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Compressibility effects in turbulent transport of the temperature field
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Compressibility effects in a turbulent transport of temperature field are investigated by applying the quasilinear
approach for small Péclet numbers and the spectral τ approach for large Péclet numbers. The compressibility of a
fluid flow reduces the turbulent diffusivity of the mean temperature field similarly to that for the particle number
density and magnetic field. However, expressions for the turbulent diffusion coefficient for the mean temperature
field in a compressible turbulence are different from those for the mean particle number density and the mean
magnetic field. The combined effect of compressibility and inhomogeneity of turbulence causes an increase
of the mean temperature in the regions with more intense velocity fluctuations due to a turbulent pumping.
Formally, this effect is similar to a phenomenon of compressible turbophoresis found previously [J. Plasma
Phys. 84, 735840502 (2018)] for noninertial particles or gaseous admixtures. The gradient of the mean fluid
pressure results in an additional turbulent pumping of the mean temperature field. The latter effect is similar to
the turbulent barodiffusion of particles and gaseous admixtures. The compressibility of a fluid flow also causes a
turbulent cooling of the surrounding fluid due to an additional sink term in the equation for the mean temperature
field. There is no analog of this effect for particles.
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I. INTRODUCTION

The compressibility of a fluid flow affects the turbulent
transport of particles, temperature, and magnetic fields (see,
e.g., Refs. [1–5]), e.g., it causes qualitative changes in the
properties of both mean fields and fluctuations. Large-scale ef-
fects of turbulence on particle concentrations and temperature
field are described by means of the turbulent flux of particles
and turbulent heat flux, respectively. For incompressible flow,
the main contribution to the turbulent fluxes is determined
by the turbulent diffusion of particles and the temperature
field. This corresponds to the gradient turbulent transport of
particles and temperature fields, e.g., the turbulent flux of
particles is directed opposite to the gradient of the mean par-
ticle number density, while the turbulent heat flux is directed
opposite to the gradient of the mean fluid temperature.

The compressibility of a turbulent flow results in a reduc-
tion of the turbulent diffusivity of a mean particle number
density at small [6] and large [5,7] Péclet numbers. The Péclet
number is the ratio of nonlinear to diffusion terms in the equa-
tion for particle number density fluctuations. A similar effect
of the reduction of turbulent magnetic diffusivity by com-
pressible turbulence exists also for the mean magnetic field
at small [6,8] and large [5,7] magnetic Reynolds numbers.
The conclusion about the reduction of turbulent diffusivity
by the compressibility of fluid flow has been also confirmed
by the test-field method in direct numerical simulations for
an irrotational homogeneous deterministic flow [6]. Various
aspects related to compressibility effects on turbulent trans-
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port have been studied using different analytical approaches
(for a review, see Ref. [5]), e.g., the quasilinear approach
[6–8], the spectral tau approach [7], the path-integral approach
[9–11], the multiple-scale direct-interaction approximation
[12,13], etc.

The compressibility of a turbulent flow causes an ad-
ditional nongradient contribution to the turbulent flux of
particles that is proportional to a product of the mean particle
number density and effective pumping velocity. In a density
stratified turbulence, the effective pumping velocity of parti-
cles is proportional to the gradient of the mean fluid density
multiplied by the turbulent diffusion coefficient [10,11]. The
pumping effect results in an accumulation of particles in re-
gions of maximum mean fluid density.

In a temperature stratified turbulence, a similar effect re-
ferred to as turbulent thermal diffusion results in a turbulent
nondiffusive flux of particles in the direction of the turbulent
heat flux, so that particles are accumulated in the vicinity of
the mean temperature minimum [10,11]. This phenomenon
has been studied theoretically [14–18], found in direct nu-
merical simulations [7,19,20], detected in different laboratory
experiments [18,21–23], and atmospheric turbulence with
temperature inversions [24]. This effect has been shown to be
important for concentrating dust in protoplanetary disks [25].
Density stratification which causes the turbulent pumping
of particles becomes weaker with increasing compressibility,
i.e., with increasing the Mach number [7].

The compressibility of a fluid flow in inhomogeneous tur-
bulence also results in a new pumping effect of particles
from regions of low to high turbulent intensity both for small
and large Péclet numbers. This effect has been interpreted
in Ref. [7] as a compressible turbophoresis of noninertial
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particles and gaseous admixtures, while the classical tur-
bophoresis effect for incompressible inhomogeneous turbu-
lence [26–30] exists only for inertial particles and causes them
to be pumped to regions with lower turbulent intensity.

The compressibility of a turbulent fluid flow affects also
passive scalar fluctuations. In particular, it results in a slow
scale-dependent turbulent diffusion of small-scale passive
scalar fluctuations for large Pèclet numbers [9]. In addition,
the level of passive scalar fluctuations in the presence of
a gradient of the mean passive scalar field in compressible
turbulent flow can be fairly strong. On the other hand, passive
scalar transport in a density stratified turbulent fluid flow is
accompanied by the formation of large-scale structures due to
the instability of the mean passive scalar field in an inhomo-
geneous turbulent velocity field [9].

Another interesting feature for a compressible temperature
stratified turbulence is that the turbulent flux of entropy is
different from the turbulent convective flux of the fluid in-
ternal energy [31,32]. In particular, in a low-Mach-number
approximation as well as in the framework of the mean-field
approach, the turbulent flux of entropy is given by Fs =
ρ〈s′ u〉, where ρ is the mean fluid density and s′ and u are
fluctuations of entropy and velocity, respectively, and the an-
gular brackets 〈· · · 〉 denote ensemble averaging. On the other
hand, the turbulent convective flux of the fluid internal energy
is Fc = T ρ〈s′ u〉, where T is the mean fluid temperature. This
turbulent convective flux is well known in the astrophysical
and geophysical literature, and it cannot be used as a turbulent
flux in the equation for the mean entropy. This is the exact
result for low-Mach-number temperature stratified turbulence
and is independent of the turbulence model used [32].

Temperature fluctuations and anomalous scaling in a low-
Mach-number compressible turbulent flow have been studied
in Ref. [33]. Due to compressibility and external pressure
fluctuations, the anomalous scaling (i.e., the violation of the
dimensional analysis predictions for the scaling laws) may
occur in the second moment of the temperature field. The
cause of the anomalous behavior is a compressibility-induced
depletion of the turbulent diffusion of the second moment of
the temperature field [33].

In spite of the many studies of turbulent transport of passive
scalar, some large-scale (mean-field) features related to the
compressibility effects on the turbulent transport of a temper-
ature field are not known. In the present paper, we study the
compressibility effects in the turbulent transport of the mean
temperature field, i.e., we consider here mean-field effects.
This paper is organized as follows. In Sec. II we outline
the governing equations. The turbulent heat flux and level
of temperature fluctuations are determined for small Péclet
numbers in Sec. III and for large Péclet numbers in Sec. IV. In
Secs. III and IV we also outline the method of derivations and
approximations made for the study of the compressibility ef-
fects. In Sec. V we discuss how a homogeneous compressible
turbulence can cause a turbulent cooling of the surround-
ing fluid. Finally, conclusions are drawn in Sec. VI. In
Appendix A we outline the multiscale approach used in the
present study. Details of the derivation of the turbulent heat
flux and level of temperature fluctuations are given in Ap-
pendix B for small Péclet numbers and in Appendix C for
large Péclet numbers.

II. GOVERNING EQUATIONS

The evolution of the temperature field T (t, r) in a com-
pressible fluid velocity field U(t, r) is given by [34]

∂T

∂t
+ (U · ∇)T + (γ − 1)T (∇ · U ) = D�T + Jν, (1)

where D is the molecular thermal conductivity, γ = cp/cv is
the ratio of specific heats, and Jν is the heating source caused,
e.g., by a viscous dissipation of the kinetic energy.

In a compressible flow, Eq. (1) for the temperature field
is different from the equation for the particle number density
n(t, r) [35,36],

∂n

∂t
+ ∇ · (nU ) = Dn �n, (2)

where Dn is the coefficient of the Brownian (molecular) diffu-
sion of particles.

We consider a compressible turbulent flow when the Mach
number can be not small. To derive equations for the turbulent
heat flux and the level of temperature fluctuations, we apply
the mean-field approach. In particular, the fluid temperature,
pressure, density, and velocity are decomposed into mean and
fluctuating parts, where the fluctuating parts have zero mean
values, i.e., the Reynolds averaging is applied here, which
easily separates fluctuations from mean fields. For example,
the density-weighted averaging quantities [37,38] are usually
difficult to extract from laboratory and atmospheric measure-
ments or from astrophysical observations.

In the framework of the mean-field approach, the fluid
temperature is T = T + θ , the fluid pressure is P = P + p,
and the fluid density is ρ = ρ + ρ ′, where T = 〈T 〉 is the
mean fluid temperature, P = 〈P〉 is the mean fluid pressure,
and ρ = 〈ρ〉 is the mean fluid density, θ are temperature
fluctuations, p are pressure fluctuations, and ρ ′ are density
fluctuations. The angular brackets denote an ensemble averag-
ing. Similarly, U = U + u, where U = 〈U〉 is the mean fluid
velocity, and u are velocity fluctuations. For simplicity, we
consider the case U = 0.

Averaging Eq. (1) over an ensemble of turbulent velocity
field, we arrive at the equation for the mean temperature field
as

∂T

∂t
+ ∇·〈θ u〉 = −(γ − 2)〈θ (∇·u)〉 + D �T + Jν, (3)

where F = 〈θ u〉 is the turbulent heat flux, Jν is the mean heat-
ing source caused by the viscous dissipation of the turbulent
kinetic energy, and IS = −(γ − 2)〈θ (∇·u)〉 is the mean sink
term resulting in a turbulent cooling due to compressibility
effects (see Sec. V). Using Eqs. (1) and (3), we obtain the
equation for temperature fluctuations, θ (x, t ) = T − T ,

∂θ

∂t
+ Q − D∇θ = −(u·∇)T − (γ − 1) T ∇· u, (4)

where

Q = ∇·(θu − 〈u θ〉) + (γ − 2)[θ ∇· u − 〈θ ∇· u〉]
are nonlinear terms and

I = −(u·∇)T − (γ − 1)T ∇· u
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are the source terms of temperature fluctuations. The ratio of
the nonlinear term to the diffusion term is the Péclet number,
that is estimated as Pe = u0 	0/D, where u0 is the characteris-
tic turbulent velocity in the integral (energy-containing) scale
	0 of turbulence. We consider a one-way coupling, i.e., we
take into account the effect of turbulence on the temperature
field, but neglect the feedback effect of the temperature on
the turbulence.

To determine the turbulent heat flux and the level of tem-
perature fluctuations, and to take into account the small-scale
properties of the turbulence, we use two-point correlation
functions. For a fully developed turbulence, scalings for the
turbulent correlation time and the turbulent kinetic energy
spectrum are related via the Kolmogorov scalings [1,2,39–41].
We consider the cases with small and large Péclet and
Reynolds numbers.

In the framework of the mean-field approach, we assume
that there is a separation of spatial and temporal scales, i.e.,
	0 � LT and τ0 � tT , where LT and tT are the characteristic
spatial and temporal scales characterizing the variations of
the mean temperature field and τ0 = 	0/u0. The mean fields
depend on “slow” variables, while fluctuations depend on
“fast” variables. Separation into slow and fast variables is
widely used in theoretical physics, and all calculations are
reduced to the Taylor expansions of all functions using small

parameters 	0/LT and τ0/tT . The findings are further truncated
to leading-order terms. Separation to slow and fast variables
is performed by means of a standard multiscale approach [42]
discussed in detail in Appendix A.

III. TURBULENT HEAT FLUX AND LEVEL
OF TEMPERATURE FLUCTUATIONS

FOR SMALL PÉCLET NUMBERS

In this section we derive the equations for the turbulent
heat flux and the level of temperature fluctuations for small
Péclet numbers using the quasilinear approach. For a random
flow with small Péclet and Reynolds numbers, there are no
universal scalings for the correlation time and the turbulent
kinetic energy spectrum. This is the reason why we use non-
instantaneous two-point correlation functions in this case. In
the framework of the quasilinear approach, we neglect the
nonlinear term Q, but keep the molecular diffusion term in
Eq. (4). We rewrite this equation in Fourier space and find the
solution of this equation, given by Eq. (B1) in Appendix B.
Using this solution and applying the multiscale approach (see
Ref. [42] and Appendix A), we arrive at the expressions for the
turbulent heat flux and the level of temperature fluctuations in
Fourier space for small Péclet numbers as

〈θ u j〉 = −γ − 1

2

[
T

∫
GD(∇i − 2Dk2GD kim∇m + 2iki ) fi j dk dω

−(∇iT )
∫

GD

(
γ − 3

γ − 1
δim + 2Dk2GD kim + km

∂

∂ki

)
fm j

]
dk dω, (5)

〈θ2〉 = γ − 1

4

{
T

∫
GD[(2Dk2GD kjn∇n − ∇ j )F

(+)
j + 2ik j F (−)

j ]dk dω

+(∇nT )
∫

GD

[
γ − 3

γ − 1
δ jn + 2Dk2GD kjn + k j

∂

∂kn

]
F (+)

j

}
dk dω. (6)

Details of the derivations of Eqs. (5) and (6) are given in Appendix B. Here, GD ≡ GD(k, ω) = (Dk2 + iω)−1, fi j ≡
fi j (k, ω) = 〈ui(k, ω)u j (−k,−ω)〉, F (±)

j = Fj (k, ω) ± Fj (−k, ω), where Fj (k, ω) = 〈θ (k, ω) u j (−k,−ω)〉 is the turbulent heat
flux in Fourier space, δi j is the Kronecker unit tensor, and ki j = kik j/k2. Since we consider a one-way coupling, the correlation
function fi j in Eqs. (5) and (6) should be replaced by f (0)

i j for the background random flow with zero turbulent heat flux.
We use a statistically stationary, density stratified, inhomogeneous, compressible, and nonhelical background random flow

determined by the following correlation function in Fourier space [5,7],

f (0)
i j (k, ω) = �(ω)

8πk2(1 + σc)

{
E (k)

[
δi j − ki j + i

k2
(k jλi − kiλ j ) + i

2k2
(ki∇ j − k j∇i )

]

+2σc Ec(k)
[
ki j + i

2k2
(ki∇ j − k j∇i )

]}
〈u2〉, (7)

where λ = −∇ ln ρ characterizes the fluid density stratifi-
cation,

√
〈u2〉 is the characteristic turbulent velocity at the

maximum scale 	0 of random motions, and the parameter

σc = 〈(∇ · u)2〉
〈(∇ × u)2〉 (8)

is the degree of compressibility of the turbulent velocity field.
We considered a weakly anisotropic background turbulence.
In particular, in the derivation of Eq. (7), we assumed that

	0 � Hρ and 	0 � Lu, where Lu = |∇ ln 〈u2〉|−1 is the char-
acteristic scale of the inhomogeneity of turbulence, and Hρ =
|λ|−1 = |∇ ln ρ|−1 is the mean density stratification scale,
which is assumed to be constant. These conditions allow us
to take into account the leading effects in Eq. (7), which
are linear in stratification, ∝|λ|, and the inhomogeneity of
turbulence, ∝|∇ ln 〈u2〉|. We neglect in Eq. (7) the high-
order effects which are of the order of O(λ2〈u2〉), O(∇2〈u2〉),
O(λi∇i〈u2〉).
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Generally, stratification also contributes to div u, i.e., it
contributes to the parameter σc. Since this contribution is
small, i.e., it is of the order of ∼O(λ2 〈u2〉), we neglect this
contribution in Eq. (7). This allows us to separate the effects
of the arbitrary Mach number, characterized by the parameter
σc, and density stratification, described by λ. The degree of
compressibility σc depends on the Mach number. This depen-
dence is not known for arbitrary Mach numbers and can be
determined, e.g., in direct numerical simulations.

In Eq. (7), E (k) and Ec(k) are the spectrum functions for
incompressible and compressible parts of a random flow. We
assume that the random flows have a power-law spectrum for
incompressible E (k) = (q − 1)(k/k0)−q k−1

0 and compress-
ible Ec(k) = (qc − 1)(k/k0)−qc k−1

0 parts, where the wave
number varies in the range k0 � k � kν . Here, kν = 1/	ν is
the wave number based on the viscous scale 	ν , and k0 =
1/	0 � kν . We assume also that there are no random motions
for k < k0. In the model of a compressible background turbu-
lence used in Ref. [7], the exponents q = qc. In the present
study, we consider the case when the spectrum exponents of
the incompressible and compressible parts of random motions
are different, i.e., q 
= qc.

We assume that the frequency function �(ω) has a Lorentz
profile, �(ω) = [πτ0(ω2 + τ−2

0 )]−1, which corresponds to
the correlation function 〈ui(t )u j (t + τ )〉 ∝ exp(−τ/τ0). Here,
the correlation time for small Péclet numbers τ0 ≡ 	0/u0 �
(Dk2)−1 for all turbulent scales. To derive Eq. (7) we use
the identities given in Appendix B. Different contributions to
Eq. (7) have been discussed in Refs. [5,7,9,43].

Integration in ω and k space in Eq. (5) yields an equation
for the turbulent heat flux for small Péclet numbers,

〈θ u〉 = T V eff − DT ∇T , (9)

where the turbulent diffusivity DT and the effective pumping
velocity V eff are given by

DT = (q − 1)

3(q + 1)

τ0〈u2〉
1 + σc

Pe

[
γ − 1

2
(3γ − 5)σc Cσ

]
, (10)

V eff = (γ − 1)
(q − 1)

3(q + 1)

τ0〈u2〉
(1 + σc)

Pe

[
3

2
Cσ σc λu + λP

]
.

(11)

Here, λu = ∇ ln 〈u2〉, λP = ∇ ln P, and

Cσ = (qc − 1)(q + 1)

(qc + 1)(q − 1)
. (12)

We take into account that the equation of state for an ideal
gas yields λ = −λP + ∇ ln T . Since τ0 Pe = 	2

0/D, the tur-
bulent transport coefficients given by Eqs. (10) and (11) are
determined only by the microphysical diffusion timescale
	2

0/D for small Péclet numbers. Equation (10) implies that
for small Péclet numbers, the compressibility effects in most
of the cases decrease the turbulent diffusivity. Indeed, for
γ � 5/3, the derivative ∂DT /∂σc is always negative, i.e.,
the compressibility effects decrease the turbulent diffusivity.
When 1 < γ < 5/3, the derivative ∂DT /∂σc is negative when
Cσ < 2γ /(5 − 3γ ). For example, for q = qc, the derivative
∂DT /∂σc is always negative. When q = 5/3 (i.e., for the
Kolmogorov spectrum) and qc = 2 (i.e., for the Burgers turbu-
lence with shock waves), the derivative ∂DT /∂σc is negative

when 10/9 < γ < 5/3. Note that the total diffusivity D + DT

cannot be negative, because for Pe � 1 the molecular diffu-
sivity is much larger than the turbulent one, D � |DT |.

The first term (∝σc ∇〈u2〉) in Eq. (11) for the effective
pumping velocity V eff of the mean temperature field describes
a combined effect of the compressibility of fluid flow and the
inhomogeneity of turbulence. This effect increases the mean
temperature field in the regions with more intense velocity
fluctuations due to turbulent pumping. This effect is similar
to a phenomenon of compressible turbophoresis found previ-
ously for noninertial particles or gaseous admixtures [7].

The second term (∝λP) in Eq. (11) describes an additional
turbulent pumping effect due to the gradient of the mean fluid
pressure. This effect is similar to the turbulent barodiffusion
of particles and gaseous admixtures [11]. The physics of
these effects is discussed in the next section. Note that the
expressions for turbulent diffusion and the effective pumping
velocity for the mean temperature field in a compressible
turbulence are different from those for the particle number
density and magnetic field (see Ref. [7]), because equations
for the particle number density or magnetic field are different
from those for the fluid temperature (see the discussion at the
end of Sec. IV).

Integration in ω and k space in Eq. (6) yields the expres-
sion for the level of temperature fluctuations for small Péclet
numbers as

〈θ2〉 = (γ − 1)2

(
qc − 1

qc + 1

)( σc

1 + σc

)
Pe2 T

2

+ q − 1

3(q + 3)
Pe2 	2

0

{
(∇T )2 + 1

8
(γ − 1)

[
6(λ · ∇)

+ (γ + 3)(λu · ∇)

]
T

2
}
. (13)

The first term on the right-hand side of Eq. (13) deter-
mines a dominant contribution of the compressible part of
velocity fluctuations to the level of temperature fluctuations.
Here, we neglect much smaller contributions ∼O[	2

0/(LT Lu)],
O[	2

0/(LT Hρ )], O[	2
0/L2

T ], caused by the compressible part
of velocity fluctuations, where LT is the characteristic scale
of the mean temperature field variations. For small σc, the
level of temperature fluctuations is determined by the terms
given by the second and third lines of Eq. (13) and caused by
the mean temperature gradient and the density stratified and
inhomogeneous velocity fluctuations.

IV. TURBULENT HEAT FLUX AND LEVEL
OF TEMPERATURE FLUCTUATIONS

FOR LARGE PÉCLET NUMBERS

In this section we determine the turbulent heat flux and the
level of temperature fluctuations for large Péclet and Reynolds
numbers. We consider fully developed turbulence, where the
Strouhal number is of the order of unity and the turbulent
correlation time is scale dependent, so we apply the Fourier
transformation only in k space, where the Strouhal number is
the ratio of the correlation time τ0 to the turn-over time 	0/u0

of turbulent eddies.
The procedure of the derivations of the expressions for the

turbulent heat flux and the level of temperature fluctuations

013107-4



COMPRESSIBILITY EFFECTS IN TURBULENT … PHYSICAL REVIEW E 103, 013107 (2021)

includes (i) a derivation of equations for the second moments
in k space using the multiscale approach, (ii) application of the
spectral τ approach (see below) which allows us to relate the
deviations of the third moments (appearing due to nonlinear
terms) from those of the background turbulence with the devi-
ations of the second moments, (iii) a solution of the equations
for the second moments in the k space, and (iv) an inverse
transformation to the physical space to obtain formulas for the
turbulent heat flux and the level of temperature fluctuations.

Starting with Eq. (4) for the temperature fluctuations θ

and the Navier-Stokes equation for the velocity u written
in Fourier space, we derive the dynamic equations for the
turbulent heat flux and level of temperature fluctuations as

∂Fj

∂t
= −1

2
(γ − 1)

[
T (2iki + ∇i ) fi j − (∇iT )

×
(

γ − 3

γ − 1
δim + km

∂

∂ki

)
fm j

]
+ M̂F (III)

j , (14)

∂Eθ

∂t
= 1

2
(γ − 1)

[
T (2ik jF

(−)
j − ∇ jF

(+)
j ) + (∇mT )

×
(

k j
∂

∂km
+ γ − 3

γ − 1
δ jm

)
F (+)

j

]
+ M̂E (III)

θ . (15)

Details of the derivations of Eqs. (14) and (15) are
given in Appendix C. Here, Fj (k) = 〈θ (k)u j (−k)〉, Eθ (k) =
〈θ (k)θ (−k)〉, fi j (k) = 〈ui(k)u j (−k)〉, and F (±)

j = Fj (k) ±
Fj (−k), and the third-order moment terms M̂F (III)

j and

M̂E (III)
θ written in k space and appearing due to the nonlinear

terms are given by Eqs. (C8) and (C9) in Appendix C.
Equations (14) and (15) for the second moment include

first-order spatial differential operators M̂ applied to the
third-order moments F (III). The problem arises how to close
Eqs. (14) and (15), i.e., how to express the third-order terms
M̂F (III) through the lower moments [1,2,39,44]. We use the
spectral τ approach which is a universal tool in turbulent
transport for strongly nonlinear systems. The spectral τ ap-
proximation postulates that the deviations of the third-moment
terms M̂F (III)(k) from the contributions to these terms af-
forded by the background turbulence M̂F (III,0)(k) can be
expressed through similar deviations of the second moments
F (II)(k) − F (II,0)(k) as

M̂F (III)(k) − M̂F (III,0)(k) = −F (II)(k) − F (II,0)(k)

τr (k)
(16)

(see, e.g., Refs. [44–46]), where τr (k) is the scale-dependent
relaxation time which can be identified with the correla-
tion time τ (k) of the turbulent velocity field for large fluid
Reynolds numbers and large Péclet numbers. Here, functions
with a superscript (0) correspond to background turbulence

with zero turbulent heat flux. Therefore, Eq. (16) is reduced to
M̂F (III)

i (k) = −Fi(k)/τ (k) and M̂E (III)
θ (k) = −Eθ (k)/τ (k).

The validation of the τ approximation for different situa-
tions has been performed in various numerical simulations
[6,7,19,47–53]. We apply the τ approximation only to study
the deviations from the background turbulence which are
caused by the spatial derivatives of the mean temperature.
The background compressible inhomogeneous and density
stratified turbulence is assumed to be known (see below).

The τ approximation is a sort of the high-order closure
and in general is similar to the eddy damped quasinormal
Markovian (EDQNM) approximation. However, some prin-
cipal difference exists between these two approaches [44,45].
The EDQNM closures do not relax to equilibrium (the back-
ground turbulence), and the EDQNM approach does not
describe properly the motions in the equilibrium state in con-
trast to the τ approximation. Within the EDQNM theory, there
is no dynamically determined relaxation time, and no slightly
perturbed steady state can be approached. In the τ approxima-
tion, the relaxation time for small departures from equilibrium
is determined by the random motions in the equilibrium state,
but not by the departure from the equilibrium. As follows from
the analysis in Ref. [44], the τ approximation describes the re-
laxation to the equilibrium state (the background turbulence)
much more accurately than the EDQNM approach.

Next, we assume that the characteristic times of variation
of the second moments Fi and Eθ are substantially larger than
the correlation time τ (k) in all turbulence scales. This allows
us to get steady-state solutions of Eqs. (14) and (15) as

〈θ u j〉 = −1

2
(γ − 1)

∫
τ (k)

[
T (2iki + ∇i ) fi j − (∇iT )

×
(

γ − 3

γ − 1
δim + km

∂

∂ki

)
fm j

]
dk, (17)

〈θ2〉 = 1

2
(γ − 1)

∫
τ (k)

[
T (2ik jF

(−)
j − ∇ jF

(+)
j ) + (∇mT )

×
(

k j
∂

∂km
+ γ − 3

γ − 1
δ jm

)
F (+)

j

]
dk. (18)

In Eqs. (17) and (18) we take into account a one-way
coupling, i.e., we neglect the effect of the mean temperature
gradients on the turbulent velocity field. This implies that we
replace the correlation function fi j in Eqs. (17) and (18) by
f (0)
i j for the background turbulent flow with zero turbulent heat

flux.
We use statistically stationary, density stratified, inho-

mogeneous, compressible, and nonhelical background tur-
bulence, which is determined by the following correlation
function in k space [5,7]:

f (0)
i j (k) = 1

8πk2(1 + σc)

{
E (k)

[
δi j − ki j + i

k2
(k jλi − kiλ j ) + i

2k2
(ki∇ j − k j∇i )

]

+2σc Ec(k)

[
ki j + i

2k2
(ki∇ j − k j∇i )

]}
〈u2〉. (19)

We assume here that the background turbulence is of Kolmogorov type with a constant energy flux over the spectrum,
i.e., the velocity fluctuation spectrum for the incompressible part of turbulence in the range of wave numbers k0 < k < kν
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is E (k) = −d τ̄ (k)/dk, where the function τ̄ (k) = (k/k0)1−q

with 1 < q < 3 being the exponent of the turbulent kinetic
energy spectrum. The condition q > 1 corresponds to a fi-
nite turbulent kinetic energy for very large fluid Reynolds
numbers, while q < 3 corresponds to the finite dissipation of
the turbulent kinetic energy at the viscous scale (see, e.g.,
Refs. [1,2,39–41]). Similarly, the turbulent kinetic energy
spectrum for the compressible part of turbulence is Ec(k) =
−d τ̄c(k)/dk, where the function τ̄c(k) = (k/k0)1−qc with 1 <

qc < 3. For instance, the exponent of the incompressible part
of the turbulent kinetic energy spectrum q = 5/3 (the Kol-
mogorov spectrum), while the exponent of the compressible

part of the spectrum qc = 2 (for the Burgers turbulence with
shock waves). The turbulent correlation time in k space is

τ (k) = 2τ0

1 + σc
[τ̄ (k) + σc τ̄c(k)]. (20)

Note that for fully developed Kolmogorov-like turbulence,
σc < 1 [54].

Integration in k space in Eq. (17) yields the turbulent heat
flux 〈θ u〉 = T V eff − DT ∇T , where the turbulent diffusivity
DT and the effective pumping velocity V eff of the mean tem-
perature field for large Péclet numbers are given by

DT = τ0〈u2〉
3

{
1 + γ − 1

1 + σc

[
1 − σc

2(1 + σc)
(C̃σ q + σc(qc − 1))

]}
, (21)

V eff = (γ − 1)
τ0〈u2〉

3(1 + σc)

{
σc

2

[
1 + C̃σ

2(1 + σc)

]
λu +

[
1 − C̃σ σc

2(1 + σc)

]
λP

}
, (22)

and

C̃σ = 2(qc − 1)

q + qc − 2
. (23)

Equation (21) implies that for large Péclet numbers, com-
pressibility effects decrease the turbulent diffusivity. Indeed,
the derivative ∂DT /∂σc is always negative when σc(C̃σ q −
2qc) < C̃σ q + 2. Since C̃σ > 0 and C̃σ q − 2qc < 0 [the latter
inequality is reduced to (qc − 1)2 + (q − 1) > 0], the deriva-
tive ∂DT /∂σc is negative, i.e., compressibility effects do
decrease the turbulent diffusivity.

For irrotational flow (σc � 1), the turbulent diffusivity and
the effective pumping velocity for large Péclet numbers are
given by

DT = 1

3
τ0〈u2〉

[
1 − 1

2
(γ − 1)(qc − 1)

]
, (24)

V eff =
(

γ − 1

6

)
τ0 ∇〈u2〉. (25)

Equations (22) and (25) determine the effective pumping
velocity V eff of the mean temperature field caused by the
inhomogeneity of compressible turbulence and the gradient of
the fluid pressure. Let us discuss the mechanisms of the turbu-
lent pumping effects. The first term (∝σc ∇〈u2〉) in Eq. (22)
implies that there is an additional contribution to the turbulent
heat flux caused by the combined effect of the inhomogeneity
of turbulence and the compressibility of fluid flow. This effect
results in an increase of the mean temperature in the region
with more intense velocity fluctuations in a compressible
turbulence. This effect can be understood using the budget
equation for the mean internal energy density E = cvT , where
cv is the specific heat at constant volume. In particular, one
of the sources in the budget equation for the mean inter-
nal energy density is −〈p∇ · u〉 [34], so that ∂ (ρ E )/∂t ∼
−〈p∇ · u〉, where p are pressure fluctuations. As follows from
the Bernoulli law, variations of the sum δ(p + ρu2/2) ≈ 0,
so that δp ≈ −δ(ρu2/2). This implies that the mean internal
energy (and the mean temperature) is larger in the region
with more intense compressible velocity fluctuations. The tur-

bulent pumping effect of the mean temperature field caused
by the joint effect of compressibility and inhomogeneity of
turbulence is similar to a phenomenon of compressible tur-
bophoresis for noninertial particles or gaseous admixtures
[7]. In particular, the expression for the effective pumping
velocity for particles due to the compressible turbophoresis
is proportional to V eff

particles ∝ σc τ0 ∇〈u2〉.
The second term (∝∇P) in Eq. (22) determines an addi-

tional contribution to the turbulent heat flux caused by the
gradient of the mean fluid pressure. This turbulent pumping
increases the mean temperature in the regions with a higher
mean fluid pressure. The mechanism of this effect is the fol-
lowing. Since there is an outflow of fluid from the turbulent
regions with a higher mean fluid pressure, the fluid density
decreases in these regions and temperature increases. This
effect is similar to the turbulent barodiffusion [11] of particles
or gaseous admixtures.

Note that expressions (10) and (21) for the turbulent
diffusion coefficient of the mean temperature field in a com-
pressible turbulence are different from those for the mean
particle number density [5,7]. Indeed, Eq. (1) for the tem-
perature field contains an additional term, (γ − 2)T divU ,
in comparison with Eq. (2) for the particle number density.
Even for γ = 2 when this additional term vanishes and the
equations for the temperature field and the particle number
density are similar, the expressions for the turbulent diffusion
coefficient for the mean temperature field in a compressible
turbulence are different from those for the mean particle num-
ber density.

The main reason for this difference is as follows. Particles
in a fluid flow is a two-phase system, while the turbu-
lent transport of fluid temperature is a one-phase system.
Equation (4) for temperature fluctuations θ (x, t ) = T − T has
two source terms I = −(u·∇)T − (γ − 1)T ∇·u, where the
first term −(u·∇)T contributes to turbulent diffusion DT ,
while the second term −(γ − 1)T ∇·u contributes to the ef-
fective pumping velocity V eff of the mean temperature, so that
the turbulent heat flux in a compressible turbulence is 〈θ u〉 =
T V eff − DT ∇T . The contribution (V eff )∇T = −D∗

T ∇T /T
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to the effective pumping velocity V eff of the mean tempera-
ture due to the mean temperature gradient ∇T is actually an
additional contribution to the turbulent diffusivity DT . Indeed,
we can rewrite this contribution as

T (V eff )∇T = T

(
−D∗

T

∇T

T

)
= −D∗

T ∇T , (26)

where

D∗
T = (γ − 1)

(q − 1)

3(q + 1)

τ0〈u2〉
(1 + σc)

Pe, (27)

for Pe � 1, and

D∗
T = (γ − 1)

τ0〈u2〉
3(1 + σc)

(
1 − C̃σ σc

2(1 + σc)

)
, (28)

for Pe � 1. This is the main reason why the expressions for
the turbulent diffusion coefficient for the mean temperature
field in a compressible turbulence are different from those for
the mean particle number density.

Integration in k space in Eq. (18) yields the level of tem-
perature fluctuations for large Péclet numbers

〈θ2〉 = 8 fc(γ − 1)2

(
σc

1 + σc

)3

T
2 + 1

9
	2

0{8(∇T )2 + (γ − 1)[(γ + 3)(λu · ∇) + 2(5 − γ )(λ · ∇)]T
2}, (29)

where the function fc(q, qc, σc) depends on the degree of
compressibility and the exponents of spectra for the incom-
pressible and compressible parts of velocity fluctuations:

fc = qc − 1

3qc − 5
+ 2(qc − 1)

σc(q + 2qc − 5)
+ qc − 1

σ 2
c (2q + qc − 5)

. (30)

The first term on the right-hand side of Eq. (29) determines
a dominant contribution of the compressible part of the ve-
locity fluctuations to the level of temperature fluctuations.
Here, we neglect much smaller contributions ∼O[	2

0/(LT Lu)],
O[	2

0/(LT Hρ )], O[	2
0/L2

T ], caused by the compressible part of
velocity fluctuations. For small σc, the level of temperature
fluctuations is determined by the other terms in Eq. (29) which
are caused by the mean temperature gradient and the density
stratified and inhomogeneous velocity fluctuations.

V. TURBULENT COOLING

In this section we discuss how a homogeneous com-
pressible turbulence can cause a turbulent cooling of the
surrounding fluid. Equation (3) for the mean temperature field
T contains an additional sink term IS = −(γ − 2)〈θ (∇·u)〉
which can result in the turbulent cooling of the surrounding
fluid for γ < 2. Indeed, substituting Eq. (9) for the turbulent
heat flux into Eq. (3), we obtain the equation for the mean
temperature field T as

∂T

∂t
+ ∇·[T V eff − (D + DT )∇T ]

= Jν − (γ − 2)〈θ (∇·u)〉, (31)

where the sink term IS in Eq. (31) for small Péclet numbers is
given by

IS = −(γ − 1)(2 − γ )

(
σc

1 + σc

)
Pe

T

τ0
, (32)

while for large Péclet numbers it is

IS = −6(γ − 1)(2 − γ )
σc

(1 + σc)2

T

τ0

[
Re1/4 + σc

4
ln Re

]
.

(33)
In Eq. (33) for simplicity we determine IS when the exponent
of the incompressible part of the turbulent kinetic energy
spectrum for large Reynolds numbers is q = 5/3, while the

exponent of the compressible part of the spectrum is qc = 2
[55,56].

Let us consider a simple case with a uniform mean temper-
ature field. The heating source Jν in Eq. (31) caused by the
viscous dissipation of the turbulent kinetic energy is given by

Jν = ν

cv

[
〈(∇×u)2〉 + 4

3
〈(∇·u)2〉

]
, (34)

where cv is the specific heat at constant volume. Here, we
use the equation for the turbulent kinetic energy density EK =
〈ρ u2〉/2 for compressible turbulence written as

∂EK

∂t
+ div �K = −εK + �K , (35)

where

�K = −ν
[〈ρ u×(∇×u)〉 + 4

3 〈ρ u(∇·u)〉]
+〈u(ρ u2/2)〉 + 〈u p〉 (36)

is the flux of the density of turbulent kinetic energy, p are fluid
pressure fluctuations,

εK = ν
[〈ρ(∇×u)2〉 + 4

3 〈ρ(∇·u)2〉] (37)

is the dissipation rate of the density of turbulent kinetic en-
ergy, and �K = 〈ρ u· f 〉 + 〈p(∇·u)〉 is the production rate of
the density of turbulent kinetic energy caused by the external
force (e.g., by an external large-scale shear). The production
term includes also the pressure-dilatation term 〈p (∇·u)〉 (see,
e.g., Refs. [57,58]). In the limit of low Mach numbers, the
pressure-dilatation term in �K is known to be much smaller
than 〈ρ u· f 〉, and hence it can be safely neglected.

Using Eq. (19) for the second moment of velocity fluctua-
tions in the background turbulence, we obtain that the viscous
heating source Jν is given by

Jν = 〈u2〉
2τ0

(1 + σc)−1

[
1 + 8

3
σc Re−1/4

]
. (38)

Turbulence can generate acoustic waves, and the rate of the
energy radiated by the acoustic waves per unit mass for small
Mach numbers is [59,60]

Ew = α
〈u2〉
τ0

Ma5, (39)
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where α ∼ 10–102 is the numerical coefficient, Ma = urms/cs

is the Mach number, urms = 〈u2〉1/2, and cs = (γ P/ρ )1/2 is
the sound speed. The second term in Eq. (38) describes the
compressibility contribution to the rate of the viscous heating,

J
(c)
ν = 4

3

〈u2〉
τ0

σc

1 + σc
Re−1/4. (40)

Assuming that the compressibility contribution to the viscous
heating of turbulence J

(c)
ν is compensated by the radiative

wave energy density Ew, we obtain that the degree of com-
pressibility for small Mach numbers is given by

σc = 3α

4
Ma5 Re1/4. (41)

In equilibrium, the total viscous heating Jν is compensated by
the compressible cooling IS, so that the increase of the internal
thermal energy caused by the viscous heating is given by

cv T c = 2〈u2〉
9 α Ma5 Re1/2 . (42)

Taking into account that the sound speed cs depends on the
mean temperature, we obtain from Eq. (42) that the increase
of the internal thermal energy caused by the viscous heating
is given by

cv T c = C∗〈u2〉Re1/3, (43)

where C∗ = (9 α/2)2/3/[γ (γ − 1)]5/3. Equation (43) can be
rewritten in terms of the Mach number Ma = urms/cs as

Ma =
[

2γ (γ − 1)

9 α

]1/3

Re−1/6. (44)

For example, taking parameters typical for the atmospheric
turbulence, 	0 = 102 cm, urms = 2.7 × 102 cm/s, and α = 10,
we obtain T c = 286 K.

VI. DISCUSSION AND CONCLUSIONS

In the present study we have investigated the compressibil-
ity effects on the turbulent transport of the mean temperature
field. We use the quasilinear approach to study turbulent trans-
port for small Péclet numbers. When nonlinear effects are
much stronger than the molecular diffusion (i.e., for large
Péclet numbers), we apply the spectral τ approach. Similarly
to the turbulent transport of particles and magnetic fields, the
compressibility decreases the turbulent diffusivity of the mean
temperature field, but the expression for turbulent diffusivity
for the mean temperature field in a compressible turbulence is
different from those for the turbulent diffusivity of the mean
particle number density and the turbulent magnetic diffusivity
of the mean magnetic field.

We have found also turbulent pumping of the mean temper-
ature field due to joint effects of the fluid flow compressibility
and inhomogeneity of turbulence. This effect causes an in-
crease of the mean temperature in the regions of more intense
velocity fluctuations. A similar compressibility effect, referred
to as compressible turbophoresis [7], results in a pumping of
noninertial particles or gaseous admixtures from regions of
low to high turbulent intensity. Turbulent pumping also can be
due to the gradients of the mean fluid pressure resulting in an

increase of the mean temperature in the regions with increased
mean fluid pressure, similarly to the phenomenon of the tur-
bulent barodiffusion of particles and gaseous admixtures.

Due to compressibility, there is an additional sink term
in the equation for the mean fluid temperature, causing a
turbulent cooling in homogeneous turbulence. This implies
that there can be an equilibrium in a compressible homo-
geneous turbulence with a uniform mean fluid temperature,
where the heating caused by the viscous dissipation of the
turbulent kinetic energy can be compensated by the turbulent
cooling caused by the fluid compressibility. Such an effect
does not exist in the turbulent transport of particles or gaseous
admixtures in a compressible fluid flow.

To derive expressions for the turbulent heat flux and
the level of temperature fluctuations for large Péclet and
Reynolds numbers in a compressible inhomogeneous and den-
sity stratified turbulence, we apply the spectral τ approach
(see Sec. IV). The τ approach reproduces many well-known
phenomena found by other methods in the turbulent transport
of particles, temperature, and magnetic fields, in turbulent
convection and stably stratified turbulent flows (for a review,
see Ref. [5]). In turbulent transport, the τ approach yields
correct formulas for turbulent diffusion, turbulent thermal
diffusion, and turbulent barodiffusion [9–11,61]. The phe-
nomenon of turbulent thermal diffusion was predicted using
stochastic calculus (the path-integral approach). This effect
was also reproduced using the quasilinear approach, the spec-
tral τ approach, and the renormalization approach.

The τ approach reproduces the well-known k−7/3 spectrum
of anisotropic velocity fluctuations in a sheared turbulence
(see Ref. [62]). This spectrum was previously found in an-
alytical, numerical, laboratory studies, and was observed in
atmospheric turbulence (see, e.g., Ref. [63]). In the turbu-
lent boundary layer problems, the τ approach yields correct
expressions for turbulent viscosity, turbulent thermal conduc-
tivity, and the turbulent heat flux [2,39]. This approach also
describes the counter wind turbulent heat flux and the Dear-
dorff’s heat flux in convective boundary layers (see Ref. [62]).
These phenomena were studied using different approaches
(see, e.g., Refs. [2,39,64]).

In magnetohydrodynamics, the τ approach reproduces
many well-known phenomena found by different methods,
e.g., the τ approximation yields correct formulas for the α

effect, the turbulent diamagnetic and paramagnetic velocities,
the turbulent magnetic diffusion, the �×J effect, and the κ

effect [8,65,66].
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APPENDIX A: MULTISCALE APPROACH

In the framework of the multiscale approach [42], the non-
instantaneous two-point second-order correlation functions
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are written as follows:

〈θ (x, t1)u j (y, t2)〉 =
∫

〈θ (k1, ω1)u j (k2, ω2)〉 exp [i(k1·x + k2·y) + i(ω1t1 + ω2t2)]dω1 dω2 dk1 dk2

=
∫

Fj (k, ω, t, R) exp[ik·r + iω τ̃ ]dω dk, (A1)

〈θ (x, t1)θ (y, t2)〉 =
∫

〈θ (k1, ω1)θ (k2, ω2)〉 exp [i(k1·x + k2·y) + i(ω1t1 + ω2t2)]dω1 dω2 dk1 dk2

=
∫

Eθ (k, ω, t, R) exp[ik·r + iω τ̃ ]dω dk, (A2)

where

Fj (k, ω, R, t ) =
∫

〈θ (k1, ω1)u j (k2, ω2)〉 exp[i�t + iK·R]d� dK, (A3)

Eθ (k, ω, R, t ) =
∫

〈θ (k1, ω1)θ (k2, ω2)〉 exp[i�t + iK·R]d� dK. (A4)

Here, we introduce large-scale variables R = (x + y)/2, K = k1 + k2, t = (t1 + t2)/2, � = ω1 + ω2, and small-scale variables
r = x − y, k = (k1 − k2)/2, τ̃ = t1 − t2, ω = (ω1 − ω2)/2. This implies that ω1 = ω + �/2, ω2 = −ω + �/2, k1 = k + K/2,
and k2 = −k + K/2. Mean fields depend on the large-scale variables, while fluctuations depend on the small-scale variables.
Similarly to Eqs. (A1)–(A4), the correlation function for velocity fluctuations reads

fi j (k, ω, R, t ) =
∫

〈ui(k1, ω1)u j (k2, ω2)〉 exp[i�t + iK·R]d� dK. (A5)

After separation into slow and fast variables and calculating the functions Fj (k, ω, R, t ) and Eθ (k, ω, R, t ), Eqs. (A1) and (A2)
in the limit of r → 0 and τ̃ → 0 allow us to determine the turbulent flux of the temperature field and the level of temperature
fluctuations in physical space:

〈θ (x, t )uj (x, t )〉 =
∫

Fj (k, ω, R, t )dω dk, (A6)

〈θ (x, t )θ (x, t )〉 =
∫

Eθ (k, ω, R, t )dω dk. (A7)

APPENDIX B: DERIVATION OF EQS. (5)–(7)

We rewrite Eq. (4) in Fourier space and find the solution of this equation as

θ (k, ω) = −i

[
(γ − 1)

∫
T (Q)(ki − Qi )ui(k − Q, ω) dQ +

∫
Qi T (Q)ui(k − Q, ω)dQ

]
GD(k, ω), (B1)

where GD(k, ω) = (Dk2 + iω)−1. Using Eqs. (A6) and (B1), we determine the functions Fj (k, R) and Eθ (k, R) as

Fj (k, R) = −i
∫ [

(γ − 1)

(
ki + Ki

2
− Qi

)
+ Qi

]
GD(k + K/2)〈ui(k + K/2 − Q)u j (−k + K/2)〉

×T (Q) exp(iK·R)dK dQ, (B2)

Eθ (k, R) = − i

2

∫ {[
(γ − 1)

(
ki + Ki

2
− Qi

)
+ Qi

]
GD(k + K/2)〈θ (−k + K/2)ui(k + K/2 − Q)〉

+
[
(γ − 1)

(
−ki + Ki

2
− Qi

)
+ Qi

]
GD(−k + K/2)〈θ (k + K/2) ui(−k + K/2 − Q)〉

}

×T (Q) exp(iK·R)dK dQ, (B3)

where the functions Fj , GD, and ui depend also on ω, and T depend on t as well. To simplify the notations, we do not show these
dependencies here. To determine fi j (k, K, Q) = 〈ui(k + K/2 − Q)uj (−k + K/2)〉, we use the following new variables:

k̃ = (k̃1 − k̃2)/2 = k − Q/2, (B4)

K̃ = k̃1 + k̃2 = K − Q, (B5)
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where

k̃1 = k + K/2 − Q, k̃2 = −k + K/2. (B6)

Since |Q| � |k| and |K| � |k|, we use the Taylor expansion

fi j (k − Q/2, K − Q) = fi j (k, K − Q) − 1

2

∂ fi j

∂km
Qm + O(Q2),

(B7)

GD(k + K/2) = GD(k)[1 − D(k · K )GD(k)] + O(K2).
(B8)

In a similar way we calculate the other terms in Eqs. (B2)
and (B3). Using Eqs. (B2)–(B8), we arrive at expressions (5)
and (6) for the turbulent heat flux and the level of temperature
fluctuations in Fourier space for small Péclet numbers.

To derive Eq. (7), the second rank tensor f (0)
i j is con-

structed as a linear combination of symmetric tensors, δi j

and ki j , with respect to the indices i and j, and non-
symmetric tensors: kiλ j , k jλi, ki∇ j〈u2〉, and k j∇i〈u2〉. We
consider here only linear effects in λ and ∇〈u2〉. To deter-
mine unknown coefficients multiplying by these tensors, we
use the following conditions in the derivation of Eq. (7):
〈u2〉 = ∫

f (0)
ii (k, ω, K ) exp(iK·R)dk dω dK, f (0)

i j (k, ω, K ) =
f ∗(0)

ji (k, ω, K ) = f (0)
ji (−k, ω, K ), and

〈(div u)2〉 =
∫

(ki + Ki/2)(k j − Kj/2) f (0)
i j (k, ω, K ) exp(iK·R)dk dω dK. (B9)

The normalization conditions for the functions �(ω), E (k),
and Ec(k) in Eq. (7) are

∫ ∞
−∞ �(ω)dω = 1,

∫ kd

k0
E (k)dk = 1,

and
∫ kd

k0
Ec(k)dk = 1. For very low Mach numbers, i.e., when

the parameter σc is very small, the continuity equation can be
written in the anelastic approximation, div(ρ u) = 0, which
implies that (iki + iKi/2 − λi ) f (0)

i j (k, ω, K ) = 0 and (−ik j +
iKj/2 − λ j ) f (0)

i j (k, ω, K ) = 0.
For the integration over ω in Eqs. (5) and (6), we use the

following identities:∫ ∞

−∞

dω

(±iω + Dk2)
(
ω2 + τ−2

0

) = π τ0

τ−1
0 + D k2

≈ π τ0

Dk2
,

∫ ∞

−∞

dω

(iω + Dk2)(−iω + Dk2)
(
ω2 + τ−2

0

)
= πτ0

Dk2
(
τ−1

0 + D k2
) ≈ π τ0

(D k2)2
,

which are determined in the limit when the correlation time
τ0 � (D(θ )k2)−1. For the integration over angles in k space in
Eqs. (5) and (6), we use the following identity:∫ 2π

0
dϕ

∫ π

0
sin ϑ dϑ

ki k j

k2
= 4π

3
δi j .

For the integration over k in Eqs. (5) and (6), we use the
following identities:∫ kd

k0

E (k)

k2
dk = q − 1

q + 1
	2

0,

∫ kd

k0

E (k)

k4
dk = q − 1

q + 3
	4

0.

APPENDIX C: DERIVATION OF EQS. (14) and (15)

In this Appendix we derive Eqs. (14) and (15) for large
Péclet and Reynolds numbers. Using Eq. (4) for the temper-
ature fluctuations θ and the Navier-Stokes equation for the
velocity u written in Fourier space, we derive equations for
the following correlation functions:

Fj (k, R) =
∫

〈θ (k + K/2)uj (−k + K/2)〉
× exp[iK·R]dK, (C1)

Eθ (k, R) =
∫

〈θ (k + K/2)θ (−k + K/2)〉
× exp[iK·R]dK. (C2)

For brevity of notations we omit the large-scale variable t in
the functions Fj (k, R, t ), Eθ (k, R, t ), and the mean tempera-
ture T (R, t ).

To derive evolution equations in the Fourier space for
the turbulent heat flux Fj (k, R) and the level of temperature
fluctuations Eθ (k, R), we rewrite Eq. (4) for the temperature
fluctuations in k space as

∂θ (k)

∂t
= −i

[
(γ − 1)

∫
T (Q)(ki − Qi ) ui(k − Q)dQ

+
∫

QiT (Q)ui(k − Q)dQ
]

− Q(k), (C3)

where Q(k) are the nonlinear terms written in k space. For
brevity of notations we omit below the variable t in the func-
tions T (Q, t ), θ (k, t ), θ (N)(k, t ), and ui(k, t ).

Using Eq. (C3) for the temperature fluctuations θ written
in Fourier space, we derive equations for the instantaneous
two-point correlation functions Fj (k, R) and Eθ (k, R) defined
by Eqs. (C1) and (C2). To this end we use the identities

∂

∂t
〈θ (k1, t )u j (k2, t )〉 =

〈
∂θ (k1, t )

∂t
u j (k2, t )

〉

+
〈
θ (k1, t )

∂u j (k2, t )

∂t

〉
, (C4)

∂

∂t
〈θ (k1, t )θ (k2, t )〉 =

〈
∂θ (k1, t )

∂t
θ (k2, t )

〉

+
〈
θ (k1, t )

∂θ (k2, t )

∂t

〉
. (C5)

Equations (C3)–(C5) yield the dynamic equations as

∂Fj (k, R)

∂t
= Jj (k, R) + M̂F (III)

j (k, R), (C6)

∂Eθ (k, R)

∂t
= S(k, R) + M̂E (III)

θ (k, R), (C7)
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where

M̂F (III)
j (k, R) =

∫ [〈
θ (k1)

∂u j (k2)

∂t

〉

−〈Q(k1)u j (k2)〉] exp[iK·R]dK, (C8)

M̂E (III)
θ (k, R) = −

∫
[〈θ (k1)Q(k2)〉

−〈Q(k1)θ (k2)〉] exp[iK·R]dK (C9)

are the third-order moment terms in k space appearing due to
the nonlinear terms, and

Jj (k, R) = −i
∫

[(γ − 1)(ki + Ki/2 − Qi ) + Qi]

×〈ui(k + K/2 − Q)u j (−k + K/2)〉T (Q)

× exp(iK·R)dK dQ, (C10)

S(k, R) = −i
∫

{[(γ − 1)(k j + Kj/2 − Qj ) + Qj]

×〈θ (−k + K/2)u j (k + K/2 − Q)〉
+[(γ − 1) (−k j + Kj/2 − Qj ) + Qj]

×〈θ (k + K/2)uj (−k + K/2 − Q)〉}T (Q)

× exp(iK·R)dK dQ. (C11)

To derive Eq. (14), we perform calculations in Eq. (C10)
which are similar to those in Eqs. (B4)–(B7). To determine
〈θ (k̃1)u j (k̃2)〉 in Eq. (C11), we use new variables:

k̃ = (k̃1 − k̃2)/2 = −k + Q/2, (C12)

K̃ = k̃1 + k̃2 = K − Q, (C13)

where

k̃1 = −k + K/2, k̃2 = k + K/2 − Q. (C14)

Since |Q| � |k| and |K| � |k|, we use the Taylor expansion

〈θ (k̃1)u j (k̃2)〉 = Fj (k̃, K̃ ) = Fj (−k, K̃ ) + Qm

2

∂Fj

∂ k̃m

+O(Q2) =
(

1 − Qm

2

∂

∂km

)
Fj (−k, K̃ )

+ O(Q2). (C15)

Similarly,

〈θ (k̃3)u j (k̃4)〉 =
(

1 + Qm

2

∂

∂km

)
Fj (k, K̃ ) + O(Q2), (C16)

where

k̃3 = k + K/2, k̃4 = −k + K/2 − Q. (C17)

Substituting Eqs. (C15) and (C16) into Eq. (C11), neglecting
the terms O(Q2; K2), and returning to the physical space in the
large-scale variables, we obtain Eqs. (14) and (15).

To determine the turbulent heat flux and the level of
temperature fluctuations, we use the following identities for
integration over k in Eqs. (17) and (18):∫ kν

k0

τ (k)[E (k) + σc Ec(k)]dk = τ0(1 + σc),

∫ kν

k0

τ (k)E (k)dk = τ0

[
1 − C̃σ σc

2(1 + σc)

]
,

∫ kν

k0

τ (k)Ec(k)dk = τ0

[
1 + C̃σ

2(1 + σc)

]
,

∫ kν

k0

τ (k)k2 Ec(k)dk = 6τ0

	2
0

(1 + σc)−1
[
Re1/4 + σc

4
ln Re

]
,

∫ kν

k0

dτ (k)

dk
Ec(k)k dk = −τ0(qc − 1)σc

1 + σc

×
[

1 + 2(q − 1)

σc(q + qc − 2)

]
,

∫ kν

k0

τ 2(k)k2Ec(k) dk = 4 fc

(
τ0

	0

)2(
σc

1 + σc

)2

,

∫ kν

k0

τ 2(k)[E (k) + σc Ec(k)]dk = 4

3
τ 2

0 (1 + σc),

∫ kν

k0

τ 2(k)Ec(k)dk = 4

3
τ 2

0 f∗
( σc

1 + σc

)2
,

∫ kν

k0

τ 2(k)E (k)dk = 4

3
τ 2

0 (1 + σc)
[
1 − f∗

( σc

1 + σc

)3]
,

where

f∗ = 1 + 6(qc − 1)

σc(q + 2qc − 3)
+ 3(qc − 1)

σ 2
c (2q + qc − 3)

.
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