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ABSTRACT

We investigate experimentally the phenomenon of turbulent thermal diffusion of micrometer-size solid particles in an inhomogeneous con-
vective turbulence forced by one vertically oriented oscillating grid in an air flow. This effect causes the formation of large-scale inhomogene-
ities in particle spatial distributions in a temperature-stratified turbulence. We perform detailed comparisons of the experimental results with
those obtained in our previous experiments with an inhomogeneous and anisotropic stably stratified turbulence produced by a one oscillating
grid in the air flow. Since the buoyancy increases the turbulent kinetic energy for convective turbulence and decreases it for stably stratified
turbulence, the measured turbulent velocities for convective turbulence are larger than those for stably stratified turbulence. This tendency is
also seen in the measured vertical integral turbulent length scales. Measurements of temperature and particle number density spatial distribu-
tions show that particles are accumulated in the vicinity of the minimum of the mean temperature due to the phenomenon of turbulent ther-
mal diffusion. This effect is observed in both convective and stably stratified turbulence, where we find the effective turbulent thermal
diffusion coefficient for micrometer-size particles. The obtained experimental results are in agreement with theoretical predictions.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0163878

I. INTRODUCTION

Turbulent transport of particles has been a subject of many stud-
ies due to numerous applications in geophysics and environmental sci-
ences, astrophysics, and various industrial flows.1–7 Different
mechanisms of large-scale and small-scale clustering of inertial par-
ticles have been proposed. The large-scale clustering occurs in scales
that are much larger than the integral scale of turbulence, while the
small-scale clustering is observed in scales that are much smaller than
the integral turbulence scale.

The large-scale clustering of inertial particles in the isothermal
non-stratified inhomogeneous turbulence occurs due to turbophore-
sis,8–13 which is a combined effect of particle inertia and inhomogene-
ity of turbulence. Turbophoresis results in the appearance of the
additional non-diffusive turbulent flux of inertial particles
Jturboph ¼ �n �V turboph, where the mean particle velocity caused by tur-
bophoresis can be written as

�V turboph ¼ �jturb
$hu2i
2

: (1)

Here, �n is the mean number density of inertial particles, u is the turbu-
lent fluid velocity, jturb is the turbophoretic coefficient, which gener-
ally depends on the Stokes number St ¼ sp=s� and the fluid Reynolds

number Re ¼ ‘0 urms=�, where s� ¼ s0=Re1=2 is the Kolmogorov vis-
cous time, s0 ¼ ‘0=urms is the characteristic turbulent time, � is the
kinematic viscosity, urms �

ffiffiffiffiffiffiffiffiffi
hu2i

p
is the rms velocity in the integral

turbulence scale ‘0, and sp is the Stokes time for the small spherical
particles. Due to turbophoresis, inertial particles are accumulated in
the vicinity of the minimum of the turbulent intensity. In particular,
direct numerical simulations (DNS)13 show that inertial particles in
inhomogeneously forced isothermal turbulent flows are accumulated
at the minima of turbulent velocity. Two turbulent transport processes,
turbophoresis and turbulent diffusion, determine the spatial distribu-
tion of the particles. Numerical simulations13 demonstrate that the
non-dimensional product of the turbophoretic coefficient jturb and
the rms velocity urms increases linearly with the parameter Stf for

Stf � 1, reaches a maxima for Stf � 10, and decreases as St�1=3f for

large Stf , where Stf ¼ sp=s0 is the Stokes number defined using the
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characteristic flow time scale s0 based on the forcing scale of turbu-
lence. The same large-scale clustering phenomenon caused by turbo-
phoresis has been studied in the DNS of turbulent Kolmogorov
flows.14 Although the authors do not interpret their results as a balance
between turbophoretic and turbulent diffusive fluxes, they do observe
that the large-scale clustering increases for small Stf , but this trend
reverses smoothly at higher values of Stf . The large-scale clustering
due to turbophoresis has also been observed in the DNS of turbulent
channel flows15 and in various experimental studies.16,17

Another example of the large-scale clustering of inertial particles
is the phenomenon of turbulent thermal diffusion that is a combined
effect of the temperature stratified turbulence and inertia of small par-
ticles.18,19 Turbulent thermal diffusion is a purely collective phenome-
non occurring in temperature stratified turbulence and resulting in the
appearance of a non-zero large-scale effective pumping velocity of par-
ticles in the direction opposite to the mean temperature gradient. This
implies that this phenomenon causes a non-diffusive turbulent flux of
particles in the direction of the turbulent heat flux. A competition
between the turbulent thermal diffusion and the turbulent diffusion
determines the conditions for the formation of large-scale particle con-
centrations in the vicinity of the mean temperature minimum.

Turbulent thermal diffusion has been intensively investigated
analytically18–25 using different theoretical approaches. This effect has
been detected in DNS.26,27 Turbulent thermal diffusion has been
observed in geophysical turbulence, e.g., in the atmosphere of the
Earth28 and the atmosphere of Titan,29 and it has also been discussed
in astrophysical turbulence applications.30 Moreover, the phenomenon
of turbulent thermal diffusion has been detected in laboratory experi-
ments in nearly isotropic and homogeneous turbulence produced by
two oscillating grids25,31–33 and in a multi-fan produced turbulence.34

Recently, the phenomenon of turbulent thermal diffusion has been
found in an inhomogeneous and anisotropic stably stratified turbu-
lence produced by one oscillating grid in the air flow.35 These experi-
ments have demonstrated the formation of inhomogeneous
distributions of micrometer-size particles in the vicinity of the mean
temperature minimum.

The main goal of the present study is to investigate experimen-
tally the phenomenon of turbulent thermal diffusion of the
micrometer-size solid particles in an inhomogeneous convective tur-
bulence forced by a one oscillating grid in the air flow. In the experi-
ments, we measure velocity fields applying particle image velocimetry
(PIV). We measure the temperature field with a temperature probe
equipped with 12 E thermocouples. In addition, we determine spatial
distributions of small solid particles by a PIV system using the effect of
the Mie light scattering by particles in the flow. We perform detailed
comparisons of the obtained experimental results with those in the
experiments in an inhomogeneous and anisotropic stably stratified
turbulence produced by a one oscillating grid35 and in a convective
turbulence forced by two oscillating grids in the air flow.36 This paper
is organized as follows. In Sec. II, we elucidate the mechanism of the
phenomenon of turbulent thermal diffusion and determine the turbu-
lent flux of particles using the spectral s approach for the fully devel-
oped temperature-stratified turbulence. In Sec. III, we discuss our
experimental facilities and instrumentation, and in Sec. IV, we describe
the obtained experimental results. Finally, in Sec. V, we outline conclu-
sions. In Appendix, we derive the expression for the particle turbulent
flux for small P�eclet numbers.

II. TURBULENT THERMAL DIFFUSION

In this section, we determine the turbulent flux of particles in a
temperature-stratified turbulence and elucidate the mechanism related
to the effect of turbulent thermal diffusion. We study dynamics of
small non-inertial particles advected by a turbulent fluid flow. An evo-
lution of the particle number density nðt; xÞ in a fluid velocity field
Uðt; xÞ is determined by the convective-diffusion equation as follows:

@n
@t
þ $ � nU � D$nð Þ ¼ 0; (2)

where D ¼ kB T=ð6pq � apÞ is the coefficient of the molecular
(Brownian) diffusion of particles having the radius ap. Here, T and q
are the fluid temperature and density, respectively, and kB is the
Boltzmann constant. The fluid velocity is a turbulent field produced
by, e.g., an external steering force. Equation (2) is a conservation law
for the total number of particles that implies that the total number of
particles is conserved in a closed volume. Here, we do not consider a
coagulation of particles or chemical reactions as well as condensation
or evaporation of droplets, which change the total number of particles
or droplets in a closed volume.

Assuming for simplicity that the diffusion coefficient is indepen-
dent of coordinates, Eq. (2) can be rewritten as

@n
@t
þ $ � ðnUÞ ¼ DDn: (3)

We use a point-particle approximation that implies that the size of par-
ticles is very small in comparison with all possible scales of fluid
motions. When the fluid velocity is much less than the sound speed
(i.e., for low-Mach-number fluid flows), the continuity equation for the
fluid density can be used in an anelastic approximation, $ � ðq UÞ ¼ 0.
This equation can be rewritten as $ � U ¼ �ðU � $Þ ln q, i.e., the
anelastic approximation takes into account an inhomogeneous fluid
density.

We study a long-term evolution of the particle number density in
spatial scales Ln, which are much larger than the integral scale of tur-
bulence ‘0, and during the time scales tn, which are much larger than
the turbulent time scales s0. We use a mean-field approach in which
all quantities are decomposed into the mean and fluctuating parts,
where the fluctuating parts have zero mean values, i.e., we use the
Reynolds averaging. In particular, the particle number density
n ¼ �n þ n0, where �n ¼ hni is the mean particle number density and
n0 are the particle number density fluctuations and hn0i ¼ 0. The
angular brackets h� � �i denote an ensemble averaging. Averaging Eq.
(3) over an ensemble of a turbulent velocity field, we arrive at the
mean-field equation for the particle number density as follows:

@�n
@t
þ $ � �U �n þ hu n0i

� �
¼ DD�n; (4)

where F � hu n0i is the turbulent flux of particles. We consider for
simplicity the case �U ¼ 0.

To derive an expression for the turbulent flux of particles, we
obtain the equation for particle number density fluctuations n0 by sub-
tracting Eq. (4) from Eq. (3), which yields

@n0

@t
¼ � ~Q � ðu � $Þ�n � �nð$ � uÞ þ DDn0; (5)
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where ~Q ¼ $ � ðn0 u� hn0 uiÞ is the nonlinear term. The source term
for particle number density fluctuations, �ðu � $Þ�n, results in the pro-
duction of particle number density fluctuations by the tangling of the
gradient $ �n of the mean particle number density by velocity fluctua-
tions. The other source term, ��nð$ � uÞ, for particle number density
fluctuations can be rewritten as ��nð$ � uÞ ¼ ð�n=�q Þðu � $Þ�q, where
we take into account the anelastic approximation, $ � u
¼ �ð1=�qÞ ðu � $Þ�q, which is also valid for the mean fluid density, �q.
This implies that this source term describes a production of particle
number density fluctuations by the tangling of the gradient $ �q of the
mean fluid density by velocity fluctuations. We use the P�eclet number
Pe ¼ j ~Qj=jDDn0j defined as the dimensionless ratio of the absolute
values of the nonlinear term j ~Qj to the diffusion term jDDn0j. The
P�eclet number can be estimated as Pe ¼ ‘0 urms=D. Since the nonlinear
equation (5) cannot be solved exactly for arbitrary P�eclet numbers, we
consider the case of large P�eclet and Reynolds numbers, which corre-
sponds to our laboratory experiments.

We apply the Fourier transform only in a k space but not in a x
space because in a fully developed Kolmogorov-like turbulence, the
turbulent time is universally related to spatial scales. We take into
account the nonlinear terms in equations for velocity and particle
number density fluctuations and apply the spectral s approach37,38

(see also Ref. 7 for a detailed discussion).
For simplicity, we consider a one-way coupling by taking into

account the effect of turbulence on the particle number density and
neglecting the feedback effect of the particle number density on the
turbulent fluid flow. The one-way coupling approximation is valid
when the spatial density of particles nmp is much smaller than the
fluid density q, where mp is the particle mass. First, we consider
non-inertial particles, which means that the particles move with
the fluid velocity, i.e., the particle number density is a passive
scalar.

We use a multi-scale approach,39 i.e., we consider the one-point
second-order correlation function as

huiðt; xÞn0ðt; xÞi � lim
x!y
huiðt; xÞn0ðt; yÞi

¼ lim
r!0

ð
Fiðt; k;RÞ exp ði k � rÞ dk ¼

ð
Fiðt; k;RÞ dk;

(6)

where Fiðt; k;RÞ ¼
Ð
Fiðt; k;KÞ exp ðiK � RÞ dK and Fiðt; k;KÞ

¼ huiðt; k þ K=2Þ n0ðt;�k þ K=2Þi. Here, the mean fields depend
on “slow” variables R ¼ ðx þ yÞ=2, while fluctuations depend on
“fast” variables r ¼ x � y, which correspond to large-scale and small-
scale spatial variables, respectively. In the Fourier space, k ¼ ðk1

� k2Þ=2 corresponds to the small scales, and K ¼ k1 þ k2 character-
izes the large scales, where we use the Fourier transform,
uiðt; xÞ ¼

Ð
uiðt; k1Þ exp ði k1 � xÞ dk1. For homogeneous turbulence,

the correlation function, Fiðt; k;RÞ, is independent of the large-scale
variable R, i.e., Fiðt; k;RÞ ¼ Fiðt; kÞ.

To obtain expression for the particle turbulent flux, we use Eq.
(5) written in a Fourier space. This allows us to derive the equation for
the correlation function Fjðt; kÞ in a Fourier space as

@FjðkÞ
@t

¼ � ri�n � i ki �nð Þ fijð�kÞ þ M̂FðIIIÞj ðkÞ; (7)

where for the brevity of notation, hereafter we omit argument t in the

correlation functions. Here, M̂FðIIIÞi ðkÞ ¼ h½@uiðt; kÞ=@t� n0ðt;�kÞi

�huiðt; kÞQðt;�kÞi are the third-order moments appearing due to
the nonlinear terms ~Q in Eq. (5) and the nonlinear Navier–Stokes
equation. Here, fijðkÞ ¼ huiðt; kÞ ujðt;�kÞi andQ ¼ ~Q � DDn0.

We use the spectral s approximation.37,38 This approximation
postulates that the deviations of the third-moment terms, M̂FðIIIÞðkÞ,
from the contributions to these terms afforded by the background tur-
bulence, M̂FðIII;0ÞðkÞ, can be expressed through the similar deviations
of the second moments, FðkÞ � Fð0ÞðkÞ, as follows:

M̂FðIIIÞðkÞ � M̂FðIII;0ÞðkÞ ¼ � 1
srðkÞ

FðkÞ � Fð0ÞðkÞ
h i

; (8)

where srðkÞ is the scale-dependent relaxation time, which can be iden-
tified with the correlation time sðkÞ of the turbulent velocity field for
large Reynolds and P�eclet numbers. The functions with the superscript
(0) correspond to the background turbulence with a zero turbulent
particle flux and a zero level of particle number density fluctuations.

Consequently, Eq. (8) reduces to M̂FðIIIÞi ðkÞ ¼ �FiðkÞ=sðkÞ.
Validation of the s approximation for different situations has been
performed in various numerical simulations26,27,40–44 (see also Ref. 7
for a detailed discussion of the ranges of applicability of this
approach).

We assume that the characteristic time of variation of the second
moment FiðkÞ is substantially larger than the correlation time sðkÞ for
all turbulence scales. This allows us to use a steady-state solution of
Eq. (7). Applying the spectral s approximation and using the steady-
state solution of Eq. (7), we obtain the following formula for the turbu-
lent flux of particles, FjðkÞ, as

FjðkÞ ¼ �sðkÞ ri�n � i ki �nð Þ f ð0Þij ð�kÞ; (9)

where since we consider a one-way coupling, we replace the function
fijðkÞ by f ð0Þij ðkÞ in Eq. (9).

We use the following model for the second moments of the tur-
bulent velocity field f ð0Þij ðkÞ � huiðkÞ ujð�kÞið0Þ of an isotropic and
homogeneous background turbulence in the anelastic approximation
in a Fourier space:

f ð0Þij ðkÞ ¼
hu2i EðkÞ
8pk2

dij � kij þ
i
k2

ki kj � kj ki
� �� �

; (10)

where kij ¼ ki kj=k2, dij is the Kronecker unit tensor, k ¼ �ð$�qÞ=�q,
the spectrum function of the turbulent kinetic energy density is
EðkÞ ¼ ð2=3Þ k�10 ðk=k0Þ

�5=3 [see Ref. 7 for a detailed derivation of
Eq. (10)]. Here, the wavenumber k varies within the interval k0 � k
� k� corresponding to the inertial range of scales, the wave number
k0 ¼ 1=‘0, the length ‘0 is the integral scale of turbulence, the wave
number k� ¼ ‘�1� , where ‘� ¼ ‘0Re�3=4 is the Kolmogorov (viscous)
scale and the turbulent correlation time is given by sðkÞ
¼ 2 s0 ðk=k0Þ�2=3, where s0 is the characteristic turbulent time. The
functions E(k) and sðkÞ correspond to the fully developed turbulence
with the Kolmogorov scalings.

Using Eqs. (6), (9), and (10), we determine the turbulent flux of
particles Fi ¼ hui n0i as follows:

Fi ¼�
hu2i
8p

ðk�
k0

sðkÞEðkÞ dk
ð2p
0

du
ðp

0
sin# d#

	 dij � kij
� �

ri�n þ kj � ki kij
� �

�n
� �

: (11)
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For the integration over k in Eq. (11), we use the integrals given byÐ 2p
0 du

Ð p
0 sin# d# kij ¼ ð4p=3Þ dij and

Ð k�
k0

sðkÞEðkÞ dk ¼ s0. After

integration over k, we obtain the particle turbulent flux hn0 ui as

hn0 ui ¼ Veff �n � DT $�n; (12)

where the turbulent diffusion coefficient is

DT ¼
1
3

s0 hu2i (13)

and the effective pumping velocity is given by

Veff ¼ �DTk ¼ DT
$�q
�q
: (14)

Equations (12)–(14) are in agreement with those obtained using the
dimensional analysis (see Ref. 7 for detailed discussions). Remarkably,
the phenomenon of the turbulent diffusion of particles was predicted
more than 100 years ago in Ref. 45.

Note that for small P�eclet numbers, Eqs. (12) and (14) are also
valid, but the turbulent diffusion coefficient in these equations should be
replaced by DT ¼ ½ðq� 1Þ=3ðqþ 1Þ� s0 hu2iPe (see the Appendix).
Here, q is the exponent of the spectra of the turbulent kinetic energy.
For small P�eclet numbers, the effect of interactions between turbulent
diffusion and molecular diffusion for the mean particle number density
can also be important.21,46

To understand the mechanism related to the effective pumping
velocity Veff , we use the equation of state for a perfect gas

P ¼ kB
ml

qT � R
l

qT; (15)

where P is the fluid pressure, kB ¼ R=NA is the Boltzmann constant, R
is the gas constant, NA is the Avogadro number, l ¼ mlNA is the
molar mass, andml is the molecular mass. We rewrite the equation of
state for the mean fields assuming that �q �T 
 hq0 hi, where q0 and h
are the fluctuations of the fluid density and temperature, respectively,
and �T is the mean fluid temperature. Thus, the equation of state for
the mean fields reads

�P ¼ kB
ml

�q �T ; (16)

where �P is the mean pressure.
Using Eq. (16), we express the gradient of the mean fluid density

in terms of the gradients of the mean fluid pressure $�P andmean fluid
temperature $�T as

$ �q
�q
¼ $�P

�P
� $�T

�T
: (17)

Substituting Eq. (17) into Eq. (14), we obtain the final expression for
the effective pumping velocity of non-inertial particles as

Veff ¼ DT
$�P
�P
� $�T

�T

	 

: (18)

To understand different terms in Eq. (18), we compare the
molecular and turbulent fluxes of particles (or gaseous admixtures).
The equation for the number density of particles reads

@n
@t
þ $ � ðnUÞ ¼ �$ � FM; (19)

where the molecular flux of particles FM is given by

FM ¼ �D $nþ kt
$T
T
þ kp

$P
P

	 

; (20)

which comprises three terms: molecular diffusion ð/ $nÞ, molecular
thermal diffusion for gases or thermophoresis for particles ð/ kt$TÞ,
andmolecular barodiffusion ð/ kp$P), where kt is the molecular ther-
mal diffusion ratio and kp is the molecular barodiffusion ratio. Note
that the phenomenon of molecular thermal diffusion in gases has been
predicted long ago in Refs. 47–49.

In turbulent flows, the turbulent flux of particles can be rewritten
as

FT � hn0 ui ¼ �DT $�n þ �n
$�T
�T
� �n

$�P
�P

	 

; (21)

which is obtained by the substitution of Eq. (18) to Eq. (12).
Comparing the molecular flux of particles (20) and the turbulent flux
of particles (21), we can interpret the new additional turbulent fluxes
as fluxes caused by the effects of turbulent thermal diffusion
½/ kTð$�T Þ=�T � and turbulent barodiffusion ½/ kPðr�PÞ=�P�, where

FT � hn0 ui ¼ �DT $�n þ kT
$�T
�T
þ kP

$�P
�P

	 

(22)

and kT ¼ �n is the turbulent thermal diffusion ratio and kP ¼ ��n is
the turbulent barodiffusion ratio. These phenomena have been pre-
dicted in Refs. 18 and 19.

For small inertial particles, the expression for the effective pump-
ing velocity reads11 (see also Ref. 7 for a detailed derivation)

Veff ¼ �aDT $ ln �T ; (23)

where

a ¼ 1þ 2
mp

ml

ln Re
Pe

	 

�T
�T �
¼ 1þ 2

Vg LP ln Re

u0 ‘0
; (24)

where spV2
T ¼ c ðmp=mlÞD ¼ cVg LP �T �=�T . Here, c ¼ cp=cv is the

ratio of specific heats, VT ¼ ðc kB�T �=mlÞ1=2 is the thermal velocity,
�T � is the characteristic mean fluid temperature, and LP ¼ jrz�P=�Pj�1
is the pressure height scale. In derivation of Eq. (24), we take into
account that the Stokes time can be written as sp ¼ �q Vg LP=�P with
Vg ¼ sp g being the terminal fall velocity of particles, where g is the
acceleration caused by the gravity field. For large P�eclet numbers,
Pe
 1, the turbulent thermal diffusion coefficient a¼ 1 for non-
inertial particles, while for inertial particles, a depends on the particle
mass, the Reynolds, and P�eclet numbers.

The non-diffusive turbulent flux of particles, �n Veff , toward the
mean temperature minimum is the main reason for the formation of
large-scale inhomogeneous distributions of inertial particles in
temperature-stratified turbulence. The steady-state solution of the
equation for the mean number density of inertial particles,

@�n
@t
þ $ � �n ðVg þ Veff Þ � ðDþ DTÞ$�n

h i
¼ 0; (25)
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satisfying the boundary condition with a zero total particle flux at the
boundary, is given by

�n
�nb
¼

�T
�T b

	 
� aDT
DþDT

exp �
ðz
zb

Vg

Dþ DT
dz0

" #
; (26)

where the subscripts (b) represent the values of the mean temperature
and the mean particle number density at the boundary z ¼ zb.
Equation (26) implies that small inertial particles are accumulated
below the mean temperature minimum due to the gravity field.

The mechanism for the turbulent thermal diffusion for inertial
particles is as follows. Particles inside the turbulent eddies due to its
inertia tend to be drift out to the boundary regions between the eddies
due to the centrifugal inertial force. Indeed, for large P�eclet numbers,
the molecular diffusion of particles in equation for the number density
of inertial particles

@n
@t
þ $ � n uðpÞ � D$nð Þ ¼ 0 (27)

can be neglected, so that

$ � uðpÞ � �n�1 @n
@t
þ ðuðpÞ � $Þn

� �
� �n�1 dn

dt
; (28)

where uðpÞ is the particle velocity. On the other hand, for inertial par-
ticles, $ � uðpÞ ¼ $ � uþ ðsp=�qÞ$2p. Indeed, the solution of the
equation of motion for inertial particles,

duðpÞ

dt
¼ � uðpÞ � u

sp
þ g; (29)

for qp 
 �q and small Stokes time, reads50 uðpÞ ¼ u� sp ðdu=dtÞ
þ spg þOðs2pÞ � uþ sp ð$p=�qÞ þ spg þ Oðs2pÞ. Here, qp is the

material density of particles. This yields the equation for $ � uðpÞ.
Therefore, in regions with maximum fluid pressure fluctuations
(where $2p < 0Þ, there is accumulation of inertial particles, i.e.,
dn0=dt / ��n ðsp=�qÞ$2p > 0. These regions obey low vorticity and
high strain rate. Similarly, there is an outflow of inertial particles from
regions with minimum fluid pressure.

In a homogeneous and isotropic turbulence with a zero gradient
of the mean temperature, there is no preferential direction. This
implies that in a homogeneous and isotropic turbulence, there is no
large-scale effect of particle accumulation, and the pressure (tempera-
ture) of the surrounding fluid is not correlated with the turbulent
velocity field. The only non-zero correlation is hðu � $Þpi, which con-
tributes to the flux of the turbulent kinetic energy density.

In a temperature-stratified turbulence, the turbulent heat flux
does not vanish, so that fluctuations of fluid temperature h and veloc-
ity u are correlated, i.e., hh ui 6¼ 0. Fluctuations of the temperature
result in pressure fluctuations, which cause fluctuations of the particle
number density. Increase of the pressure of the surrounding fluid is
accompanied by an accumulation of particles, and the direction of the
turbulent flux of particles coincides with that of the turbulent heat
flux. The turbulent flux of particles is directed toward the minimum of
the mean temperature. This causes the formation of large-scale inho-
mogeneous structures in the spatial distribution of inertial particles in
the vicinity of the mean temperature minimum. In the next sections,

we will study this phenomenon in the experiments with a forced con-
vective turbulence.

III. EXPERIMENTAL SETUP

In this section, we describe the experimental setup and measure-
ment technique. We investigate the turbulent thermal diffusion of
small solid particles in experiments with a convective turbulence
forced by a one oscillating grid in the air flow. We conduct experi-
ments in a rectangular transparent chamber with dimensions Lx 	 Ly
	 Lz with Lx ¼ Lz ¼ 26 cm and Ly¼ 53 cm, where Z is along the ver-
tical direction and Y is perpendicular to the grid plain. The oscillating
grid with bars arranged in a square array is parallel to the side walls of
the chamber; it is positioned at a distance of two grid meshes from the
left sidewall of the chamber (see Fig. 1).

Two aluminum heat exchangers with rectangular pins 3	 3
	15mm are attached to the bottom (heated) and top (cooled) walls of
the chamber, which allow one to form a large vertical mean temperature
gradient of up to 1.8K/cm in the main fluid flow and about 7K/cm
close to the walls. We measure the temperature field using a tempera-
ture probe equipped with 12 E - thermocouples. The thermocouples
with a diameter of 0.13mm and a sensitivity of �75 lV/K are attached
to a vertical rod with a diameter of 4mm, and the mean distance
between thermocouples is about 21.6mm (see for details, Ref. 35). We
measure the temperature field in many locations. The data are recorded
using the developed software based on LabView 7.0, and the tempera-
ture maps are obtained using Matlab 9.7.0.

We measure the velocity field with a particle image velocimetry
(PIV) system,51–53 consisting of a Nd-YAG laser (Continuum Surelite
2	 170 mJ) and a progressive-scan 12 bit digital CCD camera (with
pixel size 6.45	6:45 lm2 and 1376	 1040 pixels). As a tracer for the
PIV measurements, we use an incense smoke with spherical solid par-
ticles having a mean diameter of 0:7lm and the material density
qp � 103q. The particles are produced by high temperature sublima-
tion of solid incense grains (see for details Ref. 35).

For instance, the velocity fields in our experiments have been
measured in a flow domain 209:09	 155:43 mm2 with a spatial
resolution of 1376	 1024 pixels, so that a spatial resolution of
151lm/pixel has been achieved. We analyze the velocity field in the
probed region with interrogation windows of 16	 16 pixels. Using
the velocity measurements, various turbulence characteristics [e.g., the
mean and the root mean square (r.m.s.) velocities, two-point

FIG. 1. Experimental setup with the forced convective turbulence: (1) digital CCD
camera; (2) rod driven by the speed-controlled motor; (3) oscillating grid; (4) laser
light sheet; (5) temperature probe equipped with 12 E-thermocouples; (6) heat
exchanger at the top cooled wall of the chamber; and (7) heat exchanger at the bot-
tom heated wall of the chamber.
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correlation functions, and an integral scale of turbulence] have been
obtained in our experiments. In particular, we determine the mean
and r.m.s. velocities for every point of a velocity map by averaging
over 530 independent maps. We also obtain the integral length scales
of turbulences ‘y and ‘z in the horizontal Y and the vertical Z direc-
tions from the two-point correlation functions of the velocity field.

Next, we obtain the particle spatial distribution by the PIV sys-
tem using the effect of the Mie light scattering by particles.54 To this
end, we determine the mean intensity of scattered light in 80	 64
interrogation windows with the size 16	 16 pixels. This allows us to
find the vertical distribution of the intensity of the scattered light in 80
vertical strips composed of 64 interrogation windows. In particular, we
take into account that the light radiation energy flux scattered by small
particles is given by Es / E0Wðpdp=k; a0; nÞ. Here, W is the scattering
function, dp is the particle diameter, k is the wavelength, and a0 is the
index of refraction. The energy flux incident at the particle is given by
E0 / pd2p=4. Note that when k > pdp, the scattering function W is
determined by Rayleigh’s law, W / d4p. In opposite case for small k,
the scattering function W is independent of the particle diameter and
the wavelength. In a general case, the scattering function W is deter-
mined by the Mie equations.55

Finally, we take into account that the light radiation energy flux
scattered by small particles is Es / E0 n ðpd2p=4Þ. This implies that the
scattered light energy flux incident on the charge-coupled device
(CCD) camera probe is proportional to the particle number density n.
The ratio of the scattered radiation fluxes at two locations in the flow
and at the image measured with the CCD camera is equal to the ratio
of the particle number densities at these two locations. For the normal-
ization of the scattered light intensity ET obtained in a temperature-
stratified turbulence, we use the distribution of the scattered light
intensity E measured in the isothermal case obtained under the same
conditions. Indeed, as follows from our measurements applying differ-
ent concentrations of the incense smoke, the distribution of the scat-
tered light intensity averaged over a vertical coordinate is independent
of the particle number density in the isothermal flow. Therefore, using
this normalization, we can characterize the spatial distribution of parti-
cle number density n / ET=E in the non-isothermal turbulence.

Note that the measurement technique and data processing proce-
dure described in this section are similar to those used by us in various
experiments with turbulent convection36,56,57 and stably stratified tur-
bulence.35,58 In addition, the similar measurement technique and data
processing procedure in the experiments have been performed previ-
ously by us to investigate the phenomenon of turbulent thermal diffu-
sion in a homogeneous turbulence25,31–33 as well as for the study of
small-scale particle clustering.59

IV. EXPERIMENTAL RESULTS

In this section, we discuss the obtained experimental results in a
forced convective turbulence with a one oscillating grid in the air flow.
There are two sources of turbulence in a forced convective turbulence
with a heated bottom wall of the chamber and the cooling upper wall.
In particular, the turbulent kinetic energy is increased by buoyancy
and the grid oscillations. In our experiments, the frequency f of the
grid oscillations is f¼ 10.5Hz, which yields the maximum turbulence
intensity in our experimental setup.

Note that early laboratory experiments,60–66 which have been
conducted in isothermal turbulence with a one oscillating grid in a

water flow, have demonstrated that the r.m.s. velocity behaves asffiffiffiffiffiffiffiffiffiffi
hu02i

p
/ f Y�1, while the integral turbulence length scale increases

linearly with the distance Y from a grid. Therefore, the fluid Reynolds
numbers and the turbulent diffusion coefficient of particles are nearly
independent of the distance Y from the grid. Our previous35 and pre-
sent studies in turbulence with one oscillating grid confirm these
findings.

In the present study, we conduct experiments in a forced convec-
tive turbulence with one oscillating grid for the temperature difference
DT ¼ 50 K between the bottom and top walls of the chamber. Using
the PIV system, we measure the velocity field in the chamber for an
isothermal and a forced convective turbulence, which allows us to
determine various turbulence characteristics. In particular, we obtain
the spatial distributions of the mean velocity in convective turbulence
with large-scale circulations, the vertical and horizontal profiles of the
r.m.s. turbulent velocity, and the integral turbulence length scales.
Since the oscillating grid is located near by the left wall of the chamber,
and the amplitude of the grid oscillations is 6 cm, we measure the
velocity field in the horizontal direction starting 20 cm away from the
left wall of the chamber. We compare these results with those obtained
in our recent experiments35 with stably stratified turbulence produced
by one oscillating grid in the air flow.

Figure 2 with the mean velocity patterns �U in the main fluid flow
for isothermal, stably stratified turbulence, and convective turbulence
demonstrates that the temperature stratification and additional forcing
strongly affect the mean velocity distributions. Contrary to our previ-
ous experiments with a forced convection with two oscillating grids,36

the large-scale circulations in the convective turbulence with one oscil-
lating grid are not destroyed at a frequency of 10.5Hz of the grid oscil-
lations, but their structure is strongly deformed (see the bottom panel
in Fig. 2).

Similar effects of the temperature stratification and additional
forcing are also seen in the horizontal profiles of velocity fluctuations

(see Fig. 3, where we plot the horizontal uðrmsÞ
y and vertical uðrmsÞ

z com-
ponents of turbulent velocities as the functions of Y averaged over the
vertical coordinate Z for isothermal turbulence, stably stratified turbu-
lence, and convective turbulence). The turbulent velocities for convec-
tive turbulence are larger than for isothermal turbulence, while the
turbulent velocities for the stably stratified turbulence are smaller than
those for isothermal and convective turbulence. This is because the
buoyancy increases the turbulent kinetic energy for convective turbu-
lence and decreases it for stably stratified turbulence.

The oscillating grid strongly affects convective turbulence, as can
be seen in Figs. 4 and 5, where we show the distributions of the turbu-

lent velocity uðrmsÞ
tot ¼ ½hu2yi þ hu2zi�

1=2 and the anisotropy parameter

uðrmsÞ
z =uðrmsÞ

y for the turbulent velocity components for isothermal, sta-
bly stratified, and convective turbulence. Figure 5 demonstrates that
the anisotropy for isothermal and stably stratified turbulence is more
stronger than that for convective turbulence. This is not surprising
since the large-scale circulation enhances the mixing in the convective
turbulence, and it results in a decrease in the turbulence anisotropy

parameter uðrmsÞ
z =uðrmsÞ

y . The same tendencies are also seen for the
horizontal ‘y and vertical ‘z integral turbulent length scales shown in
Fig. 6, as well as for the distributions of the anisotropy parameter
‘z=‘y of the integral turbulent length scales (see Fig. 7).
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To investigate the phenomenon of turbulent thermal diffusion in
a forced convective turbulence, we measure the spatial distributions of
the mean temperature and the mean particle number density. When
small solid particles are injected into the chamber, their initial spatial
distributions are nearly homogeneous. Due to the effective pumping
velocity caused by a combined effect of temperature-stratified turbu-
lence and particle inertia (described in terms of turbulent thermal dif-
fusion), the final spatial distributions of the mean particle number
density is expected to be strongly inhomogeneous.

Sedimentation of particles can also result in the formation of inho-
mogeneous particle distributions near the bottom wall of the chamber.
However, this effect in our experiments is very weak because the terminal

fall velocity for the micrometer-size particles is about 10�2 cm/s, while
the turbulent velocity in the experiments with the forced convective tur-
bulence is much larger than the particle terminal fall velocity (it is about
18 cm/s near the grid and is more than 12 cm/s far from the grid). On
the other hand, our estimates for the effective pumping velocity due to
turbulent thermal diffusion show that it is more than 3–5 cm/s near the
grid and is about 0.5 cm/s far from the grid. Therefore, the turbulent
velocity and the effective pumping velocity in our experiments are much
larger than the terminal fall velocity for micrometer-size particles. Note
also that the Stokes time for the micrometer-size particles is about 1:5	
10�6 s, while the Kolmogorov time in the forced convective turbulence
varies from 7 	10�3 s near the grid up to 4	 10�3 s far from the grid.

Our experiments with a forced convective turbulence with large-
scale circulations show that the mean temperature is strongly nonuni-
form. In particular, as follows from Fig. 8 [where we plot vertical pro-
files of the relative normalized mean temperature ð�T � �T 0Þ=�T 0

averaged over different horizontal regions], the normalized mean tem-
perature near the grid increases with the height Z, reaches the maxi-
mum, and decreases nearly linearly with the height Z (blue line),
where �T 0 is the reference mean temperature. Far from the grid, the

FIG. 3. Horizontal uðrmsÞy (a—upper panel) and vertical uðrmsÞz (b—lower panel) com-
ponents of the turbulent velocity vs normalized coordinate Y averaged over the ver-
tical coordinate Z for isothermal turbulence (red), stably stratified turbulence (black),
and forced convective turbulence (blue). The velocity is measured in cm/s, and Y is
normalized by Lz¼ 26 cm.

FIG. 2. Mean velocity field in the core flow for (a) isothermal turbulence; (b) stably
stratified turbulence; and (c) forced convective turbulence. The velocity is measured
in m/s, and coordinates Y and Z are normalized by Lz¼ 26 cm.
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behavior of the mean temperature is even more complicated, e.g., the
normalized mean temperature ð�T � �T 0Þ=�T 0 decreases with the height
Z, reaches the minimum, and increases with the height Z reaching the
maximum, and finally it decreases nearly linearly with the height Z
(see red line in Fig. 8).

To demonstrate the phenomenon of turbulent thermal diffusion
in the forced convective turbulence, we show in Figs. 9 and 10 the
vertical profiles of the relative normalized mean temperature

ð�T � �T 0Þ=�T 0 (black crosses) and the normalized mean particle num-
ber density �nðY ;ZÞ=�n0 (blue circles) near the grid (see Fig. 9) and far
from the grid (see Fig. 10). Due to the phenomenon of turbulent ther-
mal diffusion, the behavior of the normalized mean particle number
density is opposite to the normalized mean temperature, i.e., the mean
particle number density increases in the regions where the mean tem-
perature decreases, and the mean particle number density reaches the
maximum at the minimum of the mean temperature, and vise versa.

FIG. 5. Distributions of the anisotropy parameter uðrmsÞz =uðrmsÞy of the turbulent
velocity for (a) isothermal turbulence; (b) stably stratified turbulence; and (c) forced
convective turbulence. The velocity is measured in cm/s, and coordinates are nor-
malized by Lz¼ 26 cm.

FIG. 4. Distributions of the turbulent velocity uðrmsÞtot ¼ ½hu2yi þ hu2zi�
1=2 for (a) iso-

thermal turbulence; (b) stably stratified turbulence; and (c) forced convective turbu-
lence. The velocity is measured in cm/s, and coordinates are normalized by
Lz¼ 26 cm.
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Therefore, Figs. 9 and 10 clearly demonstrate that particles are accu-
mulated in the vicinity of the minimum of the mean temperature even
in very complicated temperature field.

In the stably stratified turbulence, the behavior of the mean temper-
ature and the mean particle number density is more simple than for the
forced convective turbulence.35 In particular, the mean temperature
increases linearly with the height Z in the flow for the stably stratified tur-
bulence, and the mean particle number density decreases linearly with
the height Z due to the phenomenon of turbulent thermal diffusion.

To determine the effective turbulent thermal diffusion coefficient a
for particles in the forced inhomogeneous and anisotropic convective
turbulence, we show in Fig. 11 the normalized mean particle number
density �n=�n0 as a function of the relative normalized mean temperature
ð�T � �T 0Þ=�T 0, where the slope of this dependence yields the coefficient
a. In particular, we use a solution (26) for Eq. (25) for the mean particle
number density �n obtained in a steady-state, where we assume that
DT 
 D and neglect small terminal fall velocity. Thus, we arrive at the
following expression �n=�n0 ¼ 1� a ð�T � �T 0Þ=�T 0, which shows that
the effective turbulent thermal diffusion coefficient a for particles in the

forced convective turbulence is a ¼ 4:86 for particles accumulated in
the regions Y ¼ 4–15 cm and a ¼ 1:74 for particles accumulated in
the regions Y ¼ 16–24 cm (see Fig. 11). Now, we take into account that
turbulence far from the grid is less stronger than that near the grid. This
explains why the effective turbulent thermal diffusion coefficient a near
the grid is larger than that far from the grid. Therefore, this experimental
study has demonstrated the effect of turbulent thermal diffusion in an
inhomogeneous and anisotropic forced convective turbulence.

FIG. 7. Distributions of the anisotropy parameter ‘z=‘y of the integral turbulent
length scales for (a) isothermal turbulence; (b) stably stratified turbulence; and (c)
forced convective turbulence. The velocity is measured in cm/s, and coordinates
are normalized by Lz¼ 26 cm.

FIG. 6. Horizontal ‘y (a—upper panel) and vertical ‘z (b—lower panel) integral tur-
bulent length scales vs normalized coordinate Y averaged over Z for isothermal tur-
bulence (red); stably stratified turbulence (black); and forced convective turbulence
(blue). The velocity is measured in cm/s, and Y is normalized by Lz¼ 26 cm.
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Note that since the Stokes numbers for the micrometer-size par-
ticles in our experiments with an inhomogeneous forced convective
turbulence are very small [e.g., St varies in the range ð0:2–0:4Þ 	 10�3

depending on the distance from the grid], the turbophoresis effect is
negligibly small.

V. CONCLUSIONS

In the present study, the effect of the turbulent thermal diffusion
of small solid particles, resulting in the formation of large-scale inho-
mogeneities in particle spatial distributions in a temperature-stratified
turbulence, has been investigated experimentally for micrometer-size
particles in an inhomogeneous convective turbulence forced by one
oscillating grid in the air flow. The obtained experimental results have

been compared with the results of our previous experiments35,36 con-
ducted in an inhomogeneous and anisotropic stably stratified turbu-
lence35 produced by a one oscillating grid and in a forced convection
with two oscillating grids in the air flow.36 We have found that con-
trary to our previous experiments with a forced convection with two
oscillating grids,36 the large-scale circulations in the convective turbu-
lence with a one oscillating grid are not destroyed at a maximum fre-
quency of 10.5Hz of the grid oscillations, but their structure is
deformed (see Fig. 2). The measured vertical turbulent velocities for
convective turbulence are stronger than for both, isothermal turbu-
lence and stably stratified turbulence produced by a one oscillating
grid, since the buoyancy increases the turbulent kinetic energy for con-
vective turbulence and decreases it for stably stratified turbulence.

FIG. 10. Vertical profiles of the relative normalized mean temperature ð�T � �T 0Þ=�T 0
(black, crosses) and the normalized mean particle number density �nðY ; ZÞ=�n0
(blue, circles) in the forced convective turbulence averaged over the horizontal
region Y ¼ 17–24 cm (far from the grid). The coordinate Z is normalized by
Lz¼ 26 cm.

FIG. 11. The normalized mean particle number density �n=�n0 vs the relative normal-
ized mean temperature ð�T � �T 0Þ=�T 0 averaged over different horizontal regions:
Y ¼ 4–15 cm (blue, circles) with a ¼ 4:86 and Y ¼ 16–24 cm (red, crosses) with
a ¼ 1:74 in the forced convective turbulence.

FIG. 8. Vertical profiles of the relative normalized mean temperature ð�T � �T 0Þ=�T 0
in the forced convective turbulence averaged over different horizontal regions:
Y ¼ 4–10 cm (blue, circles); Y ¼ 11–16 cm (black, diamond); Y ¼ 17–25 cm
(green, crosses); and Y ¼ 24:5–28:5 cm (red, slanting crosses), where Z is nor-
malized by Lz¼ 26 cm.

FIG. 9. Vertical profiles of the relative normalized mean temperature ð�T � �T 0Þ=�T 0
(black, crosses) and the normalized mean particle number density �nðY ; ZÞ=�n0 (blue,
circles) in the forced convective turbulence averaged over the horizontal region Y
¼ 4–15 cm (near the grid). The coordinate Z is normalized by Lz¼ 26 cm.
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These effects are also observed in the measured vertical integral turbu-
lent length scales obtained from the two-point correlation functions
for velocity fluctuations.

To study the phenomenon of turbulent thermal diffusion, we
measure spatial distributions of the mean temperature andmean parti-
cle number density in many locations. We have found that in the con-
vective turbulence near the grid, the mean temperature increases with
the height reaching the maximum and then it decreases nearly linearly
with the increase in the height. On the other hand, far from the grid,
the behavior of the mean temperature in the convective turbulence is
more complicated. The mean fluid temperature decreases with the
height reaching the minimum, and for larger heights, it increases with
the height reaching the maximum, and finally it decreases nearly line-
arly with the height (see Fig. 8).

The behavior of the mean particle number density is opposite to
the mean temperature. In particular, the mean particle number density
increases in the regions where the mean temperature decreases, reach-
ing the maximum nearby the minimum of the mean temperature (see
Figs. 9 and 10). This implies that our experiments in convective and
stably stratified turbulence with micrometer-size solid particles have
clearly demonstrated the existence of the phenomenon of turbulent
thermal diffusion, which causes particle accumulation in the vicinity
of the minimum of the mean temperature even in a complicated verti-
cal profile of the mean fluid temperature. We have determined the
effective turbulent thermal diffusion coefficient using the vertical pro-
files of the mean temperature and the mean particle number density.
We have also demonstrated that the obtained experimental results are
in agreement with the theoretical predictions.
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APPENDIX: PARTICLE TURBULENT FLUX FOR SMALL
P�ECLET NUMBERS

Here, we derive the expression for the particle turbulent flux
for small P�eclet numbers. In this case, the nonlinear terms in Eq.
(5) for the particle number density fluctuations are much smaller

than the Brownian diffusion term, so we can apply the quasi-linear
approach. In the framework of this approach, we neglect the non-
linear terms but keep the molecular diffusion term in Eq. (5). We
rewrite Eq. (5) in a Fourier space, i.e., we use the Fourier transform
in the k–x space as follows:

n0ðt; xÞ ¼
ð ð

n0ðx; kÞ exp ði k � x þ ix tÞ dk dx; (A1)

uiðt; xÞ ¼
ð ð

uiðx; kÞ exp ði k � x þ ix tÞ dk dx: (A2)

Substituting Eqs. (A1) and (A2) into the linearized equation (5), we
obtainð ð

Dk2 þ ixð Þ n0ðx; kÞ þ rj�n þ i kj �n
� �

ujðx; kÞ
h i
	 exp ði k � x þ ix tÞ dk dx ¼ 0: (A3)

Therefore, the solution of the linearized equation (5) in the Fourier
space is given by

n0ðx; kÞ ¼ �GDðx; kÞ rj�n þ i kj �n
� �

ujðx; kÞ; (A4)

where the function GDðx; kÞ ¼ ðDk2 þ ixÞ�1.
Note that Eqs. (A3) and (A4) are not valid in a general case.

Nevertheless, we use these equations since

• we take into account in the turbulent particle flux only the effects
that are linear in rj�n and neglect higher-order spatial derivatives
of the mean particle number density and

• we do not study here the compressibility effects of a turbulent
velocity field in the evolution of the mean particle number den-
sity (i.e., we do not consider the finite Mach numbers effects).

In this case, we can use Eq. (A4) to determine the turbulent
particle flux for small P�eclet numbers.7

We determine the turbulent particle flux using the multi-scale
approach,39 i.e.,

hn0ðt;xÞujðt;xÞi¼ lim
t1!t2;x!y

hn0ðt1;xÞujðt2;yÞi

¼ lim
s!0;r!0

ð
dk
ð
dxhn0ðx;kÞujð�x;�kÞi

	exp iðk � rþxsÞ½ �

¼
ð
dk
ð
dxhn0ðx;kÞujð�x;�kÞi; (A5)

where r ¼ x � y; s ¼ t1 � t2, and we consider a homogeneous and
stationary (in statistical sense) turbulence. The latter implies that
the correlation function hn0ðx; kÞ ujð�x;�kÞi is independent of
the large-scale variables. We also assume that there exists a separa-
tion of scales, i.e., the maximum scale of random motions ‘0 is
much smaller than the characteristic scales of inhomogeneities of
the mean particle number density.

Substituting Eq. (A4) into Eq. (A5), we determine the particle
turbulent flux huin0i as

huin0i ¼ �
ð
dk
ð
dxhuiðx; kÞujð�x;�kÞiG�D rj�n�i kj�n

� �
:

(A6)
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We use the simple model for the second moments,
huiðx; kÞ ujð�x;�kÞi, of an isotropic and homogeneous turbulence
in the anelastic approximation in a Fourier space as follows:

huiðx;kÞujð�x;�kÞi¼ hu
2iEðkÞUðxÞ

8pk2

�
dij�kijþ

i
k2

ki kj�kj ki
� ��

;

(A7)

where the spectrum function E(k) for the turbulent kinetic energy is
EðkÞ ¼ ðq� 1Þ k�10 ðk=k0Þ

�q with the exponent q varying in the
interval 1 < q < 3, the interval in the wavenumbers is k0 � k � kd ,
and kd 
 k0. The frequency function UðxÞ is chosen in the form of
the Lorentz profile: UðxÞ ¼ ½ps0 ðx2 þ s�20 Þ�

�1, where s0 is the cor-
relation time of a random velocity field. This model for the fre-
quency function corresponds to the following non-instantaneous
correlation function: huiðtÞujðt þ sÞi / exp ð�s=s0Þ. For small
P�eclet numbers, s0 
 ðDk2Þ�1. Equation (A7) is derived using
symmetry arguments.

Substituting Eq. (A7) into Eq. (A6), we determine the turbu-
lent flux of particles hui n0i as

hui n0i ¼ �
hu2i
8p

ðk�
k0

EðkÞ dk
ð2p
0

du
ðp

0
sin# d#

	 dij � kij þ
i
k2

ki kj � kj ki
� �� �

rj�n � i kj �n
� �

	
ð
G�DUðxÞ dx ¼ � hu

2i
3DðnÞ

ri�n þ ki �nð Þ
ðk�
k0

EðkÞ
k2

dk:

(A8)

For the integration over x, we use the following integral:ð1
�1

dx
ð6ixþ Dk2Þ ðx2 þ s�20 Þ

¼ p s0
s�10 þ Dk2

� p s0
Dk2

; (A9)

which is determined in the limit when the correlation time
s0 
 ðDk2Þ�1. For the integration over k, we use the following
integral: ðkd

k0

EðkÞ
k2

dk ¼ q� 1
qþ 1

‘20: (A10)

After integration over x and in k-space in Eqs. (A8), we obtain the
formula for the turbulent particle flux hn0 ui as follows:

hn0 ui ¼ Veff �n � DT $�n; (A11)

where

DT ¼
q� 1

3ðqþ 1Þ s0 hu2i Pe; (A12)

Veff ¼ �DTk ¼ DT
$�q
�q
: (A13)
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