advances in single molecule techniques [67]

open the opportunity for testing our theoretical predictions concerning the polarization of

the attachment probability. Specifically, optical tweezers provide the mean to apply pico-

newton forces against the gliding motion of the thin filament, while the duty ratio may be

directly measured using high resolution atomic force microscopy (AFM).

Motor proteins are the ”engines of biology”, converting chemical energy into mechanical

work. To gain a better understanding of their action, one needs to develop models that

integrate and couple the biochemical cycle of these molecules with their mechanical features

and with the elasticity of the associated cytoskeletal filaments. Over the past century, this

problem has drawn attention from different scientific disciplines. One of the main issues that

has been largely debated within the community is the role of friction forces in the process

of muscle contraction. Some theoretical studies support the notion that friction forces play

a minor role in muscle contraction, while others argue that friction is a non-negligible force

that may emerge from the medium surrounding the filaments and / or the motors themselves.

Our simple derivation of Hill’s equation (see section 3.2) interprets the experimental findings

in ref. [34] as if friction forces are indeed non-negligible (see Eq. 3.4). Nevertheless, it is

important to emphasize that our approach does not rely on this notion. What we have

presented in this thesis is a unique statistical mechanical approach for investigating the
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collective action of myosin II motors. Our theoretical approach bypasses the aforementioned

controversies by introducing only two variables that do not depend on friction at all, namely

the duty ratio r and the dimensionless energy β∗. The resulting EMC effect can be easily

integrated into other theoretical model. Specifically, with the steady improvement in imaging

techniques and computer modeling, more atomistic models for muscles may be ”just around

the corner”.
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