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In relativistic magnetized plasmas, asymmetry in the number densities of left- and right-handed
fermions, i.e., a nonzero chiral chemical potential μ5, leads to an electric current along the magnetic field.
This causes a chiral dynamo instability for a uniform μ5, but our simulations reveal a dynamo even for
fluctuating μ5 with zero mean. It produces magnetically dominated turbulence and generates mean
magnetic fields via the magnetic α effect. Eventually, a universal scale-invariant k−1 spectrum of μ5 and a
k−3 magnetic spectrum are formed independently of the initial condition.
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The chiral magnetic effect (CME) is a macroscopic
quantum phenomenon. It leads to an electric current along
the magnetic field due to an imbalance between oppositely
handed electrically charged fermions [1]. This is a direct
consequence of the coupling of fermionic chirality and the
topology of magnetic field lines characterized by magnetic
helicity [2,3]. Chiral asymmetry is quantified by the chiral
chemical potential μ5 ≡ μL − μR, which is nonzero in
regions where the chemical potentials of left- ðμLÞ and
right-handed ðμRÞ fermions differ. It has been shown [4]
that μ5 can survive down to energies of ≈10 MeV and
thereby the CME can potentially affect leptogenesis during
the QCD phase transition [5] and produce gravitational
waves in the early Universe [6].
The dynamics of chiral fluids has been studied in various

approaches [4,7–12], including an effective description
called chiral magnetohydrodynamics (MHD) [13–16]. A
significant difference to classical MHD is that the CME can
induce a dynamo instability in the magnetic field on small
length scales [17]. Unlike classical MHD dynamos, chiral
dynamos can occur without an initial velocity field and self-
consistently produce turbulence through the Lorentz force.
This can activate a chiral mean-field dynamo [14,18–20].
The possibility of efficient magnetic field amplification

through the CME has relevance for the early Universe. In
particular, the transport of magnetic energy to large length
scales via a chiral inverse cascade [4,21–23] and the chiral
mean-field dynamo, strongly increases the chance of
primordial magnetic fields [24,25] to survive until present
day. Thereby, observational constraints on magnetic fields
in cosmic voids [26] may open up a unique window into
the fundamental physics of the early Universe. Beyond

cosmology, chiral MHD has also relevance to neutron stars
[27–31], quark-gluon plasmas in heavy-ion collisions
[2,3,32], and quantum materials [33].
In all previous chiral dynamo studies, a uniform initial μ5

has been considered [14,18–20]. However, a uniform μ5
requires special generation mechanisms. Therefore, we
consider in this Letter a more general and universal
situation with initial fluctuations of the chiral chemical
potential, but zero mean.
For the analysis, we normalize μ5 by 4αem=ðℏcÞ such

that it has the dimension of inverse length, where αem is the
fine structure constant, c is the speed of light, and ℏ is the
reduced Planck constant. The strength of the coupling of
the electromagnetic field to μ5 is characterized by the chiral
feedback parameter λ which, for hot plasmas, is given by
λ ¼ 3ℏcð8αemÞ2=ðkBTÞ2, where T is the temperature and
kB is the Boltzmann constant. We consider the following set
of chiral MHD equations [14]:

∂B
∂t ¼ ∇ × ½U × B − ηð∇ × B − μ5BÞ�; ð1Þ

ρ
DU
Dt

¼ð∇ × BÞ × B − ∇pþ ∇·ð2νρSÞ; ð2Þ

Dρ

Dt
¼ −ρ∇ · U; ð3Þ

Dμ5
Dt

¼ D5ðμ5Þ þ λη½B·ð∇ × BÞ − μ5B2�; ð4Þ

where the magnetic field B is normalized such that the
magnetic energy density is B2=2, and D=Dt¼∂=∂tþU ·∇
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with U being the velocity field. Further, η is the micro-
scopic magnetic diffusivity, p is the fluid pressure, Sij ¼
ðUi;j þ Uj;iÞ=2 − δijð∇·UÞ=3 are the components of the
trace-free strain tensor S (commas denote partial spatial
derivatives) and ν is the kinematic viscosity. We adopt an
isothermal equation of state, p ¼ ρc2s , with cs being the
sound speed. Equations (1)–(4) imply that total chirality
χtot ≡ hHi þ 2hμ5i=λ is conserved, where angle brackets
denote volume averaging. Here, hHi≡ hA · Bi is the
magnetic helicity with the vector potential A and
B ¼ ∇ × A.
At the initial time t0, we assume hμ5iðt0Þ ¼ 0, but

nonzero fluctuations, μ05, i.e., hμ025 iðt0Þ ≠ 0. Initially, small
fluctuations of B with zero mean are present, while the
velocity field vanishes. The fluctuations μ05 result in an
exponential growth of magnetic fluctuations due to the
chiral dynamo. This instability is caused by the term
∇ × ðv5BÞ in Eq. (1) with v5 ¼ ημ5 and has a growth rate
γðkÞ ¼ jv5jk − ηk2, with k being the wave number. This
instability is referred to as the chiral dynamo [17] and
occurs when jv5j > ηk. Its maximum growth rate is γ5 ¼
v25=4η and is attained at k5 ¼ jμ5j=2. We note that, while
the ∇ × ðv5BÞ term in Eq. (1) is formally similar to the
kinetic α effect in classical mean-field MHD [14], the
velocity v5 is not produced by helical turbulence, but rather
by the CME. During the chiral dynamo phase, magnetic
fluctuations produce velocity fluctuations via the Lorentz
force ð∇ × BÞ × B.
Since the initial mean chiral chemical potential is zero,

and the initial small-scale magnetic helicity ha·biðt0Þ related
to the fluctuations of the vector potential a and the magnetic
field b vanishes, we have χtotðt0Þ ¼ 0. The initial μ05 with a
wide range of scales produces b by the chiral dynamo.
Indeed, for a wide spectrum in k space, fluctuations of μ5 on
larger scales serve as amean field for fluctuations on smaller
scales, so that the chiral dynamo instability excites b and
produces small-scale magnetic helicity ha·bi. Because of the
conservation of total chirality, χtotðtÞ ¼ 0, the generation of
ha·bi causes growth of the mean chiral chemical potential,
hμ5i ¼ −λha·bi=2. Simultaneously, the chiral dynamo
drives turbulence magnetically and therefore enhances the
fluid and magnetic Reynolds numbers, Re≡Urms=ðνkintÞ
and ReM≡Urms=ðηkintÞ, where k−1int is the integral scale of
magnetically driven turbulence. When ReM is large enough,
the mean-field dynamo instability is excited and amplifies a
large-scale magnetic field. These theoretical ideas are now
checked in DNS.
We use the PENCIL CODE [34] to solve Eqs. (1)–(4) with

high-order finite difference methods in a 3D periodic
domain of size L3 ¼ ð2πÞ3 with a resolution of 6723.
The smallest wave number covered in the numerical
domain is k1 ¼ 2π=L ¼ 1 which we use for normalization
of length scales. All velocities are normalized to cs ¼ 1 and
the mean fluid density is ρ̄ ¼ 1. Time is expressed in terms

of the resistive time tη ¼ ðηk21Þ−1 with η being the micro-
scopic diffusivity, which is a relevant constant throughout
the DNS. We stress, however, that in magnetically driven
turbulence, turbulent diffusion dominates shortly after the
onset of the mean-field dynamo, yet it is not practical for
normalization due to its time dependence.
For numerical stability, diffusion of μ5 has to be applied

in Eq. (4). To affect primarily the largest resolved wave
numbers k in the simulation domain, we use hyperdiffu-
sion, D5ðμ5Þ ¼ −D5∇4μ5; see the companion paper [35]
for technical details. In all runs, we use ν ¼ η ¼ 2 × 10−4,
i.e., ReM ¼ Re, which are based on the time-dependent
integral scale of magnetically driven turbulence,

k−1int ≡
R kmax
1 EMðkÞk−1dkR kmax
1 EMðkÞdk

: ð5Þ

Here, EM is the magnetic energy spectrum, scaled such thatR kmax
0 EMðk; tÞdk≡ hB2i=2. Likewise, power spectra of μ5
obey

R kmax
0 E5ðk; tÞdk≡ hμ25i. As initial conditions we use

U ¼ 0 and a weak seed magnetic field in form of Gaussian
noise. Initial fluctuations of μ5 are also set up as Gaussian
noise, but with a specific spectrum that follows a power law
in k space, i.e., E5ðt0Þ ¼ E5;0ðk=k1Þs exp ð−k2=k2cutÞ with a
cutoff kcut that is needed for s > −1. We perform runs with
s ¼ −2;−1;þ1 (see Table I) and the amplitude E5;0 is
chosen such that the maximum value of μ5 in the domain is
comparable for all runs at the time t5 when the chiral
dynamo starts. In all runs, the initial mean value of μ5 is
vanishing, so that χtot ¼ hHi þ 2hμ5i=λ ≈ 0, and we
use λ ¼ 400.
The fluctuations μ05 result in an exponential growth of

Brms at the rate γ5 due to the chiral dynamo, as can be seen
in Fig. 1(a). Usage of v5 ¼ ημ5;max in the expression for γ5
with the maximum value of the chiral chemical potential,
μ5;max, as shown in Fig. 1(b), reproduces the observed
growth rate for all runs rather well; see Fig. 1(c) [and
Fig. 3(b)]. We note, however, that a sufficient separation of
scales is required for the dynamo to reach the maximum
possible growth rate; see the accompanying paper [35].
When comparing the measured growth rate with γ5, we
neglect the change of μ5 in time, which is much smaller
than the increase of Brms. During the chiral dynamo phase,
hHi [Fig. 1(a)] and hμ5i [Fig. 1(b)] are produced. If the
divergence of magnetic helicity fluxes is small, the latter
two always tend to have opposite signs, as follows from the

TABLE I. Summary of all runs.

Run E5ðk; t0Þ μ5;rmsðt0Þ μ5;maxðt0Þ μ5;maxðt5Þ maxðReMÞ
R − 2 ∝ k−2 13.8 50.5 48.1 288
R − 1 ∝ k−1 15.8 85.8 62.0 134
Rþ 1 ∝ k1e−ðk=10Þ2 12.6 53.7 53.7 65.1

PHYSICAL REVIEW LETTERS 128, 065002 (2022)

065002-2



conservation of total chirality. Therefore, contrary to
previously considered cases with an initially uniform μ5,
the conservation law cannot be used to estimate the
maximum magnetic field produced by the chiral dynamo.
In the companion paper [35] we present a phenomeno-
logical model for the maximum magnetic field strength.
With magnetic field amplification via the chiral dynamo,

velocity fluctuations are produced by the Lorentz force.
When the turbulent velocity approaches the Alfvén speed,
Urms ≈ vA ≡ Brms (at t ≈ 0.03 for run Rþ 1 and t ≈ 0.05 for

runs R − 2 and R − 1) the small-scale chiral dynamo phase
ends. This coincides with the time tIC when the peak of the
magnetic energy spectrum reaches η2μ5;maxðt0Þ and starts to
shift to larger scales; see EM for run R − 2 in Fig. 2(a).
In such chiral-magnetically driven turbulence, a mean-

field dynamo instability can occur if Re and ReM are large.
To study the mean-field dynamo, we perform averages

(a)

(b)

(c)

FIG. 1. Direct comparison between the time evolution of
different quantities of all simulations. Different colors refer to
different runs: R − 2 (dark blue), R − 1 (light blue), and Rþ 1
(orange). (a) Time series of Brms, Urms, and hHi. (b) Time series
of μ5;max and hμ5i. The latter has been multiplied by a factor of
100 for better visualization. (c) Measured growth rate of Brms,
γrms, over γ5 ¼ ημ25;max=4.

(a)

(b)

(c)

FIG. 2. (a) Time evolution of the magnetic energy spectrum EM
for run R − 2 with time indicated by the color bar. (b) The wave
number based on the integral scale of turbulence, kint, as a function
of time for all runs (solid lines) and the value of the theoretically
predicted wave number, μ5;max=2, on which the v5 dynamo
instability has the largest growth rate (dotted lines). (c) Different
averages based on the kint: hμ5iint (dashed-dotted), hBiint (dotted
lines), hHiint (solid lines), and −hHiint (dashed lines).
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hμ5iint, hBiint, and hHiint on the scale kint [see Fig. 2(b)],
defined as

hXiint ¼
�R kmax

0 EMðkÞEXðkÞdkR kmax
0 EMðkÞdk

�1=2
; ð6Þ

where EXðkÞ is the spectrum of X; see Fig. 2(c).
The mean-field dynamo instability has a maximum

growth rate of γα ¼ ðηhμ5iint þ αμ þ αM þ αKÞ2=ð4ηTÞ,
where ηT ≈Urms=ð3kintÞ is the turbulent magnetic
diffusivity. The different α effects are approximately given
by αμ ¼ −ð2=3Þηhμ5iint logðReMÞ [14], the magnetic α
effect, αM ¼ 2ðq − 1Þ=ðqþ 1Þτcχc, and the kinetic α
effect, αK ¼ −ð1=3ÞτcχK . Here, χc ¼ hb·ð∇ × bÞiint≈
ha · biintk2int is the current helicity, χK ¼ hu·ωiint is the
kinetic helicity,ω≡∇ × u is the vorticity, τc ≈ ðvAkintÞ−1 is
the correlation time of magnetically driven turbulence, and
q is the slope of the magnetic energy spectrum ∝ k−q. We
use q ¼ 3; see Fig. 2(a). Figure 3(a) shows that αM
dominates once turbulence is produced and therefore the
mean-field dynamo growth rate is γα ≈ α2M=ð4ηTÞ.

Our DNS indicate that χc plays the key role for the mean-
field dynamo sourced by initially inhomogeneous fluctua-
tions of μ5; see Fig. 3(a) and the accompanying paper [35].
The evolution of χc is closely connected to that of the
small-scale magnetic helicity [14]:

∂
∂t a·bþ divF ¼ 2v̄5b2 − 2E · B − 2ηbð∇ × bÞ; ð7Þ

where E≡ u×b ¼ αMB − ηTð∇ × BÞ is the electromotive
force with αM being the dominant contribution to the total α
effect, and F is the flux of a·b. Near magnetic field
maximum, two leading source or sink terms in Eq. (7),

2v̄5b2 − 2αMB2, compensate each other, so that the mag-

netic α effect reaches the value αsatM ¼ ημ̄5b2=B2. For R − 2,
jαMj ≈ jαsatM j for t≳ 0.075, as can be seen in Fig. 3(a).
The maximum growth rate of the mean-field dynamo

instability γα agrees well with the measured growth rate γint
of hBiint; see Fig. 3(b) for run R − 2 in the interval
0.075 < t < 0.12. In our DNS, γint strongly decreases
when the scale at which γα is maximum becomes larger
than the size of the box. As can be seen in Fig. 3(b), γint

(a)

(b)

FIG. 3. Time evolution of different quantities in Run R − 2.
Gray background indicates that the inverse cascade has reached
the size of the domain. (a) Different contributions to the mean-
field dynamo growth rate, including hv5iint ≡ ηhμ5iint. (b) The
measured growth rate of hBiint, γint (black solid line) compared to
the chiral dynamo growth rate γ5 (orange dashed line), and the
mean-field dynamo growth rate γα based on αM (red dashed line).

(a)

(b)

FIG. 4. Power spectra from all simulations. (a) Magnetic energy
spectra EM at the beginning of the chiral inverse cascade tIC
(dotted lines) and the time when the cascade reaches the size of
the numerical domain tk1 (solid lines). (b) Spectra of μ5 shown at
the same two characteristic times as EM. For better visibility the
spectra of runs R − 2 and Rþ 1 have been multiplied by factors
of 102 and 10−2, respectively.
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vanishes once the positive contribution to the growth rate
on the minimum wave number of the box, jαsatM jk1, becomes
comparable to the negative contribution, ηTk21. For R − 2,
dissipation due to ηTk21 on the box scale dominates
for t≳ 0.12.
At the time tk1 when the peak of the magnetic energy

reaches the size of the domain, all of the μ5 spectra
approach a universal k−1; see Fig. 4. The magnetic energy
spectra approach a k−3 scaling which is, for fully helical
magnetic fields, consistent with the magnetic helicity
spectra ∝ k−4.
In conclusion, a small-scale chiral dynamo can arise from

an initially fluctuating chiral chemical potential with zero
mean. The chiral dynamo generates small-scale magnetic
helicity which (i) produces a mean μ5 due to the conservation
of total chirality and (ii) drives turbulence via the Lorentz
force. In our DNS, sufficiently strong turbulence is generated
to activate a mean-field dynamo that is well described by the
magnetic α effect caused by current helicity. During the
mean-field dynamo phase, the power spectra develop a
universal shape; EM ∝ k−3 and E5 ∝ k−1. In particular, with
the onset of turbulence in the system, μ5 becomes scale
invariant, independent of its initial condition.
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