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ABSTRACT

It has been previously shown [Elperin et al., “Formation of large-scale semi-organized structures in turbulent convection,” Phys. Rev. E 66,
066305 (2002)] that a non-rotating turbulent convection with nonuniform large-scale flows contributes to the turbulent heat flux. As a result,
the turbulent heat flux depends explicitly not only on the gradients of the large-scale temperature, but also on the gradients of the large-scale
velocity. This is because the nonuniform large-scale flows produce anisotropic velocity fluctuations, which modify the turbulent heat flux.
This effect causes an excitation of a convective-wind instability and formation of large-scale semi-organized coherent structures (large-scale
convective cells). In the present study, we perform mean-field numerical simulations of shear-free convection, which take into account the
modification of the turbulent heat flux by nonuniform large-scale flows. We use periodic boundary conditions in horizontal direction as well
as stress-free or no-slip boundary conditions in vertical direction. We show that the redistribution of the turbulent heat flux by the nonuni-
form large-scale motions in turbulent convection plays a crucial role in the formation of the large-scale semi-organized coherent structures.
In particular, this effect results in a strong reduction of the critical effective Rayleigh number (based on the eddy viscosity and turbulent tem-
perature diffusivity) required for the formation of the large-scale convective cells. We demonstrate that the convective-wind instability is
excited when the scale separation ratio between the height of the convective layer and the integral turbulence scale is large. The level of the
mean kinetic energy at saturation increases with the scale separation ratio. We also show that inside the large-scale convective cells, there are
local regions with the positive vertical gradient of the potential temperature, which implies that these regions are stably stratified.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0110716

I. INTRODUCTION

Turbulent non-rotating convection has been investigated in theo-
retical studies,1–8 laboratory experiments,4,5,9–26 numerical simula-
tions,27–36 and atmospheric observations.37–41 One of the key features
of turbulent convection is the formation of coherent semi-organized
structures, referred to as large-scale convective cells (or large-scale cir-
culations) in a shear-free convection and large-scale rolls in a sheared
convection. Spatial scales of the large-scale coherent structures in a
turbulent convection are much larger than turbulent scales, and their
lifetime is much longer than the characteristic turbulent timescale.

Buoyancy-driven structures, such as plumes, jets, and large-scale
circulation patterns are observed in numerous laboratory experiments
on turbulent convection. The large-scale circulations caused by con-
vection in the Rayleigh–B�enard apparatus are often called the “mean
wind.”11 There are several open questions concerning these flows, e.g.,
how do they arise, and what are their characteristics and dynamics.

In atmospheric turbulent convection, two types of coherent semi-
organized structures, namely, “cloud cells” in a shear-free convection
and “cloud streets,” in a sheared convection have been observed.38,39,41

In particular, cloud cells are seen as three-dimensional, long-lived
B�enard-type cells consisting in narrow uprising plumes and wide down-
draughts. These structures occupy the entire convective boundary layer
of about 1–3km in height. In the sheared convective boundary layer
with a strong wind, the cloud streets are seen as large-scale rolls
stretched along the wind.

In spite of a number of theoretical and numerical studies, the
nature of large-scale coherent structures in turbulent convection is a
subject of active discussions. There are two points of view on the origin
of large-scale circulation in turbulent convection. According to one
point of view, the large-scale circulations which develop at low
Rayleigh numbers near the onset of convection continually increase
their size as the Rayleigh numbers is increased and continue to exist in
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an average sense at even very high Rayleigh numbers.27 Another
hypothesis holds that the large-scale circulation is a genuine high
Rayleigh number effect.11

A mean-field theory of non-rotating turbulent convection has
been developed in Refs. 42 and 43, where the convective-wind instabil-
ity in the shear-free turbulent convection causing the formation of
large-scale cells is identified. In the sheared turbulent convection, the
convective-shear instability resulting in formation of large-scale rolls
can be excited.42,43 A redistribution of the turbulent heat flux by non-
uniform large-scale motions plays a crucial role in the formation of
the large-scale coherent structures in turbulent convection. To deter-
mine key parameters that affect formation of the large-scale coherent
structures in the turbulent convection, the linear stage of the
convective-wind and convective-shear instabilities has been numeri-
cally studied in Ref. 44.

In the present study we perform mean-field numerical simula-
tions to study nonlinear evolution of large-scale circulations in turbu-
lent shear-free convection taking into account the effect of
modification of the turbulent heat flux by non-uniform large-scale
motions. This paper is organized as follows. In Sec. II, we discuss a
modification of the turbulent heat flux caused by anisotropic velocity
fluctuations in turbulence with non-uniform large-scale flows. In Sec.
III, we formulate the non-dimensional equations, the governing non-
dimensional parameters and discuss the large-scale convective-wind
instability. In Sec. IV, we describe the set-up for the mean-field numer-
ical simulations and discuss the results of the numerical simulations
for periodic boundary conditions in horizontal direction as well as
stress-free or no-slip boundary conditions in vertical direction. In Sec.
V, we discuss the novelty aspects and significance of the obtained
results as well as their applications. Finally, conclusions are drawn in
Sec. VI.

II. TURBULENT CONVECTION AND TURBULENT HEAT
FLUX

We consider turbulent convection with very high Rayleigh num-
bers, and large Reynolds and Peclet numbers. Formation of coherent
semi-organized structures is usually studied using a mean field
approach whereby the velocity U , pressure P, and potential tempera-
ture H are decomposed into the mean and fluctuating parts: U ¼ �U
þ u; P ¼ �P þ p, and H ¼ �H þ h, the fluctuating parts have zero
mean values, which implies the Reynolds averaging. Here �U ¼ hUi is
the mean velocity, �P ¼ hPi is the mean pressure and �H ¼ hHi is the
mean potential temperature, and u, p, and h are fluctuations of veloc-
ity, pressure and potential temperature, respectively. Averaging the
Navier–Stokes equation and equation for the potential temperature
over an ensemble, we obtain the mean-field equations,

@

@t
þ �U � $

� �
�U i ¼ �ri

�P
�q0

 !
�rjhui uji þ b �Hei; (1)

@

@t
þ �U � $

� �
�H ¼ �ð �U � $Þ�T 0 �rihuihi; (2)

and div �U ¼ 0, where the mean potential temperature �H is related to
the physical temperature �T as: �H ¼ �T ð�P0=�PÞ1�1=c, where �T is the
mean physical temperature and �T 0 is the mean physical temperature
in the equilibrium (the basic reference state), �P is the mean pressure
and �P0 is the mean pressure in the equilibrium, �q0 is the mean fluid

density in the equilibrium, c ¼ cp=cv is the specific heats ratio, b
¼ g=�T 0 is the buoyancy parameter, g is the gravity acceleration, and
�q0 is the mean fluid density. Equations (1) and (2) are written in the
Boussinesq approximation with div �U ¼ 0.

In Eqs. (1) and (2), we neglect very small terms caused by kine-
matic viscosity and molecular diffusivity of temperature in comparison
with the terms due to turbulent viscosity and turbulent diffusivity. The
mean velocity �U ðt; xÞ, the mean potential temperature �Hðt; xÞ, and
the mean pressure �Pðt; xÞ in Eqs. (1) and (2) describe deviations from
the hydrostatic equilibrium without mean motions: r�P0 ¼ �q0g and
�q0 ¼ const, where g ¼ �g e and e is the vertical unit vector.

The effect of convective turbulence on the mean velocity and
mean potential temperature is described by the Reynolds stress hui uji
and turbulent flux of potential temperature F ¼ huhi. Traditional the-
oretical turbulence models, such as the Kolmogorov-type local clo-
sures, imply that the turbulent flux of momentum determined by
hui uji and the turbulent flux of potential temperature F are assumed
to be proportional to the local mean gradients, whereas the propor-
tionality coefficients, namely, turbulent viscosity and turbulent tem-
perature diffusivity, are uniquely determined by local turbulent
parameters. The classical expression for the Reynolds stress is
hui uji ¼ ��Tðri �U j þrj �U iÞ and the classical turbulent heat flux is
given by F ¼ �jT$ �H (see, e.g., Ref. 7), where �T is the turbulent vis-
cosity and jT is the turbulent temperature diffusivity.

On the other hand, there are coherent structures in turbulent
convection (large-scale coherent convective cells or large-scale circula-
tions) and the velocity field inside large-scale circulations is strongly
nonuniform. These nonuniform motions can produce anisotropic
velocity fluctuations which can contribute to the turbulent heat flux.
In particular, the turbulent heat flux, F ¼ �jT$ �H, does not take into
account the contribution from anisotropic velocity fluctuations.

It has been shown in Ref. 42 that the contribution to the turbu-
lent heat flux from anisotropic velocity fluctuations plays essential role
in formation of large-scale circulations in turbulent convection. In par-
ticular, the following expression for the turbulent heat flux F has been
derived in Ref. 42:

F ¼ F� � s0 F�z div �U? �
1
2

�W � F�z

� �
; (3)

where F� ¼ �jT$ �H is the classical turbulent heat flux (i.e., the back-
ground turbulent heat flux in the absence of nonuniform large-scale
flows), s0 is the correlation time of turbulent velocity at the integral
scale of turbulent motions, �W ¼ $� �U is the mean vorticity, the
mean velocity �U ¼ �U? þ �U z is decomposed into the horizontal �U?
and vertical �U z components. The new terms in the turbulent heat flux
F are caused by anisotropic velocity fluctuations and depend on the
mean velocity gradients. These new terms lead to the excitation of
large-scale convective-wind instability and formation of coherent
structures. For nearly uniform large-scale flows, the anisotropic turbu-
lence effects can be neglected, so that the traditional equation for the
turbulent heat flux is recovered.

The physical meaning of the new terms in the turbulent heat flux
is the following. The first term Fnew ¼ �s0 F�z div �U? in the squared
brackets of Eq. (3) for the turbulent heat flux describes the redistribu-
tion of the vertical background turbulent heat flux F�z by the perturba-
tions of the convergent (or divergent) horizontal mean flows �U? (see
Fig. 1). This redistribution of the vertical turbulent heat flux occurs
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during the lifetime of turbulent eddies. In particular, the term Fnew

describes enhancing of the vertical turbulent flux of potential tempera-
ture by the converging horizontal motions. The latter increases the
upward (positive) heat flux and enhances buoyancy, thus creating the
upward flow. In its turn, this flow strengthens the horizontal conver-
gent flow causing a large-scale convective-wind instability.

The second term / ðs0=2Þ ð �W � F�zÞ in the squared brackets of
Eq. (3) determines the formation of the horizontal turbulent heat flux
due to “rotation” of the vertical background turbulent heat flux F�z by
the perturbations of the horizontal mean vorticity �W?. In particular,
this term describes generation of horizontal turbulent flux of potential
temperature through turning the vertical flux by horizontal compo-
nent of the vorticity. This effect decreases (increases) local potential
temperatures in rising motions, that reduces the buoyancy accelera-
tions, and weakens vertical velocity and vorticity, and thus causes
damping of large-scale convective-wind instability. These two effects
are determined by the local inertial forces in nonuniform mean flows.

The linear-stability analysis of the linearized Eqs. (1)–(3) yields
the following estimate for the growth rate ~c inst of long-wave perturba-
tions ½ð‘0KÞ2 � 1� of the convective-wind instability:

~cinst ¼
b F�z s0

2

� �1=2

K j sinuj ð1� 2 sin2uÞ1=2 � �TK2; (4)

where u is the angle between the vertical axis z and the wave vector K
of small perturbations and u0 is the characteristic turbulent velocity in
the integral scale ‘0 of turbulence. Equation (4) is obtained for the tur-
bulent Prandtl number PrT ¼ 1. The analysis of the convective-wind
instability is performed in Refs. 42–44. The mechanism of this instability
is as follows (see Fig. 1). Whenrz �Uz > 0, perturbations of the vertical
velocity �Uz cause negative divergence of the horizontal velocity, div
�U? < 0 (provided that div �U ¼ 0), describing convergent horizontal
flows (shown by the green arrows in panel a of Fig. 1). This produces
vertical turbulent flux of potential temperature Fnew ¼ �s0 F�z div �U?
(shown by the red arrow in panel b of Fig. 1). The latter strengthens the
local total vertical turbulent flux of potential temperature and by this

means leads to increasing the local mean potential temperature and
buoyancy. The latter enhances the local mean vertical velocity �Uz .
Through this mechanism, a large-scale convective-wind instability is
excited.

Similar reasoning is valid whenrz �Uz < 0, whereas div �U? > 0
describing divergent horizontal flows (shown by the green arrows in
panel c of Fig. 1). This produces negative perturbations of the vertical
flux of potential temperature Fnew ¼ �s0 F�z div �U? (shown by the
blue arrow in panel d of Fig. 1), which lead to decrease in the mean
potential temperature and buoyancy. This enhances the downward
flow, and results in excitation of the convective-wind instability. Thus,
nonzero perturbations of div �U? cause redistribution of the vertical
turbulent flux of potential temperature and formation of regions with
large values of this flux. The regions where rz �Uz < 0 alternate with
the low-flux regions whererz �Uz > 0. This mechanism causes forma-
tion of the large-scale circulations.

III. NONDIMENSIONAL EQS. AND LARGE-SCALE
CONVECTIVE-WIND INSTABILITY

Using the expression (3) for the turbulent heat flux F with the
additional terms caused by the nonuniform mean flows, calculating
div F, and assuming that the nondimensional total vertical heat flux
Uc ¼ ~F

�
z þ ~Uz

~H is constant, we rewrite Eqs. (1) and (2) in a nondi-
mensional form,

@ ~U
@t
þ ð ~U � $Þ ~U ¼ �$~P

q0
þ RaT ~H eþ D ~U ; (5)

PrT
@ ~H
@t
þ ð ~U � $Þ ~H

� �

¼ ~Uz þ D ~H þ � rz ~Uz

� �
�rz ~Uz

~H
� �h

þ Uc � ~Uz
~H

� � D
2
�r2

z

� �
~Uz

þ 1
2
rz ~Ux �rx ~Uz

� �
rx ~Uz

~H
� �

þ 1
2
rz ~Uy �ry ~Uz

� 	
ry ~Uz

~H
� ��

; (6)

and div ~U ¼ 0 (see Appendix A), where ~U is the nondimensional
mean velocity, ~F

�
z is the nondimensional vertical turbulent back-

ground heat flux, ~H is the nondimensional mean potential tempera-
ture and ~P is the nondimensional mean pressure, and e is the unit
vector directed along the vertical z axis.

In Eqs. (5) and (6), length is measured in the units of the vertical
size of the convective layer Lz (e.g., the size of the computational
domain), time is measured in the units of the turbulent viscosity time,
L2z=�T , velocity is measured in the units of �T=Lz , potential tempera-
ture is measured in the units of Lz N2 PrT=b, turbulent heat flux is
measured in the units of �T N2 PrT=b, and pressure is measured in
the units of q0 ð�T=LzÞ2. Here, �T ¼ u0 ‘0=3 is the turbulent (eddy)
viscosity, u0 is the turbulent velocity at the integral turbulent scale ‘0,
andN2 ¼ b jrz �T 0j.

In Eqs. (5) and (6), we use the following dimensionless
parameters:

• the effective Rayleigh number,

FIG. 1. The illustration of the physics caused by the new turbulent heat flux
Fnew ¼ �s0 F�z div �U? produced by the perturbations of the convergent (or diver-
gent) horizontal mean flows �U? [shown by the green arrows in panels (a) and (c)].
The new turbulent flux Fnew increases the upward (positive) heat flux, enhances
buoyancy, and increases the local mean potential temperature, thus creating the
upward flow. Likewise, the new turbulent flux Fnew decreases the vertical turbulent
flux of potential temperature by the divergent horizontal motions, which reduces the
buoyancy and decreases the local mean potential temperature, thus creating the
downward flow. These effects cause a formation of the large-scale coherent struc-
tures (the large-scale circulations).
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RaT ¼
L4z N

2

�T jT
; (7)

• the turbulent Prandtl number,

PrT ¼
�T
jT
; (8)

• the scale separation parameter,

� ¼ ‘20
3L2z

; (9)

• the non-dimensional total vertical heat flux,

Uc ¼
3

�2 RaT

uc
u0

� �3

¼ r
�2 RaT

; (10)

where r ¼ 3 ðuc=u0Þ3; uc ¼ ðbF�z ‘0Þ
1=3 is the characteristic turbulent

convective velocity, F�z is the vertical background turbulent flux of
potential temperature and jT is the turbulent (eddy) diffusivity. In
Eqs. (5) and (6), we have neglected small terms�Oð�2Þ, where �� 1.

Let us discuss the large-scale convective-wind instability, using
the stress-free boundary conditions for the velocity field in the vertical
direction (along the z axis),

~Uzðt; z ¼ 0Þ ¼ ~Uzðt; z ¼ 1Þ ¼ 0; (11)

rz ~Uxðt; z ¼ 0Þ ¼ rz ~Uxðt; z ¼ 1Þ ¼ 0; (12)

rz ~Uyðt; z ¼ 0Þ ¼ rz ~Uyðt; z ¼ 1Þ ¼ 0: (13)

For a classical laminar convection with the boundary conditions
given by Eqs. (11)–(13), the critical Rayleigh number required for the
onset of convection is Racr 	 657:5.44–47 The classical laminar convec-
tion is described by Eqs. (5) and (6), where there are no terms / � in
Eq. (6), and turbulent viscosity and turbulent heat conductivity are
replaced by the molecular viscosity and heat conductivity.

Now let us consider the linear two-dimensional problem using
Eqs. (5) and (6) with � 6¼ 0, where we take into account the modifica-
tion of the turbulent heat flux by nonuniform large-scale motions. A
particular solution of the linearized Eqs. (5) and (6), satisfying the ver-
tical boundary conditions (11)–(13), is given by

~Uzðt; y; zÞ ¼ U0 sin ðpzÞ cos ðapyÞ exp ðcinst tÞ; (14)

~Uyðt; y; zÞ ¼ �a�1 U0 cos ðpzÞ sin ðapyÞ exp ðcinst tÞ; (15)

~Hðt; y; zÞ ¼ H0 sin ðpzÞ cos ðapyÞ exp ðcinst tÞ; (16)

and ~Uxðt; y; zÞ ¼ 0, where cinst is the non-dimensional growth rate of
the convective-wind instability, and the parameter a to be determined
below. Equations (14)–(16) imply that the nondimensional wavenum-
bers Ky ¼ ap and Kz ¼ p, so that K ¼ ðK2

y þ K2
z Þ

1=2

¼ p ð1þ a2Þ1=2. Note that for a classical laminar convection [where
there are no terms / � in Eq. (6), and a ¼ 1=

ffiffiffi
2
p

] with the vertical
boundary conditions given by Eqs. (11)–(13), the maximum growth
rate of the convective instability is attained at the nondimensional
wavenumber Ky ¼ p=

ffiffiffi
2
p

.
Let us consider convective turbulence, and the large-scale proper-

ties of the system are described by the mean-field equations (5) and
(6), where � 6¼ 0. Substituting solution (14)–(16) into linearized

Eqs. (5) and (6), we obtain the nondimensional growth rate cinst of the
large-scale convective-wind instability (see Appendix B),

cinst ¼
a

ð1þ a2Þ1=2
RaT þ

r p2

2�
1� a2ð Þ

� �1=2
� p2 ð1þ a2Þ: (17)

Here, we consider the case when the turbulent Prandtl number
PrT ¼ 1. The condition cinst ¼ 0 yields the critical effective Rayleigh
number RacrT required for the excitation of the large-scale convective-
wind instability,

RacrT ¼
p4 ð1þ a2Þ3

a2
1� r ð1� a2Þ

2p2 � ð1þ a2Þ3

" #
: (18)

Note that Eq. (18) is valid for arbitrary turbulent Prandtl number PrT .
Equations (17) and (18) at �¼ 0 (i.e., r¼ 0) describe the classical

laminar convection, where the effective Rayleigh number RaT based
on the turbulent transport coefficients should be replaced by the
Rayleigh number Ra based on the molecular transport coefficients. It
follows from Eq. (18) that the critical effective Rayleigh number
required for the large-scale convective-wind instability is strongly
reduced in turbulence (for perturbations with a < 1). This is due to
the modification of the turbulent heat flux by the nonuniform
motions. This effect will be discussed in Sec. IV, where the results of
mean-field simulations are described. Note that Eq. (17) agrees with
Eq. (4) for RaT ! 0.

In Fig. 2, we show the critical effective Rayleigh number RacrT vs
the parameter a for different values of the parameter r ¼ 3 ðuc=u0Þ3,
while in Fig. 3 we plot the critical effective Rayleigh number RacrT as
the function of the parameter �=r for different values of the parameter
a. The classical convection corresponds to r ¼ 0 when the turbulent
integral scale ‘0 vanishes. The increase in the parameter r decreases
the critical effective Rayleigh number required for the large-scale
convective-wind instability. This tendency is also seen in Fig. 4, where
we plot the non-dimensional growth rate cinst of the large-scale
convective-wind instability vs the effective Rayleigh numbers RaT for
different values of the parameter r. In Fig. 5, we show the non-
dimensional growth rate cinst of the large-scale convective-wind insta-
bility vs a for different effective Rayleigh numbers RaT . The thick lines
in Fig. 5 correspond to turbulent convection, while the thin lines corre-
spond to the classical laminar convection. In the classical laminar

FIG. 2. The critical effective Rayleigh number RacrT vs the parameter a for
� ¼ 10�2 and different values of the parameter r ¼ 3 (dashed); 0.3 (dashed-
dotted); 0.206 (solid thick); 0.197 (red); 0.15 (dotted); and for the classical laminar
convection with r ¼ 0 (solid thin).
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convection the maximum growth rate of the convective instability is
attained when a tends to 1, while in the turbulent convection the
convective-wind instability is more effective when a tends to 1/2.

In Fig. 6, we plot the nondimensional growth rate
c�inst ¼ 10 cinst �

1=2 of the large-scale convective-wind instability vs
Lz=‘0 for different values of the effective Rayleigh number. We show
the growth rate c�inst instead of cinst by the following reasons. Since the

growth rate of the large-scale convective-wind instability is measured in
the units of �T=L2z and the turbulent viscosity �T ¼ u0 ‘0=3 is propor-
tional to the integral turbulence scale ‘0, we show the nondimensional
growth rate c�inst which is measured in the units which are independent
of ‘0. Figure 6 demonstrates that when the effective Rayleigh number is
not large, the separation of scales Lz=‘0 between the size of the
convective layer and the integral scale of turbulence should be large
(more than 5–10) to observe the large-scale convective-wind instability
and formation of large-scale coherent structures.

IV. RESULTS OF THE MEAN-FIELD NUMERICAL
SIMULATIONS

In this section, we study nonlinear evolution of the convective-
wind instability by means of the mean-field numerical simulations,
where we solve numerically Eqs. (5) and (6) for the periodic boundary
conditions in the horizontal directions (along the x and y axes). We use
two kinds of the vertical boundary conditions for the velocity field: (i)
stress-free boundary conditions corresponding to the free vertical bound-
aries and (ii) no-slip boundary conditions corresponding to the rigid ver-
tical boundaries. The boundary conditions for the potential temperature
in the vertical direction are ~Hðt; z ¼ 0Þ ¼ ~Hðt; z ¼ 1Þ ¼ 0.

Simulations are performed using the ANSYS FLUENT code
(version 19.2) (https://lawn-mower-manual.com/htm/ansys-fluent-
theory-guide-2020) which applies the Final Volume method in the 3D
box Lx ¼ Lz ¼ 1 and Ly ¼ 2. The additional terms / � in the diver-
gence of the turbulent heat flux are implemented into the code as the
source terms in the potential temperature equation (6).

The simulations are performed with the spatial resolution
100� 200� 100 in x, y, and z directions, respectively. A sensitivity
check has been also made for the spatial resolution 150� 300� 150.
For both cases, similar results for velocity and potential temperature
have been obtained. In all simulations, we use a time step of 10�3. A
sensitivity check has been made for time steps as well. Time steps of
10�3 and 2� 10�3 have been tested, and a maximum error of 0.05%
at velocity and potential temperature using these time steps has been
obtained. In addition, a convergence error was set to be less than 10�6.

The parameters for the simulations are the following: the turbu-
lent Prandtl number PrT ¼ 1, the ratio uc=u0 ¼ 1, the effective
Rayleigh number varies from RaT ¼ 0:5 to RaT ¼ 2700, and the scale
separation parameter � varies in the range ð0:5–2Þ � 10�3. Different
theoretical and numerical studies show that the turbulent Prandtl

FIG. 3. The critical effective Rayleigh number RacrT vs the parameter �=r and differ-
ent values of the parameter a ¼ 0.3 (dashed-dotted), 0.5 (dashed), and 0.8 (solid).

FIG. 4. The non-dimensional growth rate cinst of the large-scale convective-wind
instability vs the effective Rayleigh numbers RaT for a ¼ 0:5; � ¼ 10�2 and differ-
ent values of the parameter r ¼ 3 (solid); 1 (dashed); and for the classical convec-
tion with r ¼ 0 (dashed-dotted).

FIG. 5. The non-dimensional growth rate cinst of the large-scale convective-wind
instability vs a for r ¼ 3, � ¼ 10�2 and different effective Rayleigh numbers
RaT ¼ 1000 (dashed-dotted thick); 657.5 (dashed thick); 0.5 (solid-thick); and for
the classical convection with r ¼ 0 and different Rayleigh number RaT ¼ 1000
(dashed-dotted thin); 657.5 (dashed thin); and 0.5 (solid-thin).

FIG. 6. The non-dimensional growth rate c�inst ¼ 10 cinst �
1=2 of the large-scale con-

vective-wind instability vs Lz=‘0 for a ¼ 0:5 and different effective Rayleigh number
RaT ¼ 2000 (dotted); 1000 (dashed-dotted); 657.5 (dashed); and 0.5 (solid).
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number PrT for large Reynolds numbers in isothermal and convective
turbulence is of the order of 1 (see Refs. 50–54) while in stably strati-
fied turbulence the turbulent Prandtl number can be much larger than
1 only for large Richardson numbers (see Refs. 55–61). The variations
of the parameter � ¼ ð0:5–2:5Þ � 10�3 (characterizing the separation
of scales between the height Lz of the convective layer and the integral
turbulence scale ‘0) corresponds to variations of the ratio
Lz=‘0 ¼ 12–26. The choice of the other parameters is discussed below
and in Sec. V.

A. Numerical simulations with the stress-free vertical
boundary conditions

Let us discuss the results of the mean-field numerical simulations
which take into account the modification of the turbulent heat flux by
the non-uniform motions [described by the terms / � in Eq. (6)].
Here we discuss the numerical results for the stress-free boundary con-
ditions in the vertical direction and for the following initial conditions:

~Uzðt ¼ 0; zÞ ¼ U0 sin ðpzÞ cos ðapyÞ; (19)

~Uyðt ¼ 0; zÞ ¼ �a�1 U0 cos ðpzÞ sin ðapyÞ; (20)

~Uxðt ¼ 0; zÞ ¼ 0; (21)

~Hðt ¼ 0; zÞ ¼ H0 sin ðpzÞ cos ðapyÞ; (22)

[see analytical solution (14)–(16)], where U0 is initial amplitude of the
nondimensional mean vertical velocity. In the mean-field numerical
simulations, we use the parameters U0 ¼ 10�4 and a ¼ 0:35. In some
simulations we also use U0 ¼ 0:23 to avoid a long transition range.
The obtained results are nearly independent of parameter U0.

In Figs. 7 and 8, we show the time evolution of the maximum
velocity ~UmaxðtÞ for different effective Rayleigh numbers varying from
RaT ¼ 0:5 to 1800 and different values of the parameter � (which

characterizes scale separation between the vertical size Lz of the com-
putational domain and the integral turbulence scale ‘0). During the
linear stage of the large-scale convective-wind instability, the maxi-
mum velocity ~UmaxðtÞ grows in time exponentially. The instability is
saturated by the nonlinear effects. For smaller values of the parameter
� (i.e., for larger values of the parameter Lz=‘0), after the stationary
stage when the maximum velocity ~UmaxðtÞ reaches the constant, non-
linear oscillations of the maximum velocity ~UmaxðtÞ are observed.
With the increase in the effective Rayleigh number RaT , the duration
of the stationary stage decreases (see Fig. 7). The values of the maxi-
mum velocity ~Umax at the stationary stage are nearly independent of
the effective Rayleigh number RaT (see Fig. 7), but ~Umax at the station-
ary stage strongly depends on the scale separation parameter � (see
Fig. 8).

We show also the velocity patterns in the yz plane at the stationary
stage [Fig. 9(a)]. Since the potential temperature is measured in the units
of LzN2 PrT=b¼RaT�2T=ðbL3zÞ, we show in Fig. 9(b) the pattern of the
normalized deviations of the potential temperature ~HRaT from the
equilibrium potential temperature in the basic reference state. Figure 9
is for the stress-free vertical boundary conditions, �¼2:5�10�3 and
the effective Rayleigh number, RaT ¼0:5. All fields in Fig. 9 are nor-
malized by their maximum values.

Figures 9(a) and 9(b) demonstrate the four-cell patterns of the
velocity and potential temperature, where the two-cell patterns are
located in both, the upper and bottom parts of Fig. 9. Remarkably, the
large-scale circulations exist even below the threshold of the laminar
convection. The main reason is that turbulence with nonuniform
large-scale flows contributes to the turbulent heat flux. In particular,
nonuniform large-scale flows produce anisotropic velocity fluctuations
modifying the turbulent heat flux. As the result, the evolutionary equa-
tion (6) for the potential temperature ~H contains the new terms pro-
portional to the spatial derivatives of the mean velocity field ~U (see the
terms / �). For the stress-free boundary conditions and different

FIG. 7. Time evolution of the maximum velocity ~UmaxðtÞ at � ¼ 2:5� 10�3 and
different values of the effective Rayleigh number RaT for the stress-free boundary
conditions.

FIG. 8. Time evolution of the maximum velocity ~UmaxðtÞ at RaT ¼ 0:5 and different
values of � for the stress-free boundary conditions.
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effective Rayleigh numbers varying from RaT ¼ 0:5 to RaT ¼ 1800,
we observe the same four-cell flow patterns which is seen in Fig. 9.

Since the total gradient of the potential temperature is the sum of
the equilibrium constant gradient of the potential temperature rz �T eq

(which is negative as usual for a convection) and the gradient of the
potential temperature rz

~H, we show in Fig. 9(c) the pattern of the
normalized total vertical gradient of the mean potential temperature,
ðrz

~H � 1ÞRaT that includes the equilibrium constant gradient of the
potential temperature rz �T eq. The normalized vertical gradient of the
mean potential temperature, ðrz

~H � 1ÞRaT describes convection.
Figure 9(c) demonstrates existence of the regions with the positive gra-
dient of the potential temperature ðrz

~H � 1ÞRaT . This implies that
these regions are stably stratified. Such effects have been previously
observed in experiments14,48 and direct numerical simulations
(DNS)32–34,49 of turbulent convection.

The existence of the regions with the positive gradient of the
potential temperature inside the large-scale circulation can be
explained as follows. The total vertical heat flux Ftot

z is the sum of the
mean vertical heat flux �U z

�H of the large-scale circulation, the vertical
turbulent heat flux F�z ¼ �jT$z

�H and the new turbulent heat flux

Fnew
z ¼ �s0 F�z div �U? (these fluxes are written here in the dimen-

sional form), i.e.,

Ftot
z ¼ �U z

�H � jT$z
�H � s0 F�z div �U?: (23)

Note that the last term in Eq. (3) does not have the vertical compo-
nent. Equation (23) yields the vertical gradient of the mean potential
temperaturerz

�H,

rz
�H ¼

�Uz
�H � Ftot

z

jT ð1� s0 div �U?Þ
: (24)

In the regions inside the large-scale circulation where �Uz
�H > Ftot

z ,
the vertical gradient rz

�H is positive, while when �Uz
�H < Ftot

z , the
vertical gradient rz

�H is negative. Note that usually s0 jdiv �U?j < 1.
This explains the existence of the regions with the positive gradient of
the potential temperature inside the large-scale circulation in a turbu-
lent convection.

B. Numerical simulations with the no-slip vertical
boundary conditions

In this section, we use the no-slip boundary conditions for the
velocity field in the vertical direction,

~U ðt; z ¼ 0Þ ¼ ~U ðt; z ¼ 1Þ ¼ 0: (25)

For the classical laminar convection with the no-slip boundary condi-
tions [where there are no terms / � in Eq. (6)], the critical Rayleigh
number required for the excitation of convection is Racr 	 1708.44–47

Let us discuss the results of the mean-field numerical simulations
for the case which takes into account the modification of the turbulent
heat flux by the nonuniform motions [described by the terms / �
in Eq. (6)]. In Figs. 10–12, we plot time evolution of the maximum
velocity ~UmaxðtÞ for different effective Rayleigh numbers varying from

FIG. 9. The velocity patterns at the stationary stage (a), the potential temperature
deviations ~H RaT from the equilibrium potential temperature in the basic reference
state (b) and the total vertical gradient of the mean potential temperature
ðrz

~H � 1ÞRaT (c) in yz plane for the stress-free vertical boundary conditions for
� ¼ 2:5� 10�3 and the effective Rayleigh number RaT ¼ 0:5. All fields are nor-
malized by their maximum values.

FIG. 10. Time evolution of the maximum velocity ~UmaxðtÞ at � ¼ 10�3 and different
values of the effective Rayleigh number RaT for the no-slip boundary conditions.
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RaT ¼ 0:5 to 1800 and different values of the parameter �. The large-
scale convective-wind instability is excited when the parameter
� 
 1:75� 10�3. After the exponential growth of the maximum
velocity ~UmaxðtÞ, there is a saturation stage of the convective-wind
instability. We also observe the nonlinear oscillations of the maximum
velocity ~UmaxðtÞ which follow after the stationary stage when the max-
imum velocity ~UmaxðtÞ reaches the constant. The characteristic dura-
tion of the stationary stage decreases with increase in the effective
Rayleigh number RaT (see Fig. 10). As well as for the stress-free verti-
cal boundary conditions, the maximum velocity ~UmaxðtÞ in saturation

depends strongly on the scale separation parameter � (see Figs. 11 and
12), and it is nearly independent of the effective Rayleigh number (see
Fig. 10).

We also show the velocity patterns [Figs. 13(a) and 14(a)] in yz
plane at the stationary stage, the potential temperature deviations
~H RaT from the equilibrium potential temperature in the basic refer-
ence state [Figs. 13(b) and 14(b)] and the total vertical gradient of the
mean potential temperature ðrz

~H � 1ÞRaT [Figs. 13(c) and 14(b)].
These figures are for the no-slip vertical boundary conditions at the
effective Rayleigh number RaT ¼ 1800, and for two values of the
parameter � ¼ 1:75� 10�3 (Fig. 13) and � ¼ 2:5� 10�3 (Fig. 14).

As well as for the stress-free vertical boundary conditions, the
large-scale circulations form even below the threshold of the laminar
convection for the case of the no-slip boundary conditions. However,
for the no-slip vertical boundary conditions we see some differences.
In particular, increasing the parameter � from � ¼ 1:75� 10�3 to
� ¼ 2:5� 10�3, we observe a transition from the four-cell flow pat-
terns [see Figs. 13(a) and 13(b)] to the two-cell patterns [see Figs.
14(a) and 14(b)]. As well as for the stress-free vertical boundary condi-
tions, Figs. 13(c) and 14(c) also show the regions with the positive total

FIG. 11. Time evolution of the maximum velocity ~UmaxðtÞ at RaT ¼ 100 and differ-
ent values of � for the no-slip boundary conditions.

FIG. 12. Time evolution of the maximum velocity ~UmaxðtÞ at RaT ¼ 1800 and
different values of � for the no-slip boundary conditions.

FIG. 13. The velocity patterns at the stationary stage (a), the potential temperature
deviations ~H RaT from the equilibrium potential temperature in the basic reference
state (b) and the total vertical gradient of the mean potential temperature
ðrz

~H � 1ÞRaT (c) in yz plane for the no-slip vertical boundary conditions for
� ¼ 1:75� 10�3 and the effective Rayleigh number RaT ¼ 1800. All fields are
normalized by their maximum values.
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gradient of the potential temperature ðrz
~H � 1ÞRaT , which corre-

spond to the stably stratified flows. This study demonstrates that
dependence on the vertical boundary conditions (the stress-free or no-
slip boundary conditions) is not essential.

V. DISCUSSION

Let us discuss the novelty aspects and significance of the obtained
results. The effect of modification of the turbulent heat flux by nonuni-
form large-scale motions in turbulent convection was investigated ana-
lytically in Ref. 42, where the turbulent heat flux F given by Eq. (3) was
derived. This new effect causes an excitation of the convective-wind
instability. The estimate for the growth rate of the convective-wind
instability [see Eq. (4)] was obtained for the case when the effective
Rayleigh number vanishes, RaT ! 0.42 The linear stage of the
convective-wind instability was numerically studied in Ref. 44 for differ-
ent conditions. Applications of these results to atmospheric turbulence
were discussed in Ref. 43, where the theoretical predictions42 were com-
pared with observational characteristics of the cloud convective cells.

In the present paper, we have generalized Eq. (4) for the growth
rate of the convective-wind instability for arbitrary effective Rayleigh

numbers [see Eq. (17)]. This allows us to obtain equation for the criti-
cal effective Rayleigh number required for the excitation of the large-
scale convective-wind instability [see Eq. (18)]. This equation explains
why the large-scale circulation can be formed in turbulent convection
even for very low effective Rayleigh numbers. This result has been con-
firmed by the mean-field simulations performed in the present study.

We have shown that the convective-wind instability strongly
depends on the scale separation parameter � characterizing the separa-
tion of scales between the height of the convective layer Lz and the
integral turbulence scale ‘0. In the mean-field numerical simulations,
the parameter � varies in the range ð0:5–2:5Þ � 10�3, which corre-
sponds to variations of the separation of scales Lz=‘0 in the range
12–26. Any mean-field theory is usually valid when the integral turbu-
lence scale is much less than the characteristic scale of the mean-field
variations, that is consistent with these values Lz=‘0. Also direct mea-
surements in laboratory experiments in turbulent convection by mea-
suring of the two-point correlation function of velocity fluctuations
(which allow us to determine the integral scale of turbulence) are con-
sistent with these values of Lz=‘0 (see Refs. 25 and 26).

Direct numerical simulations (DNS) cannot be performed for
very large Reynolds numbers (i.e., for Reynolds numbers based on
integral scale and maximum turbulent velocity which are larger than
104), while in many applications, e.g., in atmospheric and astrophysical
turbulent flows, characteristic Reynolds numbers are much larger than
104. In this case, mean-field simulations based on nonlinear mean-
field equations [where turbulent effects are described by means of
effective (turbulent) transport coefficients and modified turbulent heat
flux] can be very useful. The mean-field numerical simulations dem-
onstrate existence of the local regions with the positive vertical gradi-
ent of the potential temperature inside the large-scale circulations. In
the present study we explain this effect [see Eqs. (23) and (24) and cor-
responding discussion after these equations]. This effect was previ-
ously observed in laboratory experiments (see, e.g., Refs. 14 and 48) as
well as in DNS of turbulent convection (see, e.g., Refs. 32–34).

In view of applications, the obtained results are relevant to large-
scale convective cells (the cloud cells) observed in the atmospheric tur-
bulent convection without strong mean wind. They are formed in a
convective boundary layer with a depth of about 1 to 3 km and have
aspect ratios Lz=Lhor 	 0:05–1 (see, e.g., Ref. 39), where Lhor and Lz
are the horizontal and vertical sizes of convective cells. The ratio of the
minimum size of the convective cells to the maximum scale of turbu-
lent motions is Lmin=‘0 ¼ 5–20. This implies that the parameter � for
the observed convective cells ranges from 10�3 to 10�2. The character-
istic time of formation of the convective cells (sform � s0=cinst) in the
atmospheric turbulent convection varies from 1 to 3 h. Here cinst is the
nondimensional growth rate of the instability [see Eq. (17)].

Turbulent velocity u0 at the lower part of the surface convective
layer, where the turbulence production is mainly due to the large-scale
shear motions, is of the order of u0 � ð2� 4Þ u�, where u� is the fric-
tion velocity. At the upper part of the surface convective layer, where
production of the turbulence is mainly due to the buoyancy, is of the
order of the turbulent convective velocity uc ¼ ðbF�z ‘0Þ

1=3 (see, e.g.,
Ref. 7), which implies that u0=uc � 1.

VI. CONCLUSIONS

In the present paper, we study formation and nonlinear evolution
of large-scale circulations in turbulent convection by means of the

FIG. 14. The velocity patterns at the stationary stage (a), the potential temperature
deviations ~H RaT from the equilibrium potential temperature in the basic reference
state (b) and the total vertical gradient of the mean potential temperature
ðrz

~H � 1ÞRaT (c) in yz plane for the no-slip vertical boundary conditions for
� ¼ 2:5� 10�3 and the effective Rayleigh number RaT ¼ 1800. All fields are nor-
malized by their maximum values.
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mean-field numerical simulations. We use periodic horizontal bound-
ary conditions, and stress-free or no-slip vertical boundary conditions.
We have taken into account the effect of strong modification of the
turbulent heat flux by nonuniform large-scale motions which generate
anisotropic velocity fluctuations. The performed mean-field numerical
simulations have shown that this effect strongly reduces the critical
Rayleigh number (based on the eddy viscosity and turbulent tempera-
ture diffusivity) required for onset of the large-scale convective-wind
instability and formation of large-scale semi-organized coherent struc-
tures (large-scale circulations). The onset of this instability and the
level of the mean velocity at saturation strongly depend on the scale
separation ratio between the height of the convective layer and the
integral scale of turbulence. The simulations demonstrate the existence
of the local regions with the positive vertical gradient of the potential
temperature inside the large-scale circulations. The latter implies that
these regions are stably stratified.
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APPENDIX A: DERIVATION OF EQ. (6)

In this appendix, we derive Eq. (6) for the mean potential tem-
perature. To this end, we use Eq. (3) for the turbulent heat flux F
with the additional terms caused by the non-uniform mean flows.
We determine div F by assuming that the non-dimensional total
vertical heat flux Ftot

z ¼ F�z þ �Uz
�H is constant. This yields

$ � F ¼ �jTD �H � s0 Ftot
z � �Uz

�H
� � D

2
�r2

z

� �
�Uz

�

þ 1
2
rz �Ux �rx �Uzð Þrx �Uz

�H
� �

þ 1
2
rz �Uy �ry �Uz
� �

�ry �Uz
�H

� �
þ rz �Uzð Þrz �Uz

�H
� ��

: (A1)

Using Eqs. (2) and (A1), written in non-dimensional form (see defi-
nitions of the non-dimensional variables and the key parameters in
Sec. III), we obtain Eq. (6).

APPENDIX B: DERIVATION OF EQ. (17)

In this appendix, we derive Eq. (17) for growth rate of the large-
scale convective-wind instability. To this end, we use linearized non-
dimensional equations (5) and (6), calculate ½$� ð$� ~U Þ�z using
the linearized Eq. (5) to exclude the pressure term, and seek for
solution of the obtained equations in the following form: ~U ðt; xÞ
¼ ~U 0 exp ½i ðcinstt þ K � xÞ� and ~Hðt; xÞ ¼ H0 exp ½i ðcinstt þ K � xÞ�.
This yields the following system of equations:

cinst þ K2
� �

~Uz þ RaT
K2
z

K2
� 1

� �
~H ¼ 0; (B1)

1þ r
�RaT

K2
z �

K2

2

� �" #
~Uz � cinst þ K2

� �
~H ¼ 0; (B2)

where r ¼ 3 ðuc=u0Þ3, and we consider, for simplicity, the case
when the turbulent Prandtl number PrT ¼ 1. Equations (B1) and
(B2) yield the non-dimensional growth rate (17) of the large-scale
convective-wind instability, where Kz ¼ p and K � jK j
¼ p ð1þ a2Þ1=2.
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