Jeffrey M. Gordon 
Professor Emeritus

Born: June 1949.      B.A. and M.A. Columbia Univ.       Ph.D. Brown Univ. (1976)

Department of Solar Energy and Environmental Physics
Jacob Blaustein Institutes for Desert Research
Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel

Tel. (office): +972-8-6596923                        e-mail: jeff@bgu.ac.il

Last updated: 4 July 2021

Current Scientific Activities

A) Nanomaterials by highly concentrated solar and lamp light

B) Advanced solar cells

C) Innovative optics for solar concentrators and illumination

D) Algae ultra-efficient bioproductivity

A video of a March 2019 seminar on three of our recent research initiatives - the solar-driven synthesis of singular nanomaterials, ultra-efficient algal bioproductivity, and novel concentrator photovoltaics for private space missions - can be viewed at:

https://www.youtube.com/watch?v=m5dP_BPA

Space does not permit a full description of these projects­, and I earnestly invite correspondence.

The following publications - restricted to those since 2011 - are representative (PDF-format reprints are available upon request):

 

Nanomaterials by highly concentrated solar and lamp light

S. Eshon, W. Zhang, M. Saunders, Y. Zhang, H.T. Chua & J.M. Gordon (2019) “Panorama of boron nitride nanostructures via lamp ablation”. Nano Research 12, 557-562. - Seminal advance in the rapid, safe and scalable synthesis of boron nitride nano-onions, of prodigious lubricating value.

 

E.A. Katz, I. Visoly-Fisher, D. Feuermann, R. Tenne & J.M. Gordon (2018) “Concentrated sunlight for materials synthesis and diagnostics”. Advanced Materials 1800444.

 

O. Brontvein, L. Houben, R. Popovitz-Biro, M. Levy, D. Feuermann, R. Tenne & J.M. Gordon (2017) “Synthesis and characterization of Pb@GaS core-shell fullerene-like nanoparticles and nanotubes”. Nano 12, 1750030.

 

O. Brontvein, A. Albu-Yaron, M. Levy, D. Feuermann, R. Popovitz-Biro, R. Tenne, A. Enyashin & J.M. Gordon (2015) “Solar synthesis of PbS-SnS2 superstructure nanoparticles”. ACS Nano 9, 7831-7839. – First synthesis of fullerene-like closed-cage misfit-layer nanostructures.

 

H. Lu, W.S. Woi, X. Tan, C.T. Gibson, X. Chen, C.L. Raston, J.M. Gordon & H.T. Chua (2015) “Synthesis of few-layer graphene by lamp ablation”. Carbon 94, 349-351. – A new uncomplicated one-step procedure for achieving the rapid, high-yield, non-toxic synthesis of few-layer graphene.

 

O. Brontvein, V. Jayaram, K.P.J. Reddy, J.M. Gordon & R. Tenne (2014) “Two-step synthesis of MoS2 nanotubes using shock waves with Lead as growth promoter”. Journal of Inorganic and General Chemistry 640, 1152-1158. – A novel shock tube procedure for nanomaterial synthesis.

 

H. Lu, B.C.Y. Chan, X. Wang, H.T. Chua, C.L. Raston, A. Albu-Yaron, M. Levy, R. Popovitz-Biro, R. Tenne, D. Feuermann & J.M. Gordon (2013) “High-yield synthesis of silicon carbide nanowires by solar and lamp ablation”. Nanotechnology 24, 335603.

 

O. Brontvein, D.G. Stroppa, R. Popovitz-Biro, A. Albu-Yaron, M. Levy, D. Feuermann, L. Houben, R. Tenne & J.M. Gordon (2012) “New high-temperature Pb-catalyzed synthesis of inorganic nanotubes”. Journal of the American Chemical Society 134, 16379-16386. – A new procedure - and deciphering of the intricate reaction pathway - for the high-yield synthesis of MoS2, MoSe2, WS2 and WSe2 nanotubes by highly concentrated solar radiation.

 

B.C.Y. Chan, X. Wang, L.K.W. Lam, J.M. Gordon, D. Feuermann, C.L. Raston & H.T. Chua (2012), “Light-driven high-temperature continuous-flow synthesis of TiO2 nano-anatase”. Chemical Engineering Journal 211-212, 195-199. – A fundamentally new reactor strategy for nanomaterial synthesis, conflating unorthodox lamp optics with spinning disk reactors.

 

A. Albu-Yaron, M. Levy, R. Tenne, R. Popovitz-Biro, M. Weidenbach, M. Bar-Sadan, L. Houben, A.N. Enyashin, G. Seifert, D. Feuermann, E.A. Katz & J.M. Gordon (2011), “MoS2 hybrid nanostructures: from octahedral to quasi-spherical shells within individual nanoparticles”. Angewandte Chemie International Edition 50, 1810-1814. – The experimental discovery and theory of fundamentally new and unanticipated nanoclusters, generated by immensely concentrated sunlight.

 

Advanced solar cells

J.M. Gordon, T. Fasquelle, E. Nadal & A. Vossier (2021) "Providing large-scale electricity demand with photovoltaics and molten-salt storage". Renewable and Sustainable Energy Reviews 135, 110261. - A novel amalgamation of off-the-shelf technologies for storing photovoltaic-generated energy that can achieve up to 90% grid penetration (24 hours/day, 365 days/year).

J.M. Gordon, G. Moses & E.A. Katz (2021) "Boosting silicon photovoltaic efficiency from regasification of liquefied natural gas". Energy 214, 118907. - A new unorthodox method to boost the efficiency of conventional silicon photovoltaic arrays by more than 70% relative by exploiting a worldwide supply of nominally free ultra-cold energy at liquefied natural gas regasification terminals.

M.A. der Maur, G. Moses, J.M. Gordon, X. Huang, Y. Zhao & E.A. Katz (2021) "Temperature and intensity dependence of the open-circuit voltage of InGaN/GaN multi-quantum well solar cells". Solar Energy Materials and Solar Cells 230, 111253.

G. Moses, X. Huang, Y. Zhao, M. Auf der Maur, E.A. Katz & J.M. Gordon (2020) "InGaN/GaN multi-quantum-well solar cells under high solar concentration and elevated temperatures for hybrid solar thermal-photovoltaic power plants". Progress in Photovoltaics 28, 1167-1174. - Experimental demonstration of advanced solar cells that retain high efficiency at very high temperatures and high flux concentration, forming the first link toward future solar hybrid power generation.

A. Pusch, J.M. Gordon, A. Mellor, J.J. Krich & N.J. Ekins-Daukes (2019) "Fundamental efficiency bounds for the conversion of a radiative heat engine's own emission into work". Physical Review Applied 12, 064018. - The basic and applied science of a novel heat engine akin to, but intriguingly distinct from, photovoltaics.

A. Vossier, J. Zeitouny, E.A. Katz, A. Dollet, G. Flamant & J.M. Gordon (2018) “Performance bounds and perspective for hybrid solar photovoltaic/thermal electricity generation”. Sustainable Energy & Fuels 2, 2060-2067. - An energetic perspective for the potential and sobering limitations of hybrid solar electricity production systems.

J. Zeitouny, N. Lalau, J.M. Gordon, E.A. Katz, G. Flamant, A. Dollet & A. Vossier (2018) “Assessing high-temperature photovoltaic performance for solar hybrid power plants”. Solar Energy Materials and Solar Cells 182, 61-67.

W.L. Leong, Z.E. Ooi, D. Sabba, C. Yi, S.M. Zakeeruddin, M. Graetzel, J.M. Gordon, E.A. Katz & N. Mathews (2016) “Identifying fundamental limitations in halide perovskite solar cells”. Advanced Materials 28, 2439-2445. – New findings and insights for perovskite solar cells.

M. Piness-Sommer, A. Braun, E.A. Katz & J.M. Gordon (2016) “Ultra-compact combustion-driven high-efficiency thermophotovoltaic generators”. Solar Energy Materials and Solar Cells 157, 953-959. - Novel concept and evaluation for using conventional Si and Ge photovoltaics in advanced gas-combustion chambers for modular super-compact power generation.

J.M. Gordon, D. Feuermann & H. Mashaal (2015) “Micro-optical designs for angular confinement in solar cells”. Journal of Photonics for Energy 5, 05599.

A. Braun, E.A. Katz, D. Feuermann, B.M. Kayes & J.M. Gordon (2013) “Photovoltaic performance enhancement by external recycling of photon emission”. Energy & Environmental Science, 6, 1499-1503. – The first experimental demonstration that external photon recycling can generate a voltage enhancement - and thereby an efficiency boost - in solar cells.

A. Braun, E.A. Katz & J.M. Gordon (2013) “Basic aspects of the temperature coefficients of concentrator solar cell performance parameters”. Progress in Photovoltaics, 21, 1087-1094.

A. Braun, B. Hirsch, A Vossier, E.A. Katz & J.M. Gordon (2013) “Temperature dynamics of multijunction concentrator solar cells up to ultra-high irradiance”. Progress in Photovoltaics 21, 202-208.

A. Braun, A. Vossier, E.A. Katz, N.J. Ekins-Daukes & J.M. Gordon (2012) “Multiple-bandgap vertical-junction architectures for ultra-efficient concentrator solar cells”. Energy & Environmental Science 5, 8523-8527. – A new unconventional concentrator solar cell architecture for ultra-efficient photovoltaics with indirect bandgap semiconductors.

A. Braun, N. Szabó, K. Schwarzburg, T. Hannappel, E.A. Katz & J.M. Gordon (2011) “Current-limiting behavior in multijunction solar cells”. Applied Physics Letters 98, 223506.

A. Vossier, B. Hirsch, E.A. Katz & J.M. Gordon (2011) “On the ultra-miniaturization of concentrator solar cells”. Solar Energy Materials and Solar Cells 95, 1188-1192. – What should be the smallness limit for concentrator photovoltaics?

J.M. Gordon, D. Babai & D. Feuermann (2011) “A high-irradiance solar furnace for photovoltaic characterization and nanomaterial synthesis”. Solar Energy Materials and Solar Cells 95, 951-956.

 

Innovative optics for solar concentrators and illumination

L.F.L. Souza, N. Fraidenraich, C. Tiba & J.M. Gordon (2021) "Linear aplanatic Fresnel reflector for practical high-performance solar concentration". Solar Energy 222, 259-268.

C.J. Ruud, A.J. Grede, J-K Chang, M.P. Lumb, K.J. Schmieder, B. Fisher, J.A. Rogers, J.M. Gordon & N.C. Giebink (2019) “Design and demonstration of ultra-compact microcell concentrating photovoltaics for space”. Optics Express 27, A1467-A1480. - Solar concentrator optics and photovoltaics tailored to the new challenging demands of private commercial space missions - launched by NASA to the International Space Station in March 2020 for testing.

E.T.A. Gomes, N. Fraidenraich, O.C. Vilela, C.A.A. Oliveira & J.M. Gordon (2019) "Aplanats and analytic modeling of their optical properties for linear solar concentrators with tubular receivers". Solar Energy 191, 697-706. - A novel, viable, pragmatic alternative for concentrator optics in line-focus solar thermal power plants.

H. Mashaal, D. Feuermann & J.M. Gordon (2019) “The expansive scope of aplanatic concentrators and collimators”. Applied Optics 58, F14-F20. - A compendium of our latest findings for basic new classes of aplanatic optics for solar concentration and light-emitting-diode collimation, within the perspective of all related discoveries to date.

J.M. Gordon & D. Feuermann (2019) “Aplanatic beam-down solar towers”. Proc. SPIE 11120, 111200E.

H. Mashaal, D. Feuermann & J.M. Gordon (2017) “Aplanatic Fresnel optics”. Optics Express 25, A274-A282. - Fundamentally new types of Fresnel optics for radiative transfer near the thermodynamic limit.

G.A. Salazar, N. Fraidenraich, C.A.A. de Oliveira, O.C. Vilela, M. Hongn & J.M. Gordon (2017), “Analytic modeling of parabolic trough solar thermal power plants”. Energy 138, 1148-1156.

S.V. Boriskina, M.A. Green, K. Catchpole, E. Yablonovitch, M.C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M.H. Tahersima, V.J. Sorger, M.J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N.D. Bronstein, J.A. Rogers, A.P. Alivisatos, R.G. Nuzzo, J.M. Gordon, D.M. Wu, M.D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan & G. Chen (2016) “Roadmap on optical energy conversion”. Journal of Optics 18, 073004 (48 pp). - Panoramic review of the current state-of-the-art of optical energy conversion.

H. Mashaal, D. Feuermann & J.M. Gordon (2016) “Aplanatic lenses revisited: the full landscape”. Applied Optics 55, 2537-2542.

H. Mashaal, D. Feuermann & J.M. Gordon (2015) “Basic categories of dual-contour reflective-refractive aplanats”. Optics Letters 40, 4097-4910.

H. Mashaal, D. Feuermann & J.M. Gordon (2015) “New types of refractive-reflective aplanats for maximal flux concentration and collimation”. Optics Express 23, 1541-1548.

N. Fraidenraich, M. Filho, O.C. Vilela & J.M. Gordon (2013) “Exact analytic flux distributions for two-dimensional solar concentrators”. Applied Optics 52, 4596-4600.

N. Fraidenraich, C. Oliveira, A.F.V. da Cunha, J.M. Gordon & O.C. Vilela (2013) “Analytical modeling of direct steam generation solar power plants”. Solar Energy 98, 511-522.

P. Kotsidas, V. Modi & J.M. Gordon (2012) “Realizable planar gradient-index solar lenses”. Optics Letters 37, 1235-1237. – The discovery of planar single-element solar lenses that approach the fundamental limits for flux concentration and optical tolerance.

P. Kotsidas, V. Modi & J.M. Gordon (2011) “Gradient-index lenses for near-ideal imaging and concentration with realistic materials”. Optics Express 19, 15584-15595. – Opening new vistas in gradient-index optics for visible and solar light.

A. Goldstein, D. Feuermann, G.D. Conley & J.M. Gordon (2011) “Nested aplanats for practical maximum-performance solar concentration”. Optics Letters 36, 2836-2838. – Surmounting the practical limitations of pure-mirror optics for concentrator photovoltaics.

P. Kotsidas, V. Modi & J.M. Gordon (2011) “Nominally stationary high-concentration solar optics by gradient-index lenses”. Optics Express 19, 2325-2334. – Flux concentration values of thousands of suns can indeed be realistically attained without massive two-axis solar trackers.

 

Algae bioproductivity

Y. Zarmi, J.M. Gordon, A. Mahulkar, A.R. Khopkar, S.D. Patil, A. Banerjee, B.G. Reddy, T.P. Griffin & A. Sapre (2020) "Enhanced algal photosynthetic photon efficiency by pulsed light". iScience 23, 101115. - A breakthrough constituting both extensive experimental evidence and a physical model rooted in photon-arrival statistics, demonstrating more than a factor of 3 improvement in the efficiency with which algae process photons for photosynthesis, at average-to-peak solar intensities.

E. Greenwald, J.M. Gordon & Y. Zarmi (2012) “Physics of ultra-high bioproductivity in algal photobioreactors”. Applied Physics Letters 100, 143703. – First biophysical model toward explaining the basis for ultra-high yields of algae in properly crafted photobioreactors.

 

Active Grant

“Innovative optics and solar cells for the special demands of private commercial space vehicles” - Israel Ministry of Science, Technology and Space

The inter-disciplinary research efforts portrayed above engender exciting challenges both at a fundamental level and in translating them into pragmatic realities. We extend an invitation to interested graduate students, post-doctoral fellows and visiting scientists to join us in these programs.