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ABSTRACT

The energy- and flux-budget (EFB) theory developed previously for atmospheric stably stratified turbulence is extended to the surface layer
in atmospheric convective turbulence. This theory is based on budget equations for turbulent energies and fluxes in the Boussinesq approxi-
mation. In the lower part of the surface layer in the atmospheric convective boundary layer, the rate of turbulence production of the turbu-
lent kinetic energy (TKE) caused by the surface shear is much larger than that caused by the buoyancy, which results in three-dimensional
turbulence of very complex nature. In the upper part of the surface layer, the rate of turbulence production of TKE due to the shear is much
smaller than that caused by the buoyancy, which causes unusual strongly anisotropic buoyancy-driven turbulence. Considering the applica-
tions of the obtained results to the atmospheric convective boundary-layer turbulence, the theoretical relationships potentially useful in
modeling applications have been derived. The developed EFB theory allows us to obtain a smooth transition between a stably stratified turbu-
lence to a convective turbulence. The EFB theory for the surface layer in a convective turbulence provides an analytical expression for the
entire surface layer including the transition range between the lower and upper parts of the surface layer, and it allows us to determine the
vertical profiles for all turbulent characteristics, including TKE, the intensity of turbulent potential temperature fluctuations, the vertical tur-
bulent fluxes of momentum and buoyancy (proportional to potential temperature), the integral turbulence scale, the turbulence anisotropy,
the turbulent Prandtl number, and the flux Richardson number.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0123401

I. INTRODUCTION

Despite turbulent transport having been studied theoretically, in
laboratory and field experiments and numerical simulations during a
century,1–8 some crucial questions remain. This is particularly true in
applications such as geophysics and astrophysics, where the governing
parameter values are too large to be modeled either experimentally or
numerically. Classical Kolmogorov’s theory has been formulated for a
neutrally stratified homogeneous and isotropic turbulence.9–12 This
turbulence is different from convective and stably stratified turbulence.

Various aspects of the atmospheric turbulent convection have
been studied theoretically,13–30 numerically,25,29,31,32 and in the field
experiments,21,25,33–36 see also books and reviews,1,2,19,37–42 and refer-
ences therein. The atmospheric turbulent convective boundary layer
(CBL) consists of three basic parts:

• Surface layer strongly unstably stratified and dominated by
small-scale turbulence of very complex nature including usual
3D turbulence, generated by mean-flow surface shear and struc-
tural shears (the lower part of the surface layer), and unusual
strongly anisotropic buoyancy-driven turbulence (the upper part
of the surface layer);

• CBL core dominated by the structural energy, momentum, and
mass transport, with only minor contribution from usual 3D tur-
bulence generated by local structural shears on the background
of almost zero vertical gradient of potential temperature (or
buoyancy);

• turbulent entrainment layer at the CBL upper boundary, charac-
terized by essentially stable stratification with negative (down-
ward) turbulent flux of potential temperature (or buoyancy).
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The classical theory of surface layer in convective turbulence is
based on seminal papers by Prandtl,13 Obukhov,14,15 and
Zilitinkevich.17–19 In particular, according to this theory based on the
dimensional analysis, anisotropic buoyancy-driven turbulence in the
upper part of the surface layer is determined by the following relations

for the vertical profiles of velocity fluctuations,
ffiffiffiffiffiffiffiffiffi
hu2i

p
=u� / ðz=jLjÞ1=3,

potential temperature fluctuations,
ffiffiffiffiffiffiffiffi
hh2i

q
=h� / ðz=jLjÞ�1=3, ratio of

the horizontal to vertical components of the turbulent flux of potential

temperature, Fx=Fz / ðz=jLjÞ�2=3, vertical gradients of the mean

potential temperature, rz
�H / ðh�=jLjÞðz=jLjÞ�4=3, and mean wind

velocity rz �U / ðu�=jLjÞðz=jLjÞ�4=3. Here, u� is the friction velocity,
h� ¼ Fz=u� is the characteristic level of potential temperature fluctua-
tions, jLj ¼ u3�=ðb FzÞ is the Obukhov length scale, and b is the buoy-
ancy parameter (see Sec. II for definitions).

The goal of this paper is to develop the energy- and flux-budget
(EFB) turbulence closure theory for the surface layer in convective tur-
bulence using budget equations for turbulent energies and fluxes. The
EFB theory has been previously developed for stably stratified dry
atmospheric flows43–48 and for passive scalar transport in stratified
turbulence.49 The EFB theory is based on the budget equations for the
densities of turbulent kinetic and potential energies, and turbulent
fluxes of momentum and heat.

In agreement with wide experimental evidence,50–58 the EFB the-
ory for the stably stratified turbulence43–48 demonstrates that strong
turbulence is maintained by large-scale shear for any stratification, and
the “critical Richardson number,” treated many years as a threshold
between the turbulent and laminar regimes, actually separates two tur-
bulent regimes: the strong turbulence typical of atmospheric boundary
layers and the weak three-dimensional turbulence typical of the free
atmosphere, and characterized by strong decrease in heat transfer in
comparison with momentum transfer.

The physical mechanism of self-existence of a stably stratified
turbulence is as follows.47,49 The increase in the vertical gradient of the
mean potential temperature (i.e., the increase in the buoyancy) causes
a conversion of turbulent kinetic energy into turbulent potential
energy. On the other hand, the negative down-gradient vertical turbu-
lent heat flux is decreased by the counteracting positive non-gradient
heat flux that is increased with the increase in the turbulent potential
energy. The latter is the mechanism of the self-control feedback result-
ing in a decrease in the buoyancy. Due to this feedback, the stably
stratified turbulence is maintained up to strongly supercritical stratifi-
cations. The EFB theory has been verified against scarce data from the
atmospheric experiments, direct numerical simulations (DNS), large-
eddy simulations (LES), and laboratory experiments relevant to the
steady-state turbulence regime.

The EFB theory is a sort of the turbulence closure. Previously,
various closure models have been adopted in turbulence and turbulent
transport.1,2,6–8,59–62 Some of the turbulent closure models for stably
stratified atmospheric turbulence also do not imply a critical
Richardson number,58,63–72 see also Ref. 73.

In the present paper, we have extended the energy- and flux-
budget (EFB) theory developed previously for an atmospheric stably
stratified turbulence to the surface layer in an atmospheric convective
turbulence. This theory allows us to obtain a smooth transition
between a stably stratified turbulence to a convective turbulence.

The EFB theory for the surface layer in a convective turbulence (that is
based on the budget equations for the turbulent energies and turbulent
fluxes of momentum and heat) provides an analytical expression for
the entire surface layer including the transition range between the
lower and upper parts of the surface layer.

This paper is organized as follows: In Sec. II, we formulate gov-
erning equations for the energy- and flux-budget turbulence-closure
theory for convective and stably stratified turbulence. In this section,
we also discuss assumptions used in the EFB theory. In Sec. III, we
develop the EFB theory for surface layers in stratified turbulence con-
sidering the steady-state and homogeneous regime of turbulence. In
Sec. IV, we apply the EFB theory to surface layers in turbulent convec-
tion. Finally, conclusions are drawn in Sec. V. In Appendix A, we
derive equation for the turbulent Prandtl number, and in Appendix B,
we derive equations for the vertical and horizontal shares of TKE
(anisotropy parameters). In Appendix C, we discuss the EFB theory
for the atmospheric stably stratified boundary-layer turbulence mainly
developed in Refs. 47 and 49.

II. ENERGY- AND FLUX-BUDGET EQUATIONS
AND BASIC ASSUMPTIONS

We consider plain-parallel, unstably, and stably stratified dry-air
flow and employ the budget equations underlying turbulence-closure
theory in the Boussinesq approximation. We assume that vertical
component of the mean-wind velocity is negligibly small compared to
horizontal component, and horizontal gradients of all properties of the
mean flow (the mean velocity and the mean potential temperature)
are negligibly small compared to vertical gradients.

In this section, we outline the energy- and flux-budget (EFB) clo-
sure theory based on the budget equations for the density of turbulent
kinetic energy, the intensity of potential temperature fluctuations, and
turbulent fluxes of momentum and heat. In our analysis, we use bud-
get equations for the one-point second moments to develop a mean-
field theory. We do not study small-scale structure of turbulence like
intermittency described by high-order moments for turbulent quanti-
ties. We are interested by large-scale long-term dynamics and consider
effects in the spatial scales, which are much larger than the integral
scale of turbulence, and in timescales, which are much longer than the
turbulent timescales.

We start with the basic equations of the EFB theory. The budget
equation for the density of turbulent kinetic energy (TKE),
EK ¼ hu2i=2, reads

DEK
Dt
þrz UK ¼ �sizrz �U i þ b Fz � eK; (1)

where the first term,�sizrz �U i, in the right-hand side of Eq. (1) is the
rate of production of TKE by the vertical gradient of horizontal mean
velocity �U ðzÞ, D=Dt ¼ @=@t þ �U � r is the convective derivative,
siz ¼ hui uzi with i ¼ x; y are the off-diagonal components of the
Reynolds stress describing the vertical turbulent flux of momentum,
and the angular brackets imply ensemble averaging. The second term
b Fz in Eq. (1) describes buoyancy, b ¼ g=T� is the buoyancy parame-
ter, g is the gravity acceleration, Fz ¼ huz hi is the vertical component
of the turbulent flux of potential temperature, H ¼ TðP�=PÞ1�c�1 is
the potential temperature, T is the fluid temperature with the reference
value T�, P is the fluid pressure with the reference value P�, and
c ¼ cp=cv is the specific heat ratio.
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The potential temperature H ¼ �H þ h is characterized by the
mean potential temperature �HðzÞ and fluctuations h; the fluid velocity
�U þ u is characterized by the mean fluid velocity, which generally
includes the mean-wind velocity �U ðwÞðzÞ ¼ ð�Ux; �Uy; 0Þ; and the local
three-dimensional mean velocity �U ðsÞ related to the large-scale semi-
organized coherent structures in a convective turbulence and small-
scale fluctuations u ¼ ðux; uy; uzÞ.

The last term, eK ¼ � hðrjuiÞ2i, in the right-hand side of Eq. (1)
is the dissipation rate of the density of the turbulent kinetic energy,
where � is the kinematic viscosity of fluid. The term UK ¼ q�10 huz pi
þ ðhuz u2i � �rzhu2iÞ=2 determines the flux of EK, where the fluid
pressure P ¼ �P þ p is characterized by the mean pressure �P and fluc-
tuations p, and q0 is the fluid density.

The budget equation for the intensity of potential temperature
fluctuations Eh ¼ hh2i=2 is

DEh

Dt
þrz Uh ¼ �Fzrz

�H � eh; (2)

where Uh ¼ ðhuz h2i � vrzhh2iÞ=2 describes the flux of Eh and
eh ¼ v hðrhÞ2i is the dissipation rate of the intensity of potential tem-
perature fluctuations Eh, and v is the molecular temperature
diffusivity.

The budget equation for the turbulent flux Fi ¼ hui hi of poten-
tial temperature is given by

@Fi
@t
þrz UðFÞi ¼ �sizrz

�H þ 2b Eh di3 �
1
q0
hhripi

� Fzrz �U i � eðFÞi ; (3)

where dij is the Kronecker unit tensor, UðFÞi ¼ hui uz hi
�� hh ðrzuiÞi � v hui ðrzhÞi determines the flux of Fi, and eðFÞi
¼ ð� þ vÞ hðrjuiÞ ðrjhÞi is the dissipation rate of the turbulent heat
flux. The first term, �sizrz

�H, in the right-hand side of Eq. (3) con-
tributes to the traditional turbulent flux of potential temperature,
which describes the classical gradient mechanism of the turbulent heat
transfer. The second and third terms in the right-hand side of Eq. (3)
describe a non-gradient contribution to the turbulent flux of potential
temperature. The budget equation for the vertical turbulent flux
Fz ¼ huz hi of potential temperature is given by

@Fz
@t
þrz UðFÞz ¼ �2Ezrz

�H þ 2b Eh �
1
q0
hhrzpi � eðFÞz ; (4)

where Ez ¼ hu2zi=2 is the density of the vertical turbulent kinetic
energy.

The budget equation for the off-diagonal components of the
Reynolds stress siz ¼ hui uzi with i ¼ x; y reads

Dsiz
Dt
þrz UðsÞi ¼ �2Ezrz �U i þ b Fi þ Qiz � eðsÞiz ; (5)

where UðsÞi ¼ hui u2zi þ q�10 hp uii � � ½hui ðrzuzÞi þ huz ðrzuiÞi�
describes the flux of siz, the tensor Qij ¼ q�10 ðhpriuji þ hprjuiiÞ,
and eðsÞiz ¼ 2� hðrjuiÞ ðrjuzÞi is the molecular-viscosity dissipation
rate.

The budget equations for the horizontal and vertical turbulent
kinetic energies Ea ¼ hu2ai=2 can be written as follows:

DEa

Dt
þrz Ua ¼ �sazrz �U a þ da3 b Fz þ

1
2
Qaa � ea; (6)

where a ¼ x; y; z, the term ea ¼ � hðrjuaÞ2 i is the dissipation rate of
Ea, and Ua determines the flux of Ea. Here, Uz ¼ q�10 huz pi þ ðhu3zi
��rzhu2ziÞ=2 and Ux;y ¼ ðhuz u2x;yi � �rzhu2x;yiÞ=2. The terms
Qaa ¼ 2q�10 ðhprauai are the diagonal terms of the tensor Qij. In Eq.
(6), we do not apply the summation convention for the double Greek
indices. Different aspects related to budget equations (1)–(6) have
been discussed in a number of publications.38,43–49,65,73,74

The energy- and flux-budget turbulence closure theory assumes
the following. The characteristic times of variations of the densities of
the turbulent kinetic energies EK and Ea, the intensity of potential tem-
perature fluctuations Eh, the turbulent flux Fi of potential temperature,
and the turbulent flux siz of momentum (i.e., the off-diagonal compo-
nents of the Reynolds stress) are much larger than the turbulent time-
scale. This allows us to obtain steady-state solutions of the budget
equations (1)–(6).

Dissipation rates of the turbulent kinetic energies EK and Ea, and
the intensity of potential temperature fluctuations Eh and Fi are
expressed using the Kolmogorov hypothesis, that is, eK ¼ EK=tT;

eh ¼ Eh=ðCp tTÞ, and eðFÞi ¼ Fi=ðCF tTÞ, where tT ¼ ‘z=E1=2
z is the tur-

bulent dissipation timescale, ‘z is the vertical integral scale, and Cp

and CF are dimensionless empirical constants.1,2,8,9,11 Note also that
the dissipation rate of the TKE components Ea (where a ¼ x; y; z) is
ea ¼ EK=3tT. This is because the main contribution to the rate of dissi-
pation of the TKE components is from the Kolmogorov viscous scale
where turbulence is nearly isotropic, so that ex ¼ ey ¼ ez ¼ EK=3tT.

The term eðsÞi ¼ eðsÞiz � b Fi � Qiz in Eq. (5) is the effective dissi-
pation rate of the off-diagonal components of the Reynolds stress
siz,

43,47,49 where eðsÞiz is the molecular-viscosity dissipation rate of siz
that is small because the smallest eddies associated with viscous dissi-
pation are nearly isotropic.75 In the framework of EFB theory, the role
of the dissipation rate of siz is assumed to be played by the combina-
tion of terms �b Fi � Qiz , and it is assumed that eðsÞi ¼ siz=ðCs tTÞ,
where Cs is the effective-dissipation timescale empirical constant for
stably stratified turbulence,43,47,49 while for a convective turbulence Cs

is a function of the flux Richardson number (see Sec. V).
The effective dissipation rate assumption has been justified by

large-eddy simulations (see Fig. 1 in Ref. 47), where LES data in Refs.
76 and 77 have been used for the two types of atmospheric boundary
layer: “nocturnal stable” (with essentially negative buoyancy flux at the
surface and neutral stratification in the free flow) and “conventionally
neutral” (with a negligible buoyancy flux at the surface and essentially
stably stratified turbulence in the free flow). The effective dissipation
rate assumption was based on our prior analysis of the Reynolds stress
equation in the k space using the spectral s approach.22,23 Remarkably,
the effective dissipation assumption directly yields the familiar down-
gradient formulation of the vertical turbulent flux of momentum [see
Eq. (7) below] that is well-known result, which is valid for any turbu-
lence with a non-uniformmean velocity field.

Note that the diagonal and off-diagonal components of the
Reynolds stress have different physical meaning. The diagonal compo-
nents of the Reynolds stress describe turbulent kinetic energy compo-
nents. They have the Kolmogorov spectrum / k�5=3 that is related to
the direct energy cascade. The latter is the main reason for turbulent
viscosity and turbulent diffusivity. The off-diagonal components of the
Reynolds stress are related to the tangling mechanism of the
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generation of anisotropic velocity fluctuations. They have different
spectrum / k�7=3 (see Refs. 78–81). The off-diagonal components of
the Reynolds stress are determined by spatial derivatives of the mean
velocity field. The diagonal components of the Reynolds stress are
much larger than the off-diagonal components.

We assume that the term q�10 hhrzpi in Eq. (4) for the vertical
turbulent flux of potential temperature is parameterized so that
b hh2i � q�10 hhrzpi ¼ 2Ch b Eh, with the positive dimensionless
empirical constant Ch, which is less than 1. This assumption has been
justified by large-eddy simulations (see Fig. 2 in Ref. 47), where LES
data by Refs. 76 and 77 have been used for the two types of atmo-
spheric boundary layer: nocturnal stable and conventionally neutral.
In addition, this assumption has been justified analytically (see
Appendix A in Ref. 43).

III. THE EFB THEORY FOR SURFACE LAYERS
IN STRATIFIED TURBULENCE

In this section, we develop the EFB theory for surface layers in
convective and stably stratified turbulence. We use the down-gradient
formulation of the vertical turbulent flux of momentum, which follows
from Eq. (5); that is, the turbulent fluxes of the momentum are

siz ¼ �KMrz �U i; i ¼ x; y; (7)

KM ¼ 2Cs tT Ez ¼ 2Cs ‘z E
1=2
z ; (8)

where KM is the turbulent (eddy) viscosity, tT ¼ ‘z=E1=2
z is the turbulent

dissipation timescale, ‘z is the vertical integral scale, and Ez is the vertical
turbulent kinetic energy. The production rate, PK ¼ �sizrz �U i, of the
turbulent kinetic energy by the vertical gradient of horizontal mean
velocity [see Eq. (1)] can be rewritten by means of Eq. (7) as
PK ¼ �ðsxzrz �Ux þ syzrz �UyÞ ¼ KM S2, where S ¼ ½ðrz �UxÞ2

þðrz �UyÞ2�1=2 is the mean velocity shear caused by the horizontal
mean wind velocity.

The steady-state version of the budget equations for the density
of turbulent kinetic energy EK ¼ hu2i=2 reads

rz UK ¼ KMS
2 þ b Fz �

EK
tT
; (9)

where the dissipation rate eK of the turbulent kinetic energy is
expressed using the Kolmogorov hypothesis, eK ¼ EK=tT. We stress
that all results obtained in the present study are mainly valid for
temperature-stratified turbulence (convective turbulence or stably
stratified turbulence), where fluctuations of the vertical velocity uz
depend on the buoyancy, b Fz . Since for temperature-stratified turbu-
lence, q�10 huz pi and huz u2i do depend on the buoyancy, the third-
order moments UK should depend on buoyancy. We assume that the
vertical gradient rz UK of the flux of EK is determined by the buoy-
ancy, that is, rzUK ¼ �CU b Fz , where CU is the dimensionless
empirical constant. The justification of this assumption for a convec-
tive turbulence has been performed in Ref. 30, where experimental
data obtained from meteorological observations at the Eureka station
(located in the Canadian territory of Nunavut) in conditions of the
long-lived convective boundary layer typical of the Arctic summer
have been used for the validation of the assumption rzUK

¼ �CU b Fz (see the right panel in Fig. 1 in Ref. 30). Turbulent fluxes
were calculated directly from the measured velocity and temperature
fluctuations. In these meteorological observations, warming of the

convective layer from the surface is balanced by pumping of colder air
into the layer via the general-circulation mechanisms. Note also that
no principal contradictions have been found between the available
data from observations at mid- or low latitudes and the data from
Eureka.36

Using the expression

s ¼ s2xz þ s2yz
� �1=2

¼ KM S; (10)

and taking into account that for any boundary layer turbulence
s ¼ u2�, Eq. (9) is reduced by simple algebraic calculations to a nonlin-
ear equation for the vertical profile of the normalized TKE, ~EKð~ZÞ
¼ EKð~ZÞ=EK0 as

~E
2
K þ ~Z ~E

1=2
K � 1 ¼ 0; (11)

where the normalized height ~Z ¼ ‘z=ðC� LÞ; EK0 ¼ u2�=ð2Cs AzÞ1=2,
C�1� ¼ ð1þ CUÞ ð2CsÞ3=4A1=4

z ; Az ¼ Ez=EK is the vertical share of
TKE (vertical anisotropy parameter), u� is the local (z-dependent) fric-
tion velocity, and L is the local Obukhov length defined as

L ¼ � s3=2

b Fz
; (12)

and Fz is the local vertical turbulent flux of potential temperature. For
stably stratified turbulence, the vertical turbulent flux Fz of potential
temperature is negative, and the local Obukhov length L is positive.
For stably stratified turbulence (~Z > 0), Eq. (11) has two asymptotic
solutions:

(i) for a lower part (~Z � 1) of the surface layer, Eq. (11) yields

~EK ¼ 1�
~Z
2
þ

~Z
2

8
; (13)

(ii) for an upper part (~Z � 1) of the surface layer, it is

~EK ¼ ~Z
�2

1� 2~Z
�4� �

: (14)

In the framework of the EFB theory of surface layers, we use the
same definition (12) for L in convective turbulence as well, where the
vertical turbulent flux Fz of potential temperature is positive, and L is
negative. Equation (11) for the surface layer in convective turbulence
(~Z < 0) reads

~E
2
K � j~Z j ~E

1=2
K � 1 ¼ 0; (15)

and it has two asymptotic solutions:

(i) for a lower part (j~Z j � 1) of the surface convective layer,
Eq. (15) yields

EK ¼ EK0 1þ 1
2
j~Z j

� �
; (16)

(ii) for an upper part (j~Z j � 1) of the surface convective layer,
the balance of the first and the second terms in Eq. (11)
yields ~EK ¼ ~Z

2=3
, that is,

EK ¼ EK0 ~Z
2=3
: (17)
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Note that as follows from the definition of ~Z ¼ ‘z=ðC� LÞ, the ratio
z/L for convective turbulence is

z
L
¼

~Z
j0 ð1þ CUÞ

; (18)

where ‘z ¼ C‘ z with C‘ ¼ j0 ð2CsÞ�3=4A�1=4z and j0 ¼ 0:4 is the
von Karman constant. Note that generally, Eq. (18) can be valid also
for arbitrary z, but in this case, C‘ should be a function of height (see
Sec. V).

In Fig. 1, we show a numerical solution of Eq. (11). In particular,
in Fig. 1 we plot the normalized turbulent kinetic energy
~EK ¼ EK=EK0 vs ~Z for convective (~Z < 0) and stably stratified
(~Z > 0) turbulence. This numerical solution is in a good agreement
with the above asymptotic solutions for convective and stably stratified
turbulence.

Now we define the flux Richardson number as

Rif ¼ �
b Fz
s S
¼ � b Fz

KMS2
(19)

[see Eq. (10)], so that for stably stratified turbulence, Rif is positive
and varies from 0 to the limiting value R1 ¼ 0:2 at very large gradient
Richardson number Ri� 1. Here, the gradient Richardson number,
Ri, is defined as

Ri ¼ N2

S2
; (20)

where N2 ¼ brz
�H and N is the Brunt–V€ais€al€a frequency. In the

framework of the EFB theory of surface layers, we use the same defini-
tion (19) for the flux Richardson number in turbulent convection, so
that Rif is negative in turbulent convection, and its absolute value is
not limited and can be large.

Equations (12) and (19) allow us to relate the turbulent viscosity
KM with the flux Richardson number Rif as

49

KM ¼ Rif s
1=2 L; (21)

where s is given by Eq. (10). Using Eqs. (8) and (21), we rewrite the
flux Richardson number as

Rif ¼ ð1þ CUÞ�1 ~Z ~E
1=2
K : (22)

Equations (10) and (21) allow us to relate the large-scale shear S with
the flux Richardson number as

S ¼ s1=2

LRif
: (23)

Using Eqs. (8), we rewrite Eq. (9) as the dimensionless ratio

EK
s

� �2

¼ 1� Rif ð1þ CUÞ
2Cs Az

: (24)

In addition, by means of Eqs. (8), (21), and (24), we obtain the nor-
malized vertical integral scale ‘z as the function of the flux Richardson
number

‘z
L
¼ ð2CsÞ�3=4 A�1=4z Rif

1� Rif ð1þ CUÞ½ �1=4
; (25)

where 1� Rif ð1þ CUÞ > 0. This condition implies that
CU < R�11 � 1. For stably stratified turbulence, R1 ¼ 0:2, so that
CU < 4. Thus, the normalized height ~Z ¼ ‘z=ðC� LÞ as the function
of the flux Richardson number reads

~Z ¼ Rif ð1þ CUÞ
1� Rif ð1þ CUÞ½ �1=4

: (26)

Note also that using Eq. (26), we can rewrite Eq. (25) as

‘z
L
¼ C‘ ~Z

j0 ð1þ CUÞ
: (27)

Since convective turbulence is essentially different from stably
stratified turbulence, the behavior of the flux Richardson number
Rif / ~Z ~E

1=2
K is also different for these two kinds of turbulence [see

Eq. (22)]. In particular, in convection both, the buoyancy and large-
scale shear produce convective turbulence, so that the flux Richardson
number can be enough large. On contrary, in stably stratified turbu-
lence, the large-scale shear produces turbulence, while the buoyancy
decreases TKE, so that the flux Richardson number is limited by some
value, R1 ¼ 0:2. However, in the presence of internal gravity waves
the maximum value of the flux Richardson number can be larger in
several times in comparison with the case without waves.45,48

Equations (11) and (22) yield the normalized turbulent kinetic
energy ~EK ¼ EK=EK0 as a function of the flux Richardson number as

~EK ¼ 1� ð1þ CUÞRif½ �1=2: (28)

This implies that the normalized turbulent kinetic energy ~EK in stably
stratified turbulence decreases up to the minimum value

~E
min
K ¼ 1� ð1þ CUÞR1½ �1=2: (29)

As follows from Eq. (22), the function ~Z ~E
1=2
K � ð1þ CUÞR1, so that

according to Eq. (26), the maximum value of the height ~Z
max

in stably
stratified turbulence is

~Z
max ¼ R1 ð1þ CUÞ

1� R1 ð1þ CUÞ½ �1=4
: (30)

Since in convective turbulence, the flux Richardson number is negative,
the normalized turbulent kinetic energy, ~EK ¼ ½1þ ð1þ CUÞ jRif j�1=2,
increases with the flux Richardson number.

FIG. 1. The normalized turbulent kinetic energy ~EK ¼ EK=EK0 vs ~Z for convective
(~Z < 0) and stably stratified turbulence (~Z > 0).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 116602 (2022); doi: 10.1063/5.0123401 34, 116602-5

VC Author(s) 2022

https://scitation.org/journal/phf


Next, we derive the expression for the vertical turbulent heat flux
Fz using the steady-state versions of Eqs. (2) and (4),

Fz ¼ �KHrz
�H; (31)

where the eddy diffusivity is given by

KH ¼ 2CF tT Ez 1� Ch Cp Rif
Az 1� Rif ð1þ CUÞ½ �

	 

: (32)

The details of derivation of Eq. (32) are given in Appendix A. The tur-
bulent Prandtl number, PrT ¼ KM=KH, follows from Eqs. (8) and (32)

PrT ¼
Cs

CF
1� Ch Cp Rif

Az 1� Rif ð1þ CUÞ½ �

	 
�1
; (33)

where Prð0ÞT ¼ Cs=CF is the turbulent Prandtl number for a non-
stratified turbulence when the mean potential temperature gradient
vanishes. The gradient Richardson number Ri and the flux Richardson
number Rif are related as Ri ¼ Rif PrT.

Using Eq. (A1) in Appendix A, and Eqs. (8) and (32), we deter-
mine the level of temperature fluctuations characterized by the dimen-
sional ratio Eh=h

2
� as

Eh

h2�
¼ Cp ð2Cs AzÞ�1=2 PrT ~E

�1
K ; (34)

where h� ¼ jFzj=u� ¼ u2�=b jLj. Equation (23), expression for the fric-
tion velocity, u2� ¼ KM S, and Eq. (31) yield the vertical gradient of the
mean potential temperature as

rz
�H ¼ h� PrT

jLjRif
: (35)

The steady-state version of Eq. (3) for homogeneous turbulence
yields the horizontal turbulent flux Fi ¼ Fx;y of potential temperature:

Fi ¼ �CF tT 1þ PrTð Þ Fzrz �U i; i ¼ x; y: (36)

Since in convective turbulence the vertical turbulent flux Fz is positive, the
horizontal turbulent flux Fi ¼ Fx;y of potential temperature is directed
opposite to the wind velocity �U i; that is, Eq. (36) describes the counter-
wind horizontal turbulent flux in convective turbulence. On contrary, in a
stably stratified turbulence the vertical turbulent flux Fz is negative, so that
Eq. (36) determines the co-wind horizontal turbulent flux.

The physics of the counter-wind turbulent flux in a convective
turbulence is as follows:49 In horizontally homogeneous, convective
turbulence with a large-scale shear velocity (e.g., directed along the x
axis), the mean shear velocity �Ux increases with increasing height,
while the mean potential temperature �H decreases with height.
Uprising fluid particles produce positive fluctuations of potential tem-
perature (h > 0) since @h=@t / �ðu � rÞ �H, and negative fluctuations
of horizontal velocity (ux < 0) since @ux=@t / �ðu � rÞ�Ux . It results
in negative horizontal temperature flux, ux h < 0. Similarly, sinking
fluid particles cause negative fluctuations of potential temperature
(h < 0), and positive fluctuations of horizontal velocity (ux > 0), that
implies negative horizontal temperature flux ux h < 0. Therefore, the
net horizontal turbulent flux is negative (hux hi < 0) even for a zero
horizontal mean temperature gradient. This is the counter-wind tur-
bulent flux of potential temperature that results in modification of the
potential-temperature flux by the non-uniform velocity field.

Let us find dependence of the horizontal turbulent flux Fi of
potential temperature on the flux Richardson number. To this end, we
use the identity,

S tTð Þ2 ¼ 1
2Cs Az 1� Rif ð1þ CUÞ½ � ; (37)

that is derived by means of Eqs. (8), (10), and (24). Therefore, the ratio
of the horizontal and vertical turbulent fluxes of potential temperature,
Fx=Fz , is given by

Fx
Fz
¼ �CF 1þ PrTð Þ 2Cs Azð Þ�1=2 1� Rif ð1þ CUÞ½ ��1=2: (38)

Most of the results obtained in this section depend on the vertical
anisotropy parameter, Az 	 Ez=EK. The mean shear velocity �UxðzÞ
produces the energy of longitudinal velocity fluctuations Ex, which in
turns feeds the transverse Ey and the vertical Ez components of turbu-
lent kinetic energy. The inter-component energy exchange term Qaa

in the right-hand side of Eq. (6) is traditionally parameterized through
the “return-to-isotropy” hypothesis.82 On the other hand, the
temperature-stratified turbulence is usually anisotropic, and the inter-
component energy exchange term Qaa should depend on the flux
Richardson number Rif . Analysis performed in Appendix B allows us
to determine dependence of the vertical anisotropy parameter AzðRif Þ
on the flux Richardson number Rif in a stably stratified turbulence

AzðRif Þ ¼ Að0Þz � Rif
1� Að0Þz

ð1þ CUÞ�1 � Rif
� 2Að0Þz

R1

" #
; (39)

while in a convective turbulence (where jRif j � jR1j and Rif < 0),
the vertical anisotropy parameter is given by

AzðRif Þ ¼ Að0Þz þ
ð1� Að0Þz Þ jRif j
ð1þ CUÞ�1 þ jRif j

: (40)

When turbulence is isotropic in the horizontal plane, the horizontal
shares of TKE are Ax ¼ Ay ¼ 1� Az , where Ax ¼ Ex=EK and
Ay ¼ Ey=EK. For anisotropic turbulence in the horizontal plane, the
horizontal anisotropy parameters are given by

AxðRif Þ ¼ Að0Þz 1� C1 �
Rif
R1
ð1� C2Þ

	 

þ 1� 3Að0Þz
1� Rif ð1þ CUÞ

;

(41)

and Ay ¼ 1� Ax � Az , where the vertical anisotropy parameter Az is
given by Eq. (39). The free constants C1 and C2 are determined by the
values Að0Þx at Rif ¼ 0 and Að1Þx at Rif ! R1. The details of deriva-
tions of Eq. (41) are given in Appendix B.

Let us consider stably stratified turbulence. Neglecting the term
rz UK in Eq. (9), we rewrite this equation as Ri�1f ¼ 1� eK=b Fz , where
we use the definition (19) for the flux Richardson number. By means of
this equation and the expressions for the squared Brunt–V€ais€al€a fre-
quency, N2 ¼ brz

�H, and the turbulent heat flux, Fz ¼ �KHrz
�H, we

obtain equation for the turbulent heat conductivity KH as

KH ¼ Ri�1f � 1
� ��1 eK

N2
: (42)

In very strong stable stratification, the gradient Richardson number
admits a limit Ri !1 and the flux Richardson number Rif ! 0:2.
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This implies that the turbulent heat conductivity for a very strong sta-
ble stratification KH 
 0:25 eK=N2. This is a well-known Cox–Osborn
equation83,84 that plays an important role in physical oceanography.

IV. SURFACE LAYERS IN CONVECTIVE TURBULENCE

In this section, we apply results obtained in Sec. III to surface
layer of a convective turbulence. In this case, the nonlinear equation
for the vertical profile of the normalized TKE, ~EKð~ZÞ ¼ EKð~ZÞ=EK0,
is given by Eq. (15). Asymptotic solutions of Eq. (15) for the normal-
ized TKE, ~EKð~ZÞ, are given by Eq. (16) for a lower part (j~Z j � 1) of
the surface convective layer, and by Eq. (17) for an upper part
(j~Z j � 1) of the surface convective layer. Below we present asymptotic
formulas for various turbulent characteristics based on Eqs. (21),
(22)–(26), (33)–(35), (38), and (40) for the lower and upper parts of
the surface layer in convective turbulence. In particular, the turbulence
characteristics for a lower part (j~Z j � 1) of the surface convective
layer are given by

• the flux Richardson number,

Rif ¼ �ð1þ CUÞ�1 j~Z j; (43)

• the large-scale shear,

S ¼ u�
j0 z

; (44)

• the turbulent viscosity,

KM ¼ j0 u� z; (45)

• the vertical anisotropy parameter,

AzðRif Þ ¼ Að0Þz þ ð1� Að0Þz Þ j~Z j; (46)

• the turbulent Prandtl number,

PrT ¼ Prð0ÞT 1� Ch Cp

Að0Þz ð1þ CUÞ
j~Z j

" #
; (47)

• the level of temperature fluctuations,

Eh

h2�
¼ Cp 2Cs A

ð0Þ
z

� ��1=2
Prð0ÞT 1� CE j~Z j

� �
; (48)

• the vertical gradient of the mean potential temperature,

rz
�H ¼ � h� Pr

ð0Þ
T

j0 z
; (49)

• the ratio of the horizontal and vertical turbulent fluxes of poten-
tial temperature,

Fi
Fz
¼ �CF 1þ Prð0ÞT

� �
2Cs A

ð0Þ
z

� ��1=2
; (50)

• the horizontal components of TKE,

Ex ¼ Ey ¼
1
2
EK0 1� Að0Þz

� �
1� 1

2
j~Z j

� �
; (51)

where

CE ¼
1
6

1þ 2 Að0Þz

� ��1	 

þ Ch Cp

Að0Þz ð1þ CUÞ
: (52)

In Eq. (44), we take into account that for the surface layer in convec-
tive turbulence, the vertical integral turbulent scale, ‘z ¼ C‘ z, and in
Eq. (50), we consider the case when the mean velocity �U i is directed
along the x axis.
For an upper part (j~Z j � 1) of the surface convective layer, the turbu-
lence characteristics are given by

• the flux Richardson number,

Rif ¼ �ð1þ CUÞ�1 ~Z
4=3
; (53)

• the large-scale shear,

S ¼ u�
jLj ð1þ CUÞ ~Z

�4=3
; (54)

• the turbulent viscosity,

KM ¼ ð1þ CUÞ�1 u� jLj ~Z
4=3
; (55)

• the normalized vertical integral scale ‘z ,

‘z
jLj ¼ ð2CsÞ�3=4 ~Z

4=3
; (56)

• the normalized TKE,

EK
u2�
¼ ð2CsÞ�1=2 ~Z

2=3
; (57)

• the vertical anisotropy parameter,

AzðRif Þ ¼ 1� ð1� Að0Þz Þ ~Z
�4=3

; (58)

• the turbulent Prandtl number,

PrT ¼ Prð1ÞT 1� 1� Prð1ÞT

Prð0ÞT

 !
~Z
�4=3

" #
; (59)

• the level of temperature fluctuations Eh=h
2
�,

Eh

h2�
¼ Cp ð2CsÞ�1=2 Prð1ÞT

~Z
�2=3

; (60)

• the vertical gradient of the mean potential temperature,

rz
�H ¼ � h�

jLj Pr
ð1Þ
T

~Z
�4=3

; (61)

• the ratio of the horizontal and vertical turbulent fluxes of poten-
tial temperature,

Fx
Fz
¼ �CF 1þ PrTð Þ 2Csð Þ�1=2 ~Z

�2=3
; (62)

• the horizontal components of TKE,

Ex ¼ Ey ¼
1
2
EK0 1� Að0Þz

� �
~Z
�2=3

; (63)
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where

Prð1ÞT ¼ Prð0ÞT 1þ Ch Cp

1þ CU

	 
�1
; (64)

and in Eq. (62), we consider the case when the mean velocity �U i is
directed along the x axis.

Substituting Eq. (12) and the relation ‘z ¼ C‘ z into Eq. (57), we
arrive at the famous expression for the convective turbulent energy,

EK ¼ Cc ðb Fz zÞ2=3; (65)

obtained using dimension analysis in Ref. 13. Scalings for convective
turbulence similar to Eqs. (53)–(55), (60), and (61) (where ‘z ¼ C‘ z)
were obtained in Refs. 13–15 using dimensional analysis (see also for a
review books by Refs. 1, 2, and 19). The scalings similar to Eqs. (62)
and (63) were derived using dimensional analysis in Refs. 17 and 18.
Most of the above scalings are in agreement with the data of the atmo-
spheric observations discussed in Ref. 34.

For illustration, in Figs. 2–10 we show vertical profiles of various
turbulent characteristics and mean velocity and potential temperature
for convective (z=L < 0) and stably stratified (z=L > 0) turbulence.
These dependencies are based on Eqs. (11), (15), (18), (21)–(26),
(33)–(35), (38)–(40), and (C7), see Appendix C. Three basic dimen-
sional numbers, Rif , PrT , and Ri, plotted in Figs. 2–4, are related by
the expression Ri ¼ Rif PrT .

Absolute values of the gradient Richardson number Ri (see
Fig. 4) and the flux Richardson numbers Rif (see Fig. 2) in convective
turbulence are much larger than in stably stratified turbulence. The
reason is that the large-scale shear inside large-scale circulations in a

FIG. 2. The flux Richardson number Rif vs z/L for convective (z=L < 0) and stably
stratified (z=L > 0) turbulence.

FIG. 3. The turbulent Prandtl number PrT vs z/L for convective (z=L < 0) and sta-
bly stratified (z=L > 0) turbulence.

FIG. 4. The gradient Richardson number Ri vs z/L for convective (z=L < 0) and
stably stratified (z=L > 0) turbulence.

FIG. 5. The normalized turbulent kinetic energy E�K ¼ EK=u2� vs z/L for convective
(z=L < 0) and stably stratified (z=L > 0) turbulence.

FIG. 6. The normalized intensity of potential temperature fluctuations ~E h ¼ Eh=h
2
�

vs z/L for convective (z=L < 0) and stably stratified (z=L > 0) turbulence.
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convective turbulence is much smaller than in stably stratified turbu-
lence. TKE in convective turbulence is much larger than in stably strat-
ified turbulence (see Fig. 1), because in convection, both the buoyancy
and large-scale shear produce turbulence. On contrary, in stably strati-
fied turbulence, the large-scale shear produces TKE, while the buoy-
ancy decreases TKE and produces the temperature fluctuations.

On the other hand, the normalized intensity of potential temper-
ature fluctuations ~Eh ¼ Eh=h

2
� (see Fig. 6) in convective turbulence is

much weaker than in stably stratified turbulence. The latter is caused
by a weak gradient of the mean potential temperature in convective
turbulence in comparison with that of stably stratified turbulence (see
Fig. 10). The vertical anisotropy parameter Az in stably stratified tur-
bulence is changed stronger than in the surface layers of convective
turbulence (see Fig. 7). Indeed, turbulence tends to be two-
dimensional one for very large gradient Richardson number in stably
stratified turbulence; that is, Az becomes very small. On contrary, in
convection the buoyancy is dominated in the energy production in the
upper part of the surface layer, resulting in a strong increase in the ver-
tical TKE, that is, the vertical anisotropy parameter Az ! 1. In Fig. 8,
we show the normalized vertical integral scale ‘z=L vs z/L for convec-
tive and stably stratified turbulence. In stably stratified turbulence, the
vertical integral scale reaches the Obukhov length scale at high

gradient Richardson numbers. On contrary, in convective turbulence
the ratio ‘z=jLj is strongly increases with height.

Let us discuss the choice of the dimensionless empirical con-
stants. We will start with stably stratified turbulence.47,49 There are
two well-known universal constants: the limiting value of the flux
Richardson number R1 ¼ 0:2 for an extremely strongly stratified tur-
bulence (i.e., for Ri!1)50,52,55 and the turbulent Prandtl number
Prð0ÞT ¼ 0:8 for a nonstratified turbulence (i.e., for Ri! 0).85–87 The
constant Cp describes the deviation of the dissipation timescale of
Eh ¼ hh2i=2 from the dissipation timescale of TKE. The constant Ch

is given by Ch ¼ Að1Þz ½ð1� R1ð1þ C/Þ�=ðCpR1Þ [see Eq. (33)]. We
use here the following values of the non-dimensional empirical con-
stants: Cp ¼ 0:417; Ch ¼ 0:744, C/ ¼ 0:899; j0 ¼ 0:4; Prð0ÞT ¼ 0:8;
Að0Þz ¼ 0:2; Að1Þz ¼ 0:1. The parameter Cs ¼ 0:1 for stably stratified
turbulence and CF ¼ Cs=Pr

ð0Þ
T ¼ 0:125.43,47,49

To determine these parameters for convective turbulence, we use
well-known expressions (obtained by dimensional analysis1,2,13–15,17–19

and verified against data of various field experiments33) for the upper
part of the surface convective layer

FIG. 7. The vertical anisotropy parameter Az vs z/L for convective (z=L < 0) and
stably stratified (z=L > 0) turbulence.

FIG. 8. The normalized vertical integral scale ‘z=L vs z/L for convective (z=L < 0)
and stably stratified (z=L > 0) turbulence.

FIG. 9. The normalized mean velocity ~Uy ¼ �Uy=u� (solid line) vs z/L for convec-
tive (z=L < 0) and stably stratified (z=L > 0) turbulence, where the normalized
height of the roughness elements is z�=L ¼ 1:64� 10�3. The dotted line corre-
sponds to ~Uy ¼ j�1 ln ðz=z�Þ.

FIG. 10. The normalized mean temperature difference ~H ¼ ð�T � �T bÞ=h� vs z/L
for convective (z=L < 0) and stably stratified (z=L > 0) turbulence, where �T b is
the mean temperature at the lower boundary. Here, the normalized height of the
roughness elements is z�=L ¼ 1:64� 10�3:
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ffiffiffiffiffiffiffiffiffi
hu2i

p
u�

¼ B3
z
jLj

� �1=3

; (66)

ffiffiffiffiffiffiffiffi
hh2i

q
h�

¼ B4
z
jLj

� ��1=3
; (67)

Fx
Fz
¼ �B1

z
jLj

� ��2=3
; (68)

rz
�H ¼ �B2

h�
jLj

z
jLj

� ��4=3
¼ � h�

z
UTðz=jLjÞ; (69)

where

UTðz=jLjÞ ¼ B2
z
jLj

� ��1=3
: (70)

According to the data of the field experiments presented in Ref. 33, the
constants are B1 ¼ 1:3; B2 ¼ 0:9; B3 ¼ 1:35, and B4 ¼ 1:55.

Comparison of Eqs. (66)–(70) with Eqs. (57)–(62) yields

B1 ¼ ð2CsÞ�1=2 CF 1þ Prð1ÞT

� �
j0 ð1þ CUÞ½ ��2=3; (71)

B2 ¼ Prð1ÞT j0 ð1þ CUÞ½ ��4=3; (72)

B3 ¼ ð2=CsÞ1=4 j0 ð1þ CUÞ½ �1=3; (73)

B4 ¼ ð2=CsÞ1=4 Cp Pr
ð1Þ
T

� �1=2
j0 ð1þ CUÞ½ ��1=3; (74)

where we take into account that C‘=C� ¼ j0 ð1þ CUÞ. Equations
(71)–(74) yield

Cp ¼
B2
4

B2
3 B2

; (75)

Cs ¼ 2j4=3
0 Y4=B2; (76)

CU ¼ Y3 � 1; (77)

CF ¼
2B1

B2
3 B2

1þ Prð1ÞT

� ��1	 
�1
; (78)

where Y is determined by an equation

Y4 þ Cp Ch Y �
Prð0ÞT
B2 j4=3

0

¼ 0: (79)

Equation (79) follows from Eqs. (59) and (72).
Numerical solution of Eq. (79) allows us to determine Y¼ 1.152,

so that Eqs. (75)–(78) yield Cð1ÞF ¼ 0:505; Cð1Þs ¼ 1:153,

Cð1Þp ¼ 1:465; Prð1ÞT ¼ 1:335, and Cð1ÞU ¼ 0:529. Also, we choose
the constant coefficient Ch ¼ 0:744 for a convective turbulence to be
the same as in a stably stratified turbulence.

Since the values of Cð1ÞF ; Cð1Þs , and Cð1Þp are different from the
values of these parameters at neutral and stable stratifications, we
choose a smooth function f ðRif Þ ¼ �aRif=ð1� aRif Þ with a ¼ 3,
which allows us to obtain a smooth transition between the values of
these parameters from neutral stratification to the end of the surface
convective layer. For example, CFðRif Þ � Cð0ÞF ¼ f ðRif Þ ðCð1ÞF
�Cð0ÞF Þ; CsðRif Þ � Cð0Þs ¼ f ðRif Þ ðCð1Þs � Cð0Þs Þ, and CpðRif Þ � Cð0Þp

¼ f ðRif Þ ðCð1Þp � Cð0Þp Þ, where Cð0ÞF ; Cð0Þs , and Cð0Þp are the values of
these parameters at neutral stratification.

Finally, we can suggest some contributions of the developed EFB
theory to the RANS and LES modeling. As to RANS modeling, we
suggest to use Eq. (21) for the turbulent viscosity KMðz=LÞ
¼ u� LRif ðz=LÞ and for the eddy diffusivity KHðz=LÞ ¼ KMðz=LÞ=
PrTðz=LÞ in RANS modeling, where the vertical profiles of the flux
Richardson number Rif ðz=LÞ (see Fig. 2) and the turbulent Prandtl
number PrTðz=LÞ (see Fig. 3) are given by Eqs. (22) and (33), respec-
tively. Next step is to obtain numerical solutions for the mean velocity
and mean potential temperature for the surface layers using RANS
modeling with these vertical profiles of turbulent viscosity KMðz=LÞ and
the eddy diffusivity KHðz=LÞ, and to compare the obtained numerical
solutions in a steady state with those shown in Figs. 9 and 10.

In a similar way, in LES modeling, we suggest to use Eq. (21) for the
turbulent viscosity KMðz=LÞ ¼ u� LRi�f ðz=LÞ and for the eddy diffusivity
KHðz=LÞ ¼ KMðz=LÞ=Pr�Tðz=LÞ, where the vertical profile of the flux
Richardson number Ri�f ðz=LÞ is obtained from a solution of an equation

z
L
¼ Ri�f ðz=LÞ

j0 1� Ri�f ðz=LÞ ð1þ CUÞ
� �1=4 ; (80)

which follows from Eq. (26), where z � z� and z� is the filtering scale
used in the LES. The vertical profile of the turbulent Prandtl number
Pr�Tðz=LÞ is obtained from Eq. (33), where Rif is replaced by Ri�f ðz=LÞ
and Azðz=LÞ (see Fig. 7) is obtained from Eq. (40) for a convective tur-
bulence. Next, to get numerical solutions for the mean velocity and
mean potential temperature for the surface layers using LES with the
vertical profiles of turbulent viscosity K�Mðz=LÞ and the eddy diffusivity
K�Hðz=LÞ, and to compare the obtained numerical solutions in a steady
state with those shown in Figs. 9 and 10.

V. DISCUSSION AND CONCLUSIONS

We extended the energy- and flux-budget theory to the atmo-
spheric convective surface layers. This theory applies the budget equa-
tions for turbulent energies and turbulent fluxes of momentum and
heat. The EFB theory yields analytical expressions for the entire surface
layer including the transition region between the lower and upper
parts of the surface layer. In the framework of this theory, we deter-
mine the vertical profiles for all turbulent characteristics and for the
mean velocity and mean potential temperature. In particular, we find
the vertical profiles of turbulent kinetic energy, the intensity of turbu-
lent potential temperature fluctuations, the vertical turbulent fluxes of
momentum and buoyancy (proportional to potential temperature),
the integral turbulence scale, the turbulent anisotropy, the turbulent
Prandtl number, and the flux Richardson number.

Since the large-scale shear in convective turbulence is much
smaller than in stably stratified turbulence, the absolute values of the
gradient Richardson number in convective turbulence are much larger
than in stably stratified turbulence. This is natural result, since turbu-
lent kinetic energy (produced by both the buoyancy and large-scale
shear) in convective turbulence is much stronger than in stably strati-
fied turbulence. On the other hand, the large-scale shear produces tur-
bulent kinetic energy in stably stratified turbulence, and the buoyancy
decreases TKE and produces the temperature fluctuations. In convec-
tive turbulence, the gradient of the mean potential temperature is usu-
ally small in comparison with stably stratified turbulence. Therefore,
potential temperature fluctuations in convective turbulence are much
smaller than in stably stratified turbulence. The vertical integral scale
in stably stratified turbulence can only reach the Obukhov length scale
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at large gradient Richardson numbers. On the other hand, the vertical
integral scale in convective turbulence can be much larger than the
absolute value of the Obukhov length scale.

Finally, let us discuss how the energy- and flux-budget theory can
be extended to the core of the atmospheric convective boundary layer.
To this end, the following basic features can be taking into account.
The core of the atmospheric convective boundary layer (the CBL-
core) involves three principally different types of motion:

• regular plain-parallel mean flow that can be homogeneous in the
horizontal plain, but heterogeneous in the vertical direction;

• vertically and horizontally heterogeneous long-lived CBL-scale
self-organized convective structures (large-scale circulations or
large-scale convective cells);

• small-scale turbulent fluctuations.

Turbulence in the CBL-core is generated largely by local shears of
the self-organized convective structures. Kinetic energy of such turbu-
lence should be low compared to kinetic energy of large-scale struc-
tural motions (see, e.g., Ref. 88). About 80% of vertical heat transport
is due to structural motions and only 20% due to turbulence.

VI. DEDICATION

This paper was dedicated to Prof. Sergej Zilitinkevich (1936–2021)
who initiated this work and discussed some of the obtained results.
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NOMENCLATURE

Ax;y ¼ Ex;y=EK Horizontal anisotropy parameters
Az ¼ Ez=EK Vertical anisotropy parameter

EK ¼ hu2i=2 Density of turbulent kinetic energy
(TKE)

~EK ¼ EK=EK0 Normalized density of turbulent
kinetic energy

EK0 ¼ u2�=ð2Cs AzÞ1=2 Density of turbulent kinetic energy
at the surface

Ez ¼ hu2zi=2 Density of the vertical turbulent
kinetic energy

Ea ¼ hu2ai=2 Horizontal and vertical turbulent
kinetic energies (a ¼ x; y; z)

Eh ¼ hh2i=2 Intensity of potential temperature
fluctuations

Fi ¼ hui hi Turbulent flux of potential
temperature

Fx;y Horizontal turbulent flux of poten-
tial temperature

Fz ¼ huz hi Vertical turbulent flux of potential
temperature

g Gravity acceleration
KM Turbulent (eddy) viscosity
KH Turbulent heat conductivity

L ¼ �s3=2=ðb FzÞ Local Obukhov length
‘z Vertical integral scale

N ¼ ðb jrz
�HjÞ1=2 Brunt–V€ais€al€a frequency

P Fluid pressure with the reference
value P�

�P Mean fluid pressure
PrT ¼ KM=KH Turbulent Prandtl number
Prð0ÞT ¼ Cs=CF Turbulent Prandtl number for a

non-stratified turbulence when the
mean potential temperature gradi-
ent vanishes

p Fluctuations of the fluid pressure
Qij ¼ q�10 ðhpriuji

þhprjuiiÞ
Inter-component energy exchange
term

Qaa ¼ 2q�10 ðhprauai Diagonal terms of the tensor Qij

Ri ¼ N2=S2 Gradient Richardson number
Rif ¼ �b Fz=ðKMS2Þ Flux Richardson number

R1 ¼ Rif ðRi!1Þ ¼ 0:2 Flux Richardson number at very
large gradient Richardson number

S ¼ ½ðrz �UxÞ2 þ ðrz �UyÞ2�1=2 Mean velocity shear caused by the
horizontal mean wind velocity

T Fluid temperature with the refer-
ence value T�

tT ¼ ‘z=E1=2
z Turbulent dissipation timescale

�U ¼ �U ðwÞðzÞ þ �U ðsÞ Mean fluid velocity
�U ðsÞ Three-dimensional mean velocity

related to the large-scale semi-
organized coherent structures in a
convective turbulence

�U ðwÞðzÞ ¼ ð�Ux; �Uy; 0Þ Mean-wind velocity
u ¼ ðux; uy; uzÞ Fluctuations of the fluid velocity

u� Local (z-dependent) friction velocity
~Z ¼ ‘z=ðC� LÞ Normalized height

b ¼ g=T� Buoyancy parameter
c ¼ cp=cv Specific heat ratio

dij Kronecker unit tensor
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eðFÞi ¼ ð� þ vÞ hðrjuiÞ ðrjhÞi Dissipation rate of the turbulent
heat flux

eK ¼ � hðrjuiÞ2i Dissipation rate of EK
ea ¼ � hðrjuaÞ2 i Dissipation rate of horizontal and

vertical turbulent kinetic energy
components Ea with a ¼ x; y; z

eh ¼ v hðrhÞ2i Dissipation rate of Eh

eðsÞi ¼ eðsÞiz � b Fi � Qiz
Effective dissipation rate of the off-
diagonal components of the
Reynolds stress siz

eðsÞiz ¼ 2� hðrjuiÞ ðrjuzÞi Molecular-viscosity dissipation
rate of the off-diagonal compo-
nents of the Reynolds stress siz

H ¼ TðP�=PÞ1�c�1 Potential temperature
�HðzÞ Mean potential temperature

h Fluctuations of the potential
temperature

h� ¼ jFzj=u� ¼ u2�=ðb jLjÞ Level of potential temperature
fluctuations

j0 ¼ 0:4 von Karman constant
� Kinematic viscosity of fluid

PK ¼ �sizrz �U i ¼
�ðsxzrz �Ux þ syzrz �UyÞ

¼ KM S2

Production rate of the turbulent
kinetic energy

q0 Fluid density
1 ¼ z=L Dimensionless height

siz ¼ hui uzi with i ¼ x; y Off-diagonal components
of the Reynolds stress

s ¼ ðs2xz þ s2yzÞ
1=2

¼ KM S 	 u2�

Vertical turbulent flux of
momentum

UðFÞi ¼ hui uz hi
�� hh ðrzuiÞi
�v hui ðrzhÞi

Flux of Fi

UðsÞi ¼ hui u2zi þ q�10 hp uii
��rzsiz

Flux of siz

UK ¼ q�10 huz pi þ ðhuz u2i
��rzhu2iÞ=2

Flux of EK

Ux;y ¼ ðhuz u2x;yi
��rzhu2x;yiÞ=2

Flux of the horizontal turbulent
kinetic energy components Ex;y

Uz ¼ q�10 huz pi þ ðhu3zi
��rzhu2ziÞ=2

Flux of the vertical turbulent
kinetic energy components Ez

Ua Flux of Ea with a ¼ x; y; z
Uh ¼ ðhuz h2i � vrzhh2iÞ=2 Flux of Eh

v Molecular temperature diffusivity

APPENDIX A: DERIVATION OF EQ. (32) FOR THE EDDY
DIFFUSIVITY

In this Appendix, we derive the expression for the turbulent
Prandtl number, PrT ¼ KM=KH. To this end, we use the steady-
state versions of Eqs. (2) and (4),

Fzrz
�H þ Eh

Cp tT
¼ 0; (A1)

2Ezrz
�H � 2Ch b Eh þ

Fz
CF tT

¼ 0: (A2)

Equations (A1) and (A2) and the expression for the vertical turbulent
heat flux, Fz ¼ �KHrz

�H, yield the turbulent heat conductivity KH as

KH ¼ 2CF tT Ez 1þ Ch Cp tT bFz
Ez

	 

: (A3)

By means of Eq. (9) for TKE,

EK ¼ KM S2 tT 1� Rif ð1þ CUÞ½ �; (A4)

and by means of Eq. (19) for Rif , we derive the identity for the
dimensionless ratio as

b Fz tT
Ez

¼ � Rif
Az 1� Rif ð1þ CUÞ½ � : (A5)

Thus, Eqs. (A3) and (A5) yield Eq. (32) for the eddy diffusivity.

APPENDIX B: DERIVATION OF EQS. (39)–(41)
FOR THE VERTICAL AND HORIZONTAL ANISOTROPY
PARAMETERS

In this appendix, we derive equations for the vertical anisotropy
parameter, Az 	 Ez=EK. The mean shear S generates the energy of
longitudinal velocity fluctuations Ex. Due to inter-component energy
exchange term Qaa, the transverse Ey and the vertical Ez components
of turbulent kinetic energy are produced. The inter-component
energy exchange term Qaa is usually parameterized using the return-
to-isotropy hypothesis.82 However, the temperature-stratified turbu-
lence is anisotropic, and the inter-component energy exchange term
Qaa should depend on the flux Richardson number Rif .

Here, we adopt the following model for the inter-component
energy exchange term Qaa, which generalizes the return-to-isotropy
hypothesis to the case of the convective and stably stratified turbu-
lence. We use the normalized flux Richardson number Rif=R1 that
is varying from 0 for a non-stratified turbulence to 1 for a strongly
stratified turbulence, where the limiting value of the flux Richardson
number, R1 	 Rif jRi!1, is defined for very strong stratifications
when the gradient Richardson number Ri!1. The model for the
inter-component energy exchange term Qaa is described by

Qxx ¼ �
2ð1þ CrÞ

tT
Ex �

1
3
Eint

� �
; (B1)

Qyy ¼ �
2ð1þ CrÞ

tT
Ey �

1
3
Eint

� �
; (B2)

Qzz ¼ �
2ð1þ CrÞ

tT
Ez � EK þ

2
3
Eint

� �
; (B3)

where

Eint ¼ EK 1� Rif
R1

Cr

1þ Cr

� �	 

; (B4)

and Cr is the dimensionless empirical constant. When Rif ¼ 0,
Eqs. (B1)–(B4) describe the return-to-isotropy hypothesis.82 To derive
equation for the vertical anisotropy parameter in a stratified turbulence,
we use the steady-state version of Eq. (6) for vertical TKE Ez as

rz Uz ¼ b Fz þ
1
2
Qzz �

EK
3tT

: (B5)
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We assume that the vertical gradientrz Uz of the flux of Ez is deter-
mined by the buoyancy, that is, rzUz ¼ �Cz b Fz , where Cz is the
dimensionless empirical constant. The justification of this assump-
tion for a convective turbulence has been performed in Ref. 30,
where experimental data obtained from meteorological observations
at the Eureka station have been used for the validation of this
assumption (see the left panel in Fig. 1 in Ref. 30). Thus, by means
of Eqs. (A5) and (B3)–(B5), we determine the vertical anisotropy
parameter Az 	 Ez=EK as a function of the flux Richardson number

AzðRif Þ ¼ Að0Þz � Rif
ð1� 3Að0Þz Þ ð1þ CzÞ
1� Rif ð1þ CUÞ

� 2Að0Þz
R1

" #
: (B6)

According to Eq. (B6), the vertical anisotropy parameter Az for a

non-stratified turbulence is ðAzÞRi!0 	 Að0Þz ¼ Cr=3ð1þ CrÞ.
Usually in surface layers in convective turbulence, jRif j � jR1j.
This implies that the vertical anisotropy parameter in a convective
turbulence is given by

AzðRif Þ ¼ Að0Þz þ ð1� 3Að0Þz Þ
jRif j ð1þ CzÞ

1þ jRif j ð1þ CUÞ
: (B7)

In convective turbulence for large jRif j � 1, the vertical anisotropy
parameter Az ! 1.30 This condition yields

1þ Cz

1þ CU
¼ 1� Að0Þz

1� 3Að0Þz
: (B8)

Substituting Eq. (B8) into Eq. (B7), we obtain the vertical anisot-
ropy parameter in a stably stratified turbulence given by Eq. (39). In
a convective turbulence where jRif j � jR1j and Rif < 0, the verti-
cal anisotropy parameter is given by Eq. (40).

Note that Eqs. (B1)–(B4) describes a simple generalization of
the return-to-isotropy hypothesis.82 These equations affect only
Eq. (39) for the dependence of the vertical anisotropy parameter
on the flux Richardson number, AzðRif Þ. This function is the
most unknown in observations. The return-to-isotropy hypothe-
sis82 implies that the inter-component energy exchange Eint ¼ EK
[see Eq. (B4)]. However, the return-to-isotropy hypothesis yields
the results for stably stratified turbulence, which are in a disagree-
ment with observations for very large gradient Richardson num-
ber. On the other hand, the main results obtained in the present
study are weakly dependent on the model for the inter-
component energy exchange term Qaa. In particular, in our previ-
ous studies,43,47,49 we used different models for Qaa and obtained
similar results.

When turbulence is isotropic in the horizontal plane, the hori-
zontal shares of TKE are Ax ¼ Ay ¼ 1� Az . This yields the hori-
zontal components of TKE as

Ex ¼ Ey ¼
1
2
EK ð1� AzÞ; (B9)

where Ax ¼ Ex=EK and Ay ¼ Ey=EK. When turbulence is aniso-
tropic in the horizontal plane, the model for the inter-component
energy exchange term Qaa is given by

Qxx ¼ �
2ð1þ CrÞ

tT
Ex �

Eint
3
þ Að0Þz C1 þ C2

Rif
R1

� �	 

; (B10)

Qyy ¼ �
2ð1þ CrÞ

tT
Ey �

Eint
3
� Að0Þz C1 þ C2

Rif
R1

� �	 

: (B11)

Using Eq. (6) for Ex, we obtain that the horizontal anisotropy
parameter, Ax ¼ Ex=EK, for stably stratified turbulence is given by
Eq. (41) and Ay ¼ 1� Ax � Az , where the vertical anisotropy
parameter Az is given by Eq. (39).

APPENDIX C: THE ATMOSPHERIC STABLY STRATIFIED
BOUNDARY-LAYER TURBULENCE

In view of the applications of the obtained results to the atmo-
spheric stably stratified boundary-layer turbulence, we outline
below the useful in modeling theoretical relationships.47,49 It is
known that the wind shear in stably stratified turbulence has two
asymptotic results: (i) S ¼ s1=2=ðj0 zÞ at 1� 1, which describes
the log-profile for the mean velocity, and (ii) S ¼ s1=2=ðR1 LÞ
when 1� 1. The latter result follows from Eq. (23), where
1 ¼

Ð z
0 dz0=Lðz0Þ is the dimensionless height based on the local

Obukhov length scale L(z), and j0 ¼ 0:4 is the von Karman con-
stant. For surface layer in stably stratified turbulence (defined as the
lower layer which is 10% of the turbulent boundary layer), the
Obukhov length scale L is independent of z and the dimensionless
height 1 ¼ z=L. Interpolating these two asymptotic results, we
obtain that the wind shear Sð1Þ can be written as

S ¼ s1=2

L
R�11 þ

1
j0 1

� �
: (C1)

The latter allows us to get the vertical profile of the turbulent viscos-
ity KMð1Þ ¼ s=S as

KM ¼ s1=2 L
j0 1

1þ R�11 j0 1
: (C2)

Using Eqs. (21) and (C2), we arrive at the expression for the vertical
profile of the flux Richardson number Rif ð1Þ as

Rif ¼
j0 1

1þ R�11 j0 1
: (C3)

Equation (C3) yields the expression for 1 as

1 ¼ Rif
j0 ð1� Rif=R1Þ

: (C4)

In this case, the vertical anisotropy parameter Azð1Þ 	 Ez=EK reads

Az ¼ Að0Þz þ
1� Að0Þz

1� ð1þ CUÞ�1 ðj0 1Þ�1 þ R�11

h i

þ 2Að0Þz
1þ R1 ðj0 1Þ�1

; (C5)

and the vertical profile of the turbulent Prandtl number PrTð1Þ is
given by

PrT ¼ Prð0ÞT 1� Ch Cp

Az R�11 þ ðj0 1Þ�1 � ð1þ CUÞ
h i2

4
3
5
�1

: (C6)
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Note that the gradient Richardson number Ri and the flux
Richardson number Rif are related as Rið1Þ ¼ Rif ð1Þ PrTð1Þ.

Equations (C2)–(C6) are in agreement with
Monin–Obukhov–Nieuwstadt similarity theories.16,89 In the
Monin–Obukhov similarity theory,16 the turbulent fluxes of
momentum s, heat Fz, the Obukhov length scale L, and other sca-
lars are approximated by their surface values, while the similarity
theory by Nieuwstadt89 is extended to the entire stably stratified
boundary layer employing local z-dependent values of the turbulent
fluxes sðzÞ and FzðzÞ, and the length L(z) instead of their surface
values.

Using Eqs. (22) and (C4), we can relate 1 and ~Z for stably
stratified turbulence as

1 ¼
~Z ~E

1=2
K

j0 ð1þ CU � ~Z ~E
1=2
K =R1Þ

: (C7)

For the surface layer (~Z � 1) of the stably stratified turbulence,
the dimensionless height is 1 ¼ z=L, and the normalized TKE is
~EK 
 1 [see Eq. (16)]. Therefore, Eq. (C7) in this case is reduced to

z
L
¼

~Z
j0 ð1þ CUÞ

: (C8)

This equation coincides with Eq. (18) derived for the low part
(j~Z j � 1) of the surface layer in convective turbulance. The EFB
theory for stably stratified turbulence described in Secs. II and III,
and Appendix C, has been verified against scarce data90–95 from the
atmospheric and laboratory experiments, DNS and LES.
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