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ABSTRACT

The energy and flux budget (EFB) closure theory for a passive scalar (non-buoyant and non-inertial particles or gaseous admixtures) is devel-
oped for stably stratified turbulence. The physical background of the EFB turbulence closures is based on the budget equations for the turbu-
lent kinetic and potential energies and turbulent fluxes of momentum and buoyancy as well as the turbulent flux of particles. The EFB
turbulence closure is designed for stratified geophysical flows from neutral to very stable stratification, and it implies that turbulence is main-
tained by the velocity shear at any stratification. In a steady-state, expressions for the turbulent flux of the passive scalar and the anisotropic
non-symmetric turbulent diffusion tensor are derived, and universal flux Richardson number dependencies of the components of this tensor
are obtained. The diagonal component in the vertical direction of the turbulent diffusion tensor is suppressed by strong stratification, while
the diagonal components in the horizontal directions are not suppressed, but they are dominant in comparison with the other components
of the turbulent diffusion tensor. This implies that any initially created strongly inhomogeneous particle cloud is evolved into a thin pancake
in a horizontal plane with very slow increase in its thickness in the vertical direction. The turbulent Schmidt number (the ratio of the eddy
viscosity and the vertical turbulent diffusivity of the passive scalar) linearly increases with the gradient Richardson number. The physics of
such a behavior is related to the buoyancy force that causes a correlation between fluctuations of the potential temperature and the particle
number density. This correlation that is proportional to the product of the vertical turbulent particle flux and the vertical gradient of the
mean potential temperature reduces the vertical turbulent particle flux. Considering the applications of these results to the atmospheric
boundary-layer turbulence, the theoretical relationships are derived, which allows us to determine the turbulent diffusion tensor as a function
of the vertical coordinate measured in the units of the local Obukhov length scale. The obtained relations are potentially useful in modeling
applications of particle dispersion in the atmospheric boundary-layer turbulence and free atmosphere turbulence.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0052786

I. INTRODUCTION

Turbulence and the associated turbulent transport of the passive
scalar have been systematically investigated for more than a hundred
years in theoretical, experimental, and numerical studies.1–8 However,
some fundamental questions remain. This is particularly true in appli-
cations such as geophysics and astrophysics, where the governing
parameter values are too large to be modeled either experimentally or
numerically.

The classical theory of atmospheric turbulence implies that the
turbulent flux of any quantity is a product of a mean gradient of the
quantity and a turbulent-exchange coefficient (e.g., eddy viscosity,
eddy diffusivity, etc.).1,2,9,10 This corresponds to a down-gradient

transport where the turbulent-exchange coefficients are proportional
to the density of the turbulent kinetic energy multiplied by the turbu-
lent timescale. This has been originally formulated for neutrally strati-
fied turbulence.9,10

Many turbulence closure models of stratified turbulence in mete-
orological applications1,2,11 have been based only on the density of the
turbulent kinetic energy equation, not considering an evolution of the
density of the turbulent potential energy proportional to the second
moment of potential temperature fluctuations. In stable stratification,
such turbulence closure models have resulted in the erroneous conclu-
sion that shear-generated turbulence inevitably decays and that the
flow becomes laminar in “supercritical” stratifications (at the gradient
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Richardson number exceeding some critical values),12,13 where the
gradient Richardson number is the ratio of the squared Brunt-V€ais€al€a
frequency (proportional to the gradient of the mean potential temper-
ature) to the squared mean velocity shear.

Contradictions of this conclusion via the well-documented uni-
versal existence of turbulence under strongly supercritical conditions
typical of the free atmosphere and the deep ocean14–22 have been
attributed to some unknown mechanisms and, in practical applica-
tions, mastered heuristically.21–23 Numerous alternative turbulence
closures in stratified turbulence have been formulated using the budget
equations for various turbulent parameters (in addition to the density
of the turbulent kinetic energy) together with heuristic hypotheses and
empirical relationships.11,24

As an alternative, the energy and flux budget (EFB) theory of tur-
bulence closure for stably stratified dry atmospheric flows has been
recently developed.25–30 In agreement with the wide experimental evi-
dence, the EFB theory shows that high-Reynolds-number turbulence
is maintained by shear in any stratification, and the “critical
Richardson number,” treated many years as a threshold between the
turbulent and laminar regimes, actually separates two turbulent
regimes, namely, the strong turbulence typical of atmospheric bound-
ary layers and the weak three-dimensional turbulence typical of the
free atmosphere or deep ocean, characterized by a strong decrease in
the heat transfer in comparison to the momentum transfer. The EFB
theory has been verified against scarce data from the atmospheric
experiments, direct numerical simulations (DNS), large-eddy simula-
tions (LES), and laboratory experiments relevant to the steady-state
turbulence regime.25,26,29 Following the EFB closure, other turbulent
closure models also do not imply a critical Richardson number.31–40

In stably stratified turbulence, large-scale internal gravity waves
result in additional vertical turbulent flux of momentum and addi-
tional productions of the densities of the turbulent kinetic energy
(TKE), turbulent potential energy (TPE), and turbulent flux of poten-
tial temperature.27,30 For the stationary, homogeneous regime, the EFB
theory in the absence of the large-scale internal gravity waves (IGW)
yields universal dependencies of the flux Richardson number, the tur-
bulent Prandtl number, the ratio of TKE to TPE, and the normalized
vertical turbulent fluxes of momentum and heat on the gradient
Richardson number.25,29 Due to the large-scale IGW, these dependen-
cies lose their universality. The maximal value of the flux Richardson
number (universal constant 0.2–0.25 in the no-IGW regime) becomes
strongly variable in the turbulence with large-scale IGW. In the verti-
cally homogeneous stratification, the flux Richardson number
increases with the increasing wave energy. In addition, the large-scale
internal gravity waves reduce the anisotropy of turbulence. Predictions
from this theory are consistent with available data from atmospheric
and laboratory experiments, DNS and LES.27,30

In the present study, we develop the energy and flux budget tur-
bulence closure theory for a passive scalar (non-buoyant, non-inertial
particles and gaseous admixtures) for stably stratified turbulence. We
find that the vertical turbulent diffusion coefficient of the passive scalar
is strongly reduced for large gradient Richardson numbers, and the
turbulent Schmidt number (the ratio of the eddy viscosity and the ver-
tical turbulent diffusivity of the passive scalar) linearly increases with
the gradient Richardson number.

For atmospheric boundary-layer turbulence, we derive the theo-
retical relationships for the vertical profiles of the turbulent diffusion

tensor and the turbulent Schmidt number. This study can be useful in
modeling applications for atmospheric boundary-layer turbulence and
free atmosphere turbulence. For example, the transport of pollutants
in the atmospheric turbulent flows is an important environmental
problem (see Ref. 41–43 and references therein). In stratified flows, the
turbulent Schmidt number increases with the level of stratification.44,45

This is consistent with the observation that stratification acts more
effectively against mass diffusivity than against momentum diffusivity.
In spite of many studies, there is still controversy about the proper
parameterization of the turbulent Schmidt number for various envi-
ronmental flows.44,46

This paper is organized as follows: In Sec. II, we outline the EFB
theory for turbulence, where we formulate governing equations for the
energy and flux budget turbulence-closure theory for stably stratified
turbulence and consider the steady-state and homogeneous regime of
turbulence. In Sec. III, we develop the EFB theory for passive scalars,
deriving the budget equation for the turbulent flux of particles, which
yields the expression for the turbulent diffusion tensor. In Sec. IV, we
consider the applications of the obtained results to the atmospheric
boundary-layer turbulence and discuss the theoretical relationships
potentially useful in modeling applications. Finally, conclusions are
drawn in Sec. V. In the Appendix, we derive the budget equation for
the correlation function for fluctuations of particle number density
and temperature.

II. THE EFB THEORY FOR STABLY STRATIFIED
TURBULENCE

In this study, we consider fully developed stably stratified turbu-
lence for geophysical flows where typical vertical gradients of the
mean velocity, potential temperature, and other variables are much
larger than that of the horizontal gradients so that the direct effects of
the mean-flow horizontal gradients on turbulent statistics are negligi-
ble. In such flows, vertical scales of motions are much smaller than
horizontal scales, and the mean-flow vertical velocity is much smaller
than the horizontal velocities. This implies that vertical turbulent
transports are comparable with or even dominate the mean flow verti-
cal advection, whereas the stream-wise horizontal turbulent transport
is usually negligible compared to the horizontal advection.

In this section, we formulate the energy and flux budget (EFB)
closure theory for stably stratified turbulence based on the budget
equations for the densities of turbulent kinetic and potential energies
and turbulent fluxes of momentum and heat. In our analysis, we use
budget equations for the one-point second moments to develop a
mean-field theory. We do not study small-scale structures of turbu-
lence (i.e., higher moments for turbulent quantities and intermittency).
In particular, we study large-scale long-term dynamics, i.e., we con-
sider effects in the spatial scales, which are much larger than the inte-
gral scale of turbulence, and in timescales, which are much longer than
the turbulent timescales.

A. Budget equations for turbulence

In the framework of the energy and flux budget turbulence the-
ory,25,29 we use the budget equations for the density of turbulent
kinetic energy (TKE) EK ¼ hu2i=2, the intensity of potential tempera-
ture fluctuations Eh ¼ hh2i=2, the turbulent flux Fi ¼ hui hi of poten-
tial temperature, and the off diagonal components of the Reynolds
stress siz ¼ hui uzi with i ¼ x; y,
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DEK
Dt
þrz UK ¼ �sizrz �U i þ b Fz � eK; (1)

DEh

Dt
þrz Uh ¼ �Fzrz

�H � eh; (2)

@Fi
@t
þrz UðFÞi ¼ �sizrz

�H di3 þ 2b Eh di3 �
1
q0
hhripi

�Fzrz �U i � eðFÞi ; (3)

Dsiz
Dt
þrz UðsÞi ¼ �2Ezrz �U i � eðsÞi ; (4)

where D=Dt ¼ @=@t þ �U � r, the fluid velocity �U þ u is character-
ized by the mean fluid velocity �U ðzÞ ¼ ð�Ux; �Uy; 0Þ and fluctuations
u ¼ ðux; uy; uzÞ, Ez ¼ hu2zi=2 is the density of the vertical turbulent
kinetic energy, Fz ¼ huz hi is the vertical component of the turbulent
heat flux, dij is the Kronecker unit tensor, the angular brackets imply

ensemble averaging, H ¼ TðP�=PÞ1�c�1 is the potential temperature,
T and P are the fluid temperature and pressure with their reference
values, T� and P�, respectively, c ¼ cp=cv is the specific heat ratio, the
potential temperature H ¼ �H þ h is characterized by the mean
potential temperature �HðzÞ and fluctuations h, the fluid pressure
P ¼ �P þ p is characterized by the mean pressure �P and fluctuations p,
b ¼ g=T� is the buoyancy parameter, g is the gravity acceleration,
and q0 is the fluid density. We use here the Boussinesq
approximation.

The term PK � �sizrz �U i ¼ KMS2 is the rate of energy pro-
duction for the shear-produced turbulence, KM is the turbulent viscos-

ity, and S ¼ ½ðrz �UxÞ2 þ ðrz �UyÞ2�1=2 is the large-scale velocity shear.
The terms UK; Uh; UðFÞi , and UðsÞi include the third-order moments.
In particular, UK ¼ q�10 huz pi þ ðhuz u2i � �rzhu2iÞ=2 determines
the flux of EK; Uh ¼ ðhuz h2i � jrzhh2iÞ=2 describes the flux of Eh;

UðFÞi ¼ hui uz hi � � hh ðrzuiÞi � j hui ðrzhÞi determines the flux

of Fi; and UðsÞi ¼ hui u2zi þ q�10 hp uii � �rzsiz describes the flux
of siz.

The term eK ¼ � hðrjuiÞ2i is the dissipation rate of the density
of the turbulent kinetic energy, eh ¼ j hðrhÞ2i is the dissipation rate
of the intensity of potential temperature fluctuations Eh; and

eðFÞi ¼ ð� þ jÞ hðrjuiÞ ðrjhÞi is the dissipation rate of the turbulent
heat flux Fi, where � is the kinematic viscosity of the fluid, and j is the

temperature diffusivity. The term eðsÞi ¼ eðsÞiz � b Fi � Qiz in Eq. (4) is
the “effective dissipation rate” of the off diagonal components of the
Reynolds stress siz, where Qij ¼ q�10 ðhpriuji þ hprjuiiÞ and

eðsÞiz ¼ 2� hðrjuiÞ ðrjuzÞi are the molecular-viscosity dissipation rate
(see below).25,29

The first term, �sizrz
�H di3, in the right-hand side of Eq. (3)

contributes to the traditional vertical turbulent flux of the potential
temperature, which describes the classical gradient mechanism of the
turbulent heat transfer. On the other hand, the second and third terms
in the right-hand side of Eq. (3) describe a non-gradient contribution
to the vertical turbulent flux of the potential temperature. In stably
stratified flows, the gradient and non-gradient contributions to the
vertical turbulent flux of potential temperature have opposite signs
[see Eq. (7)]. This implies that the non-gradient contribution decreases
the traditional gradient turbulent flux.

The budget equations for the components of the turbulent kinetic
energies Ea ¼ hu2ai=2 along the x, y, and z directions can be written as
follows:

DEa

Dt
þrz Ua ¼ �sazrz �U a þ da3 b Fz þ

1
2
Qaa � ea; (5)

where a ¼ x; y; z, the term ea ¼ � hðrjuaÞ2 i is the dissipation rate of
the turbulent kinetic energy components Ea, and Ua determines the
flux of Ea. Here, Uz ¼ q�10 huz pi þ ðhu3zi � �rzhu2ziÞ=2 and
Ux;y ¼ ðhuz u2x;yi � �rzhu2x;yiÞ=2. The terms Qaa ¼ 2q�10 hprauai
are the diagonal terms of the tensor Qij. In Eq. (5), we do not apply the
summation convention for the double Greek indices. Different aspects
related to budget equations (1)–(5) have been discussed in a number
of publications.25–30,47–50

The density of turbulent potential energy (TPE) is determined by
potential temperature fluctuations and is defined as EP ¼ ðb2=N2Þ Eh,
where N2 ¼ brz

�H with N being the Brunt-V€ais€al€a frequency.
The budget equation for the density of turbulent potential energy
EP ¼ ðb2=N2ÞEh reads as follows:

@EP
@t
þrz UP ¼ �b Fz � eP; (6)

where �b Fz is the rate of the production of the turbulent
potential energy density, UP ¼ ðb2=N2ÞUh is the flux of EP, and
eP ¼ ðb2=N2Þ eh is the dissipation rate of the density of the turbulent
potential energy. Using Eqs. (1) and (5), we obtain the budget equation
for the density of the total turbulent energy ET ¼ EK þ EP as

25,29

@ET
@t
þrz UT ¼ �sizrz �U i � eT; (7)

where UT ¼ UK þ UP is the flux of ET and eT ¼ eK þ eP is the dissi-
pation rate of the density of the total turbulent energy.

B. Steady-state and homogeneous regime
of turbulence

The discussed energy and flux budget turbulence closure theory
for stably stratified flows assumes the following:

• The characteristic times of variations of the densities of the tur-
bulent kinetic energy (TKE) EK, the vertical and horizontal TKE
Ea, the intensity of potential temperature fluctuations Eh (and the
turbulent potential energy EP), the turbulent flux Fi of the poten-
tial temperature, and the turbulent flux siz of momentum (i.e.,
the off diagonal components of the Reynolds stress) are much
larger than the turbulent timescale. This allows us to obtain
steady-state solutions of the budget equations (1)–(7) for TKE,
TPE, TTE, Fi, Ea, and siz for stably stratified turbulence.

• We neglect the divergence of the fluxes of TKE, TPE, Ea, Fi, and
siz for a steady-state homogeneous regime of stably stratified tur-
bulence (i.e., we neglect the divergence of third-order moments).

• Dissipation rates of TKE, TPE, Ea, and Fi are expressed using the

Kolmogorov hypothesis, i.e., eK ¼ EK=tT; eh ¼ Eh=ðCp tTÞ, eðsÞaa

¼ Ea=3tT, and eðFÞi ¼ Fi=ðCF tTÞ, where tT ¼ ‘0=E1=2
K is the turbu-

lent dissipation timescale, ‘0 is the integral scale of turbulence,
and Cp and CF are dimensionless empirical constants.1,2,8–10
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• The term eðsÞi ¼ eðsÞiz � b Fi � Qiz in Eq. (4) is the effective dissi-
pation rate of the off diagonal components of the Reynolds stress
siz, where eðsÞiz ¼ 2� hðrjuiÞ2i is the molecular-viscosity dissipa-
tion rate of siz, which is small because the smallest eddies associ-
ated with viscous dissipation are presumably isotropic.51 In the
framework of EFB theory, the role of the dissipation of siz is
assumed to be played by the combination of terms �b Fi � Qiz ,
and it is assumed that eðsÞi ¼ siz=ðCs tTÞ, where Cs is the
effective-dissipation time-scale empirical constant.25,29

• We assume that the term q�10 hhrzpi in Eq. (3) for the vertical
turbulent flux of potential temperature is parameterized by
~Ch b hh2i with ~Ch < 1, where ~Ch is the dimensionless empirical
constant. This implies that b hh2i � q�10 hhrzpi ¼ Ch b hh2i
with the positive dimensionless empirical constant Ch ¼ 1� ~Ch,
which is less than 1. We also take into account that hhripi van-
ishes, where i ¼ x; y. The justification of these assumptions have
been discussed in different contexts.25,29

Note that the Kolmogorov hypothesis related to the dissipation
rates of the second moments in stably stratified turbulence implies
that the normalized dissipation time scale of TPE, th=tT � Cp, turbu-
lent heat flux, tF=tT � CF, the components Ea of TKE, taa=tT, and off
diagonal siz components of the Reynolds stress, siz=tT � Cs, is empiri-
cal constants. These dissipation time scales are normalized by the dis-
sipation timescale of TKE. Generally, these ratios of the dissipation
time scales can be functions of the gradient Richardson number. For
instance, recent direct numerical simulations52,53 of a shear produced
stably stratified turbulence in Couette flow performed for the gradient
Richardson number Ri � 0:17 have shown that these ratios of the dis-
sipation time scales are weakly decreasing functions of the gradient
Richardson number. In these DNS, the Reynolds numbers based on
the turbulent velocities and integral time scales are not larger than 103,
while in atmospheric turbulence, the Reynolds numbers are about
106–107. In addition, the size of the inertial subrange of scales where
the Kolmogorov spectrum for the turbulent kinetic energy has been
observed in these simulations is only one decade. Since for the gradient
Richardson number larger than 0.17, there are no available informa-
tion about these ratios of the dissipation time scales, and we do not
take into account these effects in the present study. The term
q�10 hhrzpi in Eq. (3) can also contribute to the classical gradient
term, / Ezrz

�H, in the vertical turbulent flux of potential tempera-
ture.52 However, here we neglect this effect as well.

The EFB turbulence closure implies that turbulence is maintained
by the velocity shear at any stratification.25,29 Indeed, the buoyancy
flux, b Fz , appears in Eqs. (1) and (5) with opposite signs and describes
the energy exchange between the densities of the turbulent kinetic
energy and turbulent potential energy. Since in the budget equations
(1) and (5), the buoyancy fluxes, 6b Fz , enter with opposite signs, and
they cancel each other in budget equation (6) for the total turbulent
energy density. Therefore, as follows from Eq. (6), the density of the
total turbulent energy is independent of the buoyancy. This implies
that there are no grounds to consider the buoyancy-flux term in Eq.
(1) for the turbulent kinetic energy density as an ultimate “killer” of
turbulence. When the rates of the production and dissipation of the
density of the total turbulent energy are compensated, the total turbu-
lent energy is conserved. This implies that an increase in the vertical
gradient of the mean potential temperature increases the buoyancy
and decreases the density of turbulent kinetic energy, but it increases

the turbulent potential energy density so that the total turbulent energy
is conserved.

The main mechanism for the self-regulation of stably stratified
turbulence is as follows.25,29 In a steady-state and homogeneous
regime of turbulence, budget equation (5) for the vertical turbulent
flux Fz of the potential temperature yields

Fz ¼ �CF tT hu2zirz
�H þ 2Ch CF tT b Eh: (8)

Equation (8) implies that an increase in the vertical gradient of the
mean potential temperature increases the turbulent potential energy
EP (and it increases Eh), but it also decreases the vertical flux of poten-
tial temperature. This is because two contributions to the vertical tur-
bulent flux Fz (the classical gradient contribution, �CF tT hu2zirz

�H,
and the non-gradient contribution, 2Ch CF tT b Eh) have opposite
signs. Therefore, this feedback closes a loop, i.e., this effect decreases
the buoyancy and maintains stably stratified turbulence for any gradi-
ent Richardson numbers.

Thus, the correct mechanism of self-existence of a stably stratified
turbulence includes two steps: (i) the conversion of turbulent kinetic
energy into turbulent potential energy with the increasing vertical gra-
dient of the mean potential temperature and (ii) self-control feedback
of the negative, down-gradient turbulent heat transfer through the effi-
cient generation of the counteracting, positive, non-gradient heat
transfer by the turbulent potential energy. Due to this feedback, stably
stratified turbulence is maintained up to strongly supercritical stratifi-
cations. This explains the absence of critical gradient Richardson num-
bers as a threshold for the existence of stably stratified turbulence.25,29

Actually the critical Richardson number, treated many years as a
threshold between the turbulent and laminar regimes, separates two
turbulent regimes: the strong turbulence typical of atmospheric
boundary layers and the weak three-dimensional turbulence typical of
the free atmosphere or deep ocean and characterized by a strong
decrease in the heat transfer in comparison to the momentum
transfer.

To quantify stably stratified turbulence, the following basic
dimensionless parameters are used:

• the gradient Richardson number:

Ri ¼ N2

S2
; (9)

• the flux Richardson number:

Rif ¼
�b Fz
KMS2

; (10)

• the turbulent Prandtl number:

PrT ¼
KM

KH
; (11)

where KM is the turbulent viscosity, KH is the turbulent diffusivity,
and S2 ¼ ðrz �UxÞ2 þ ðrz �UyÞ2 is the squared mean velocity shear.

In the framework of the EFB turbulence closure theory,25,29 we
use assumptions outlined at the beginning of Sec. II B for the budget
equations (1)–(5) for the density of TKE EK, the intensity of potential
temperature fluctuations Eh, the vertical turbulent flux Fz of potential
temperature, the horizontal turbulent flux Fi of potential temperature,
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the off diagonal components of the Reynolds stress siz, and the vertical
density of TKE Ez,

0 ¼ �sizrz �U i þ b Fz �
EK
tT
; (12)

0 ¼ �Fzrz
�H � Eh

Cp tT
; (13)

0 ¼ �2Ezrz
�H þ 2Ch b Eh �

Fz
CF tT

; (14)

0 ¼ �Fzrz �U i �
Fi

CF tT
; i ¼ x; y; (15)

0 ¼ �2Ezrz �U i �
siz
Cs tT

; i ¼ x; y; (16)

0 ¼ b Fz þ
1
2
Qzz �

EK
3tT

: (17)

Equation (16) yields expressions for the turbulent fluxes siz of the
momentum and the turbulent viscosity KM,

siz ¼ �KMrz �U i; i ¼ x; y; (18)

KM ¼ 2Cs tT Ez: (19)

Equation (14) allows us to obtain the expression for the vertical turbu-
lent flux of potential temperature Fz ¼ �2CF tT ðEz �Ch EPÞrz

�H,
where we take into account that Eh ¼ EP N2=b2 and N2 ¼ brz

�H. In
particular, the expression for the vertical turbulent flux Fz can be
rewritten as

Fz ¼ �KHrz
�H; (20)

where the coefficient of the turbulent diffusion KH reads

KH ¼ 2CF tT Ez 1� Ch
EP
Ez

� �
: (21)

By means of Eq. (15), we find the horizontal turbulent flux Fi of poten-
tial temperature,

Fi ¼ �CF tT Fzrz �U i; i ¼ x; y: (22)

Since in stably stratified turbulence, the vertical turbulent flux Fz is
negative, and the horizontal turbulent flux Fi of the potential tempera-
ture is directed along the wind velocity �U i, i.e., Eq. (22) describes the
co-wind horizontal turbulent flux.

In the following, we derive expressions for useful dimensionless
parameters as universal functions of the flux Richardson number. In
particular, the obtained expressions for the turbulent viscosity KM and
the turbulent diffusivity KH allow us to determine the turbulent
Prandtl number PrT ¼ KM=KH as

PrT ¼ Prð0ÞT 1� Ch
EP
Ez

� ��1
; (23)

where Prð0ÞT ¼ Cs=CF is the turbulent Prandtl number at Ri ¼ Rif
¼ 0, i.e., for a non-stratified turbulence. Equations (10) and (12) yield
the expression for the density of TKE, EK ¼ KM S2 tT ð1� Rif Þ, while
Eq. (13) allows us to find the intensity of potential temperature fluctu-
ations Eh ¼ �Cp tT Fzrz

�H. This equation can be rewritten in terms

of the density of turbulent potential energy (TPE) EP ¼ �b Fz Cp tT
so that the ratio EK=EP reads

EK
EP
¼ 1� Rif

Cp Rif
: (24)

By means of Eq. (24), we also obtain the densities of TKE and TPE
normalized by the density of the total turbulent energy (TTE),
ET ¼ EK þ EP,

EK
ET
¼ 1� Rif

1� ð1� CpÞRif
; (25)

EP
ET
¼ Cp Rif

1� ð1� CpÞRif
: (26)

Equations (12) and (19) allow us to obtain the dimensionless ratio

s
EK

� �2

¼ 2Cs Az

1� Rif
; (27)

where Az � Ez=EK is the vertical share of TKE,
s ¼ ðs2xz þ s2yzÞ

1=2 ¼ KM S, and sij ¼ hui uji is the Reynolds stress. By
means of Eqs. (19) and (27), we find the expression for another useful
dimensionless parameter

S tTð Þ2 ¼ 1
2Cs Az ð1� Rif Þ

: (28)

In addition, Eqs. (19) and (28) allow us to obtain the dimensionless
ratio

b Fz tT
EK

¼ � Rif
1� Rif

; (29)

while Eqs. (13) and (20) yield the dimensionless ratio

F2
z

EK Eh
¼ 2Cs Az

Cp PrT
: (30)

Finally, applying Eqs. (23) and (24), we arrive at the useful expression
for the turbulent Prandtl number PrT,

PrTðRif Þ ¼ Prð0ÞT 1� Ch Cp Rif
1� Rifð ÞAz

� ��1
: (31)

Since the turbulent Prandtl number can be rewritten as PrT � Ri=Rif ,
Eq. (31) yields the important expression that relates the gradient
Richardson number Ri and the flux Richardson number Rif ,

RiðRif Þ ¼ Prð0ÞT Rif 1� Ch Cp Rif
1� Rifð ÞAz

� ��1
: (32)

Expressions (27)–(28) and (30)–(32) contain the vertical share of TKE,
Az � Ez=EK, that will be determined below.

In shear-produced turbulence, the mean wind shear generates
the energy of longitudinal velocity fluctuations Ex, which in turn feeds
the transverse Ey and the vertical Ez components of the turbulent
kinetic energy. The inter-component energy exchange term Qaa in Eq.
(5) is traditionally parameterized through the “return-to-isotropy”
hypothesis (see below).54 However, stratified turbulence is usually
anisotropic, and the inter-component energy exchange term Qaa
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should depend on the flux Richardson number Rif . We adopt another
model for the inter-component energy exchange term Qaa, which gen-
eralizes the return-to-isotropy hypothesis to the case of stably stratified
turbulence. In this model, we use the normalized flux Richardson
number Rif=R1 varying from 0 for a non-stratified turbulence to 1 for
a strongly stratified turbulence, where the limiting value of the flux
Richardson number, R1 � Rif jRi!1, is defined for very strong strati-
fications when the gradient Richardson number Ri!1. This model
for the inter-component energy exchange termQaa is described by

Qxx ¼ �
2ð1þ CrÞ

3tT
3Ex � Eintð Þ; (33)

Qyy ¼ �
2ð1þ CrÞ

3tT
3Ey � Eintð Þ; (34)

Qzz ¼ �
2ð1þ CrÞ

3tT
3Ez � 3EK þ 2Eintð Þ; (35)

where

Eint ¼ EK þ
Rif
R1

Cr

1þ Cr

� �
C0 EK � ð1þ C0ÞEz½ �; (36)

C0 and Cr are the dimensionless empirical constants. When Rif ¼ 0,
Eqs. (33)–(36) describe the return-to-isotropy hypothesis.54 Thus, by
means of Eqs. (17), (29), (35), and (36), we determine the vertical share
of TKE Az � Ez=EK as a function of the flux Richardson number Rif ,

AzðRif Þ ¼
Cr 1� 2C0 Rif=R1ð Þ � 3 Ri�1f � 1

� ��1
3þ Cr 3� 2ð1þ C0ÞRif=R1½ � : (37)

According to Eq. (37), the vertical share Az of TKE varies between
ðAzÞRi!0 � Að0Þz ¼ Cr=3ð1þ CrÞ for a non-stratified turbulence and
ðAzÞRi!1 � Að1Þz for a strongly stratified turbulence, where

Að1Þz ¼
Crð1� 2C0Þ � 3 R�11 � 1

� ��1
3þ Crð1� 2C0Þ

: (38)

When there is an isotropy in the horizontal plane, the shares of TKE
Ax � Ex=EK and Ay � Ey=EK in horizontal directions are given by

Ax ¼ Ay ¼
1
2
ð1� AzÞ: (39)

Now, we derive the expression for the ratio of the vertical turbu-
lent dissipation length scale ‘z ¼ tT E

1=2
z and the local Obukhov length

scale L defined as55

L ¼ s3=2

�b Fz
: (40)

To this end, we use Eqs. (10) and (40), which yield

KM ¼ Rif s
1=2 L: (41)

By means of Eqs. (19), (27), and (41), we obtain the ratio ‘z=L as the
function of the flux Richardson number,

‘z
L
¼ 2Csð Þ�3=4 A�1=4z Rif

1� Rifð Þ1=4
: (42)

For illustration, in Figs. 1–4, we show the dependencies of the fol-
lowing parameters on the gradient Richardson number Ri for different
values of parameter Að1Þz :

• the turbulent Prandtl number PrTðRiÞ given by Eq. (31) (see Fig. 1),
• the flux Richardson number Rif ðRiÞ given by Eq. (32) (see Fig. 2),
• the vertical share of TKE AzðRiÞ � Ez=EK given by Eq. (37) (see
Fig. 3), and

• the ratio ‘z=L given by Eq. (42) (see Fig. 4).

The theoretical Ri-dependencies are compared with the data of
meteorological observations, laboratory experiments, DNS, and LES.
Figures 1–3 demonstrate reasonable agreement between theoretical
predictions based on the EFB turbulence theory and data obtained
from atmospheric and laboratory experiments, LES, and DNS.

Data for PrTðRiÞ at a small gradient Richardson number Ri in
Fig. 1 are consistent with the commonly accepted empirical estimate

of Prð0ÞT ¼ 0:8.63–65 The flux Richardson number Rif in the

FIG. 1. The turbulent Prandtl number PrT vs the gradient Richardson number Ri for
Að1Þz ¼ 10�3 (dotted line), 0.1 (dashed–dotted line), and 0.2 (solid line).
Comparison with data of meteorological observations: slanting black triangles56 and
snowflakes;57 laboratory experiments: slanting crosses,58 six-pointed stars,15 and
black circles;14 DNS: five-pointed stars;20 and LES: triangles.25

FIG. 2. The flux Richardson number Rif vs the gradient Richardson number Ri for
Að1Þz ¼ 10�3 (dotted line), 0.1 (dashed–dotted line), and 0.2 (solid line).
Comparison with data of meteorological observations: slanting black triangles56 and
snowflakes;57 laboratory experiments: slanting crosses,58 six-pointed stars,15 and
black circles;14 DNS: five-pointed stars;20 and LES: triangles.29
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steady-state regime can only increase with the increasing Ri, but obvi-
ously cannot exceed unity. Hence, it should tend to a finite asymptotic
limit (estimated as R1 ¼ 0:2), which corresponds to the asymptoti-
cally linear Ri-dependence of PrT. Thus, the turbulent Prandtl number
for strong stratifications is given by

PrT ¼ Prð0ÞT þ
Ri
R1

: (43)

Figure 2 shows that the flux Richardson number Rif at the gradient
Richardson number Ri > 1 levels off at the limiting value,
Rif ¼ R1 ¼ 0:2. Figures 3 and 4 demonstrate that the vertical share
of TKE Az and the ratio ‘z=L level off at Ri > 1 as well.

Let us discuss the choice of the dimensionless empirical con-
stants.29 There are two well-known universal constants: the limiting
value of the flux Richardson number R1 ¼ 0:2 for extremely strongly
stratified turbulence (i.e., for Ri!1) and the turbulent Prandtl
number Prð0ÞT ¼ 0:8 for nonstratified turbulence (i.e., for Ri! 0). The
constants CF ¼ Cs=Pr

ð0Þ
T , where Cs is the coefficient determining the

turbulent viscosity (KM ¼ 2CsAzE
1=2
K ‘0) for non-stratified turbulence.

The constant Cp describes the deviation of the dissipation timescale of
Eh ¼ hh2i=2 from the dissipation timescale of TKE. The constants
CF; Cp, and Að1Þz are determined from numerous meteorological
observations, laboratory experiments, direct numerical simulations
(DNS), and large eddy simulations (LES).14,15,20,25,29,39,56–59,61,68–71

The constant Ch is given by Ch ¼ ðR�11 � 1ÞAð1Þz =Cp [see Eq. (31)],
and the constant C0 is determined from Eq. (38) at given Að1Þz and Cr.
We use here the following values of the non-dimensional empirical con-
stants: CF ¼ 0:125; Cp ¼ 0:417; Cr ¼ 3=2, and Cs ¼ 0:1. The vertical
anisotropy parameter for extremely strongly stratified turbulence Að1Þz

is mainly changing in the interval from 0.1 to 0.2 (see Fig. 3).

C. Boundary-layer turbulence

Considering the applications of the obtained results to atmo-
spheric stably stratified boundary-layer turbulence, we derive below
the theoretical relationships potentially useful in modeling applica-
tions. There are two well-known results for the wind shear:

• S ¼ s1=2=j z at 1� 1, which yields the log-profile for the mean
velocity, and

• S ¼ s1=2=R1 L when 1	 1, following Eq. (41). Here, 1
¼
Ð z
0 dz0=Lðz0Þ is the dimensionless height based on the local

Obukhov length scale LðzÞ ¼ s3=2ðzÞ=½�b FzðzÞ�, and j ¼ 0:4 is
the von Karman constant.

The straightforward interpolation between these two asymptotic
results for the wind shear,

Sð1Þ ¼ s1=2

L
R�11 þ

1
j 1

� �
; (44)

yields the vertical profile of the eddy viscosity KM ¼ s=S as

KMð1Þ ¼ s1=2 L
j 1

1þ R�11 j 1
: (45)

The vertical profile of the flux Richardson number Rif ðzÞ is obtained
using Eqs. (41) and (45):

Rif ð1Þ ¼
j 1

1þ R�11 j 1
: (46)

Now, we determine the vertical profiles of the turbulent Prandtl num-
ber PrTðzÞ using Eqs. (31) and (46):

PrTð1Þ ¼ Prð0ÞT 1þ a1 1þ a2 12

1þ a3 1

� �
; (47)

and the vertical share of TKE Az � Ez=EK by means of Eqs. (37)
and (46):

Azð1Þ¼
CrR1þj1 Crð1�2C0Þ�3ðR1þj1Þ 1þj1 R�11 �1

� �� 	�1h i
3R1ð1þCrÞþj1 3þCrð1�2C0Þ½ � :

(48)

Here, Prð0ÞT ¼ Cs=CF, and the coefficients ak are related to the empiri-
cal dimensionless constants:

a1 ¼ 3 jAð1Þz 1þ C�1r

� �
R�11 � 1
� �

; (49)

FIG. 3. The vertical share of TKE Az � Ez=EK vs the gradient Richardson number
Ri for Að1Þz ¼ 0.05 (dotted line), 0.1 (dashed–dotted line), and 0.2 (solid line).
Comparison with data of meteorological observations: squares,59 circles,60 over-
turned triangles,16,61 and six-pointed stars;62 laboratory experiments: six-pointed
stars;15 and DNS: five-pointed stars.20

FIG. 4. The normalized vertical turbulent dissipation length scales ‘z=L vs the gra-
dient Richardson number Ri for Að1Þz ¼ 10�3 (dotted line), 3:1
 10�3 (dashed
line), 10�2 (solid line), and 0.1 (dashed–dotted line).
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a2 ¼
j2 Að1Þz

R1
R�11 � 1
� �

1� 2C0 þ 3C�1r

� �
; (50)

a3 ¼ j 2R�11 ð1� C0Þ � 3C�1r � 1
� 	

� a1: (51)

Next, we find the vertical profile of the gradient Richardson number
applying Eqs. (32) and (46):

Rið1Þ ¼ j 1Prð0ÞT
1þ R�11 j 1

1þ a1 1þ a2 12

1þ a3 1

� �
: (52)

Finally, the vertical profile of the turbulent dissipation length scale
‘zðzÞ normalized by the local Obukhov length scale L(z) is obtained
by means of Eqs. (42) and (46):

‘z
L
¼ 2Csð Þ�3=4 A�1=4z j 1 1� Rif=R1ð Þ

1� Rifð Þ1=4
: (53)

Equations (45)–(53) for the surface layer (1� 1) have been derived in
Refs. 28 and 29. In the present study, we generalize these results for
the entire stably stratified boundary layer that are valid for arbitrary
values of 1.

Equations (45)–(53) are in agreement with the
Monin–Obukhov66 and Nieuwstadt67 similarity theories, i.e., the con-
cept of similarity of turbulence in terms of the dimensionless height
1 ¼

Ð z
0 dz0=Lðz0Þ. The Monin–Obukhov similarity theory was

designed for the “surface layer” defined as the lower layer that is 10%
of the boundary layer, where the turbulent fluxes of momentum s,
heat Fz, and other scalars, as well as the length scale L, are approxi-
mated by their surface values. Nieuwstadt67 extended the similarity
theory to the entire stably stratified boundary layer employing local
z-dependent values of the turbulent fluxes sðzÞ and FzðzÞ and the
length L(z) instead of their surface values.

For illustration, in Figs. 5–9, we plot the vertical profiles of the
key turbulent parameters:

• the gradient Richardson number Rið1Þ given by Eq. (52) (see
Fig. 5),

• the flux Richardson number Rif ð1Þ given by Eq. (46) (see Fig. 6),

FIG. 5. The gradient Richardson number Ri vs 1 ¼
Ð z
0 dz0=Lðz0Þ for Að1Þz ¼ 10�3

(solid thin line), 10�2 (dotted line), 0.1 (dashed–dotted line), 0.15 (solid thick line),
and 0.2 (dashed line).

FIG. 6. The flux Richardson number Rif vs 1 ¼
Ð z
0 dz0=Lðz0Þ for Að1Þz ¼ 10�2

(dashed line), 0.1 (dashed–dotted line), 0.15 (solid line), and 0.2 (dotted line).

FIG. 7. The turbulent Prandtl number PrT vs 1 ¼
Ð z
0 dz0=Lðz0Þ for Að1Þz ¼ 10�2

(dotted line), 0.1 (dashed line), 0.15 (solid line), and 0.2 (dashed–dotted line).

FIG. 8. The vertical share of TKE Az � Ez=EK vs 1 ¼
Ð z
0 dz0=Lðz0Þ for different

Að1Þz ¼ 0.1 (dotted line), 0.15 (solid line), 0.17 (dashed line), and 0.2 (dashed–
dotted line).
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• the turbulent Prandtl number PrTð1Þ given by Eq. (47) (see
Fig. 7),

• the vertical share of TKE Azð1Þ � Ez=EK given by Eq. (48) (see
Fig. 8), and

• the normalized vertical turbulent dissipation length scales ‘z=L
vs 1 given by Eq. (53) (see Fig. 9).

Different lines in Figs. 5–9 correspond to different values of Að1Þz (see
below). As follows from Fig. 5 for the vertical profile of RiðzÞ, the gra-
dient Richardson number increases with height, and the case 1 < 1
corresponds to Ri< 0.3, while Ri > 1 when 1 > 10. Similarly, Fig. 6
for the vertical profile of Rif ðzÞ shows that the flux Richardson num-
ber increases with height and levels off at 1 > 10. The turbulent
Prandtl number PrT is constant at 1 < 0:1 and linearly increases at

1 > 2 for Að1Þz � 0:1 (and at 1 > 20 for Að1Þz � 0:1) (see Fig. 7).
The vertical share of TKE Az decreases with the increasing height (in
all cases except one shown by the dashed–dotted line, see below), and
at 1 > 100, it levels off (see Fig. 8). It is clear that stable stratification,
suppressing the vertical component Ez of TKE, facilitates the energy
exchange between the horizontal velocity energies Ex and Ey and,
thereby, causes a tendency toward isotropy in the horizontal plane.
Equation (52) for the vertical turbulent dissipation length scale ‘z has
quite expected asymptotes: ‘z / z at 1� 1 and ‘z / L when 1 > 1
(see Fig. 9), where 1 ¼

Ð z
0 dz0=Lðz0Þ. In Secs. III A–III C, we develop

the energy and flux budget turbulence closure theory for passive
scalars.

III THE EFB THEORY FOR PASSIVE SCALARS

In this section, we discuss energy and flux budget turbulence clo-
sure theory for passive scalars.

A. Budget equation for the turbulent flux of particles

We consider passive (non-buoyant, non-inertial) particles sus-
pended in the turbulent fluid flow with large Reynolds numbers. The
evolution of the particle number density npðt; rÞ (measured in m�3) is
determined by the following equation:

@np
@t
þ ðv � rÞnp ¼ v Dnp; (54)

where v is an incompressible fluid velocity field and v is the coefficient
of molecular (Brownian) diffusion. Particle number density
np ¼ �n þ n is characterized by the mean value �n and fluctuations n.
Averaging this equation over ensemble of velocity fluctuations, we
obtain the equation for the mean particle number density �n.
Subtracting this equation from Eq. (54), we obtain the equation for
particle number density fluctuations as

Dn
Dt
¼ �ðu � rÞ�n � ðu � rÞnþ hðu � rÞni þ vDn: (55)

For non-inertial particles, the main effect of turbulent transport is the

turbulent diffusion, i.e., the turbulent particle flux is FðnÞi � hui ni
¼ �Kijrj�n. This implies that the quadratic form Kij ðri�nÞ ðrj�nÞ
should be positively defined. This means that @�n2=@t < 0, i.e., the ten-
sor Kij is indeed describes a dissipative process.

Multiplying Eq. (55) by ui and the Navier–Stokes equation by n,
taking the sum and averaging the obtained equation over an ensemble,
we obtain the budget equation for the turbulent flux of particles
FðnÞi ¼ hui ni,

DFðnÞi

Dt
þrz

~U
ðnÞ
i ¼ �hui ujirj�n � FðnÞj rj �U i þ QðnÞi � eðnÞi ; (56)

where ~U
ðnÞ
i ¼ hui uz ni þ q�10 hp ni di3 � vhuirz ni � � hnrzuii is

the third-order moment that determines the turbulent flux of FðnÞi , while

eðnÞi ¼ ð� þ vÞ hðrjuiÞ ðrjnÞi is the molecular dissipation rate of FðnÞi .

The Kolmogorov closure hypothesis implies that eðnÞi ¼ FðnÞi =CntT,

where Cn is an empirical dimensionless coefficient. The term QðnÞi ¼
q�10 hprini þ bei hn hi in Eq. (56) is derived in the Appendix as

QðnÞi ¼ �
CD

2
b tT ei F

ðnÞ
j rj

�H þ brihnD�1rzhi; (57)

where e is the vertical unit vector and CD is an empirical dimensionless
constant. Thus, the budget equation for the turbulent flux of particles
can be rewritten as

DFðnÞi

Dt
þrzU

ðnÞ
i ¼�

CD

2
b tT ei F

ðnÞ
j rj

�H � sijrj�n

� FðnÞj rj �U i �
FðnÞi

Cn tT
; (58)

where UðnÞi ¼ ~U
ðnÞ
i � beihnD�1rzhi. Equation (58) yields the budget

equation for the vertical particle flux FðnÞz as

DFðnÞz

Dt
þrzU

ðnÞ
z ¼ �2Ezrz�n �

1
2
CD b tT F

ðnÞ
z rz

�H � FðnÞz

Cn tT
: (59)

In Eq. (59), we have taken into account that jKMSiri�nj � j2Ezrz�nj,
where Si � Sx;y ¼ rz �Ux;y . We will demonstrate that this condition
provides the positively defined quadratic form Kij ðri�nÞ ðrj�nÞ.
Equations (58) and (59) are complementary equations to the EFB tur-
bulence closure theory discussed in Sec. II.25,29 These equations allow us
to determine the turbulent flux of particles FðnÞi at a given gradient of
the mean particle number density �n and the basic turbulent parameters
EK and tT.

FIG. 9. The normalized vertical turbulent dissipation length scales ‘z=L vs
1 ¼

Ð z
0 dz0=Lðz0Þ for different Að1Þz ¼ 0.1 (dotted line), 0.15 (solid line), 0.17

(dashed line), and 0.2 (dashed–dotted line).
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B. Turbulent flux of particles and turbulent diffusion
tensors

In air pollution, modeling the particle number density �n could be
strongly heterogeneous in all three directions. Limiting to the steady-
state, the homogeneous regime of turbulence, Eq. (59) reduces to the
turbulent diffusion formulation for the vertical turbulent flux of the
passive scalar (i.e., non-inertial particles),

FðnÞz ¼ �Kzzrz �n; (60)

where

Kzz ¼ KM Scð0ÞT þ
CD Ri

4Az ð1� Rif Þ

� ��1
; (61)

Scð0ÞT ¼ Cs=Cn and Kzx ¼ Kzy ¼ 0. Using Eqs. (18) and (19), we deter-
mine the turbulent Schmidt number as

ScT �
KM

Kzz
¼ Scð0ÞT þ

CD Ri
4Az 1� Rifð Þ : (62)

In derivation of Eq. (61), we take into account that

N2 t2T ¼
Ri

2Cs Az ð1� Rif Þ
; (63)

which follows from the identities Ri ¼ Rif PrT and Eq. (27).
The horizontal components of the turbulent flux of particles can

be determined through the steady-state version of Eq. (58) for homo-
geneous stably stratified turbulence,

FðnÞx ¼ �Kxxrx �n � Kxzrz �n; (64)

FðnÞy ¼ �Kyyry �n � Kyz rz �n; (65)

where

Kxx ¼ 2Cn tT Ex ¼
Ax

Az Sc
ð0Þ
T

KM; (66)

Kyy ¼ 2Cn tT Ey ¼
Ay

Az Sc
ð0Þ
T

KM; (67)

Kxz ¼ �Cn tT Sx Kzz; (68)

Kyz ¼ �Cn tT Sy Kzz; (69)

where Sx;y ¼ rz �Ux;y and Kxy ¼ Kyx ¼ 0. In Eqs. (64) and (65), we
have taken into account a condition that provides the positively
defined quadratic form Kij ðri�nÞ ðrj�nÞ. In particular, this condition
implies that

Ax >
Cn

4 ScTðRif Þ
Cs AzðRif Þ
2ð1� Rif Þ

� �1=2
: (70)

Let us discuss the physics related to the off diagonal terms of the
turbulent diffusion tensor of particles. To this end, we rewrite the hori-
zontal turbulent flux of particles Foff

x � �Kxzrz �n that describes the
off diagonal component Kxz of the turbulent diffusion tensor as

Foff
x ¼ �Cn tT F

ðnÞ
z rz �Ux; (71)

where FðnÞz ¼ �Kzzrz �n is the vertical turbulent flux of particles [see
Eq. (60)]. The turbulent flux of particles Foff

x given by Eq. (71) can be
compared with the horizontal turbulent flux Fx of potential

temperature Fx ¼ �CF tT Fzrz �Ux [see Eq. (22)]. The latter flux
describes the co-wind horizontal turbulent flux of potential tempera-
ture. For simplicity, we consider here the case when the wind velocity
�Ux is directed along the x axis. We remind that in stably stratified tur-
bulence, the vertical turbulent flux Fz of potential temperature is nega-
tive so that the horizontal turbulent flux Fx of potential temperature is
directed along the wind velocity �Ux .

On the contrary, in convective turbulence, the vertical turbulent
flux Fz of potential temperature is positive so that the horizontal turbu-
lent flux Fx of potential temperature is a counterwind turbulent flux.
The physics of the counterwind turbulent flux is the following. Let us
consider horizontally homogeneous, sheared convective turbulence.
With the increasing height in convection, the mean shear velocity �Ux

increases and mean potential temperature �H decreases. Thus, uprising
fluid particles produce positive fluctuations of potential temperature,
h > 0 [since @h=@t / �ðu � rÞ �H], and negative fluctuations of hori-
zontal velocity, ux < 0 [since @ux=@t / �ðu � rÞ�Ux]. This causes
negative horizontal temperature flux: ux h < 0. Likewise, sinking fluid
particles produce negative fluctuations of potential temperature,
h < 0, and positive fluctuations of horizontal velocity, ux > 0, also
causing negative horizontal temperature flux ux h < 0. This implies
that the net horizontal turbulent flux is negative, hux hi < 0, in spite
of a zero horizontal mean temperature gradient. Thus, the counter-
wind turbulent flux of potential temperature describes the modifica-
tion of the potential-temperature flux by the non-uniform velocity
field. The counterwind or co-wind turbulent fluxes are associated with
non-gradient turbulence transport of heat.

The comparison of two fluxes, Foff
x and Fx, shows that the form

of the horizontal turbulent flux of particles Foff
x is similar to that of the

horizontal turbulent flux of potential temperature Fx. For instance,
when the vertical turbulent flux of particles FðnÞz is positive (or nega-
tive), the horizontal turbulent flux of particles Foff

x describes the coun-
terwind (or the co-wind) horizontal turbulent flux of particles. These
turbulent fluxes are associated with non-gradient turbulence transport
of particles.

For illustration, in Figs. 10–12, we show the dependencies of the
key passive scalar parameters on the gradient Richardson number Ri:

• the turbulent Schmidt number ScTðRiÞ given by Eq. (62) (see Fig. 10),

FIG. 10. The turbulent Schmidt number ScT vs the gradient Richardson number Ri
for Að1Þz ¼ 0:15 and different values of CD¼ 0.5 (solid line); 1 (dashed line) and 2
(dashed-dotted line).
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• the diagonal components KzzðRiÞ and KxxðRiÞ ¼ KyyðRiÞ of the
turbulent diffusion tensor normalized by u� L and given by Eqs.
(61) and (66) (see Fig. 11), and

• the off diagonal component KxzðRiÞ of the turbulent diffusion
tensor normalized by u� L and given by Eq. (68) (see Fig. 12).

Here, u� ¼ s1=2, and we consider for simplicity the cases Sy¼ 0
and Ax¼Ay. The turbulent Schmidt number ScTðRiÞ linearly increases
with the gradient Richardson number for Ri> 1 (see Fig. 10). As fol-
lows from Eq. (61) and Fig. 11, the vertical turbulent diffusion coeffi-
cient KzzðRiÞ of particles or gaseous admixtures is strongly suppressed
for large gradient Richardson numbers. The vertical turbulent diffu-
sion coefficient and the turbulent Schmidt number behave in the simi-
lar fashion as the turbulent diffusion coefficient KHðRiÞ of the mean
potential temperature and the turbulent Prandtl number PrTðRiÞ.

The physics of such a behavior of the vertical turbulent diffusion
coefficient KzzðRiÞ is related to the buoyancy force that causes a corre-
lation between the potential temperature and the particle number den-
sity fluctuations hh ni. This correlation is proportional to the product
of the vertical turbulent particle flux hn uzi and the vertical gradient of
the mean potential temperature rz

�H, i.e., hh ni / �hn uzirz
�H.

This correlation reduces a standard vertical turbulent particle flux
hn uzi that is proportional to the vertical gradient of the mean particle
number density,�rz�n.

Let us consider for simplicity the case Sy¼ 0. The quadratic
form Kij ðri�nÞ ðrj�nÞ is positively defined if the determinant
DSl ¼ Kxx Kyy Kzz PSl of the symmetric matrix ~K ij is positive, where

PSl ¼ 1� ~K
2
xz=ð4Kxx KzzÞ and the diagonal elements Kxx, Kyy, and Kzz

are positive. In the symmetric matrix ~K ij, the off diagonal elements
~Kxz ¼ ~Kzx ¼ Kxz=2 and other off diagonal elements vanish. The
parameter PSlðRiÞ ¼ 1� K2

xz=ð16Kxx KzzÞ vs the gradient Richardson
number is shown in Fig. 13, where we use Eqs. (61), (66), and (68).
Figure 13 shows that PSl and the determinant DSl are always positive
so that the quadratic form Kij ðri�nÞ ðrj�nÞ is the positively defined
quadratic form.

In view of the above analysis, the down-gradient formulation:
FðnÞa ¼ �Kara�n, where Ka are the turbulent diffusion coefficients
along a ¼ x; y; z axes, widely used in operational models, can hardly
be considered as satisfactory. It is long ago understood that the linear
dependence between the vectors FðnÞa and ra�n is characterized by an
eddy diffusivity tensor with non-zero off diagonal terms.72 Equations
(61) and (66)–(69) allow determining all components of this tensor.
The equations derived in this section are immediately applicable to
turbulent diffusion of gaseous admixtures. In this case, �n and n denote
mean value and fluctuations of the admixture concentration (mea-
sured in kg/m3), respectively.

In temperature stratified fluids, there is an additional mechanism
of particle transport, namely, turbulent thermal diffusion, which
causes particle concentration in the vicinity of the mean temperature
minimum, i.e., this effect results in the particle transport in the direc-
tion opposite to the temperature gradient.73–76 This effect has been
detected in laboratory experiments,77 DNS,78 and atmospheric obser-
vations.79 In the present paper, this mechanism is not considered.

C. Application to boundary-layer turbulence

Let us consider the applications of the obtained results of particle
transport to the atmospheric stably stratified boundary-layer turbu-
lence. Equations (45)–(52) allow us to find the vertical profiles of the
turbulent Schmidt number and of the components of the turbulent
diffusion tensor Kij in the atmospheric boundary-layer turbulence. For

FIG. 11. Diagonal components of the turbulent diffusion tensor: Kxx¼ Kyy (solid
line) and Kzz (dashed–dotted line) and the eddy viscosity: KM (dashed line) normal-
ized by u� L vs the gradient Richardson number Ri for A

ð1Þ
z ¼ 0:15, where CD ¼ 2

and Cn ¼ 1.

FIG. 12. Off diagonal component of the turbulent diffusion tensor: Kxz (dashed line)
normalized by u� L vs the gradient Richardson number Ri for Að1Þz ¼ 0:15. For
comparison, the diagonal component KzzðRiÞ (solid line) is also shown here, where
CD¼ 2 and Cn¼ 1.

FIG. 13. The parameter PSl ¼ 1� K2
xz=ðKxx KzzÞ vs the gradient Richardson num-

ber Ri for CD¼ 1 (dashed line) and 2 (dashed–dotted line) and for Að1Þz ¼ 0:15.
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illustration, in Figs. 14–16 we plot the vertical profiles of the key pas-
sive scalar parameters:

• the ratio ScTð1Þ=PrTð1Þ of the turbulent Schmidt number to tur-
bulent Prandtl number given by Eqs. (47) and (62) (see Fig. 14),

• the diagonal components of the turbulent diffusion tensors:
Kzzð1Þ and Kxxð1Þ ¼ Kyyð1Þ normalized by u� L and given by Eqs.
(61) and (66) (see Fig. 15), and

• the off diagonal component of the turbulent diffusion tensor:
Kxzð1Þ normalized by u� L and given by Eq. (68) (see Fig. 16),
where we also use Eqs. (39) and (45)–(52).

Figure 14 demonstrates that the ratio ScT=PrT can be more or
less than 1 depending on the parameter CD. This implies that the tur-
bulent Schmidt number ScT generally does not coincide with the tur-
bulent Prandtl number PrT. This is not surprising, since temperature
fluctuations cannot be considered as a passive scalar, because they
strongly affect velocity fluctuations when the gradient Richardson
number is not small.46 On the other hand, fluctuations of the number

density of non-inertial particles or gaseous admixtures behave as
passive scalars because they do not affect velocity fluctuations. Only
fluctuations of the number density of inertial particles when the mass-
loading parameter mp n=q is not small (mp n=q > 1) can affect veloc-
ity fluctuations, wheremp is a particle mass.

Let us discuss the vertical profiles of the turbulent diffusion ten-
sor Kij shown in Figs. 15 and 16. Figure 15 demonstrates that the verti-
cal turbulent diffusion coefficient Kzz of particles or gaseous
admixtures is strongly suppressed when 1	 10. Equations (61) and
(66)–(69) and Figs. 11, 12, 15, and 16 show that the components
Kxx¼Kyy of the turbulent diffusion tensor in the horizontal direction
are dominant in comparison with the vertical component Kzz. This
implies that any initially created strongly inhomogeneous distribution
of particles (i.e., a strong particle cluster or blob) is evolved into a thin
“pancake” in the horizontal plane with a very small increase in its
thickness in the vertical direction. For instance, when the vertical tur-
bulent heat flux jFzj ¼ 0:3 K m/s, the friction velocity u� ¼ 0:1 m/s,
at the height z¼ 1 km, the gradient Richardson number Ri ¼ 3 (see
Fig. 5), the ratio Kxx=Kzz � 103 (see Fig. 15) so that the horizontal size
of the pancake of particles is 30 times larger than the vertical size.

IV. CONCLUSIONS

We discuss here the energy and flux budget turbulence closure
theory for a passive scalar (e.g., non-buoyant and non-inertial particles
or gaseous admixtures) in stably stratified turbulence. The EFB turbu-
lence closure theory is based on the budget equations for the turbulent
kinetic and potential energies and turbulent fluxes of momentum and
buoyancy and the turbulent flux of particles. The EFB closure theory
explains the existence of the shear produced turbulence even for very
strong stratifications.

In the framework of the EFB closure theory, we have found that
in a steady-state homogeneous regime of turbulence, there is a univer-
sal flux Richardson number dependence of the turbulent flux of the
passive scalar described in terms of an anisotropic non-symmetric tur-
bulent diffusion tensor. We have shown that the diagonal component
in the vertical direction of the turbulent diffusion tensor for particles
or gaseous admixtures is strongly suppressed for large gradient
Richardson numbers, but the diagonal components in the horizontal

FIG. 14. The ratio ScT=PrT of the turbulent Schmidt number to turbulent Prandtl
number vs 1 ¼

Ð z
0 dz0=Lðz0Þ for CD¼ 2 and different values of Að1Þz ¼ 0.025

(dashed–dotted line), 0.15 (solid line), and 0.2 (dashed line).

FIG. 15. Diagonal components of the turbulent diffusion tensor: Kxx¼ Kyy (solid line)
and for different values of CD¼ 1 (dotted) and 2 (dashed-dotted), and the eddy vis-
cosity: KM (dashed line) normalized by u� L vs 1 ¼

Ð z
0 dz0=Lðz0Þ for Að1Þz ¼ 0:15.

FIG. 16. Off diagonal component of the turbulent diffusion tensor: Kxz normalized
by u� L vs 1 ¼

Ð z
0 dz0=Lðz0Þ for Cn ¼ 1 (dashed line), 2 (dashed–dotted line) and

for Að1Þz ¼ 0:15. For comparison, the diagonal component Kzzðz=LÞ for CD¼ 1
(dotted line) and 2 (solid line) is also shown here.
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directions are not suppressed by strong stratification. We have deter-
mined the turbulent Schmidt number defined as the ratio of the eddy
viscosity and the vertical turbulent diffusivity of the passive scalar,
which linearly increases with the gradient Richardson number.

We explain these features by the effect of the buoyancy force,
which causes a correlation between fluctuations of the potential tem-
perature and the particle number density. In particular, this correlation
is proportional to the product of the vertical turbulent particle flux
and the vertical gradient of the mean potential temperature, which
reduces the vertical turbulent particle flux.

In view of applications to atmospheric stably stratified boundary-
layer turbulence, we derive the theoretical relationships for the vertical
profiles of the key parameters of stably stratified turbulence measured
in the units of the local Obukhov length scale. These relationships
allow us to determine the vertical profiles of the components of the
turbulent diffusion tensor and the turbulent Schmidt number. These
results are potentially useful in modeling applications of transport of
particles or gaseous admixtures in stably stratified atmospheric
boundary-layer turbulence and free atmosphere turbulence.
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APPENDIX: DERIVATION OF THE BUDGET
EQUATION FOR hn hi AND EQ. (57)

Equations for fluctuations of the potential temperature and the
particle number density read as follows:

Dh
Dt
¼ �ðu � rÞ ð �H þ hÞ þ hðu � rÞhi þ jDh; (A1)

Dn
Dt
¼ �ðu � rÞð�n þ nÞ þ hðu � rÞni þ v Dn: (A2)

Multiplying Eq. (A1) by n and Eq. (A2) by h, averaging and adding
the obtained equations, we arrive at the budget equation for the cor-
relation function hn hi,

Dhn hi
Dt

þrjU
ðnhÞ
j ¼ �FðnÞj rj

�H � eðnhÞ: (A3)

Here, UðnhÞj is the third-order moment describing the turbulent flux
of the correlation function hn hi:

UðnhÞi ¼ hui n hi � v hhrini � j hnrihi; (A4)

and eðnhÞ is the dissipation rate of hn hi. We assume here that the
term �Fjrj�n contributes to an effective dissipation of hn hi, simi-
larly to the effective dissipation of the Reynolds stress, i.e.,

eðnhÞ ¼ ðjþ vÞhðrjnÞðrjhÞi � Fjrj�n: (A5)

This assumption allows us to provide a positive dissipation rate of
passive scalar fluctuations. The effective dissipation rate eðnhÞ can be
expressed using the Kolmogorov closure hypothesis:

eðnhÞ ¼ hn hi
Cnh tT

; (A6)

where Cnh is the dimensionless constant. In the steady-state, homo-
geneous regime of turbulence, Eq. (A3) reduces to the turbulent dif-
fusion formulation:

hn hi ¼ �Cnh tT F
ðnÞ
j rj

�H; (A7)

where we consider only gradient approximation neglecting higher
spatial derivatives.

Now let us determine the term QðnÞi ¼ q�10 hprini þ bei hn hi.
Calculating the divergence of the Navier–Stokes, we obtain

q�10 r2p ¼ brzh: (A8)

Applying the inverse Laplacian to Eq. (A8), we arrive at the follow-
ing identity:

q�10 p ¼ bD�1rzh; (A9)

which yields

q�10 hhrzpi ¼ b hh D�1r2
zhi: (A10)

Using Eqs. (A9) and (A10), we determine q�10 hprini:

q�10 hprini ¼ b hðrinÞD�1rihi ¼ bri hnD�1rzhi
�b hnD�1rzrihi: (A11)

Let us determine the correlation function hnD�1r2
zhi:

hnðt; xÞD�1r2
zhðt; xÞi ¼ lim

x!y
hnðt; xÞD�1r2

zhðt; yÞi

¼
ð

k2z
k2

� �
hnðkÞhð�kÞi dk: (A12)

First, we consider an isotropic turbulence. The second moment,
hnðkÞhð�kÞi, of potential temperature fluctuations in a homoge-
neous and incompressible turbulence in a Fourier space reads as
follows:

hnðkÞhð�kÞi ¼ hn hi EnhðkÞ
4pk2

; (A13)

where the spectrum function is EnhðkÞ ¼ k�10 ð2=3Þ ðk=k0Þ
�5=3 for

large Reynolds numbers. Here, k0 � k � kD, where the wave num-
ber k0 ¼ 1=‘0, with the length ‘0 being the integral scale and the
wave number kD ¼ ‘�1D , with ‘D ¼ ‘0Pe�3=4 being the diffusion
scale and Pe ¼ u0 ‘0=D	 1 being the P�eclet number. Therefore,

hnðt; xÞD�1r2
zhðt; xÞi ¼ hn hi

4p

ð1
k0

EnhðkÞ dk



ð2p
0

du
ðp

0
sin# d#

k2z
k2
; (A14)

where we use the spherical coordinates ðk; #;uÞ in the k-space. For
the integration over angles in k-space, we use the following integral:
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ð2p
0

du
ðp

0
sin# d#

ki kj
k2
¼ 4p

3
dij: (A15)

Therefore, for large P�eclet numbers, this correlation function is
given by

hnðt; xÞD�1r2
zhðt; xÞi � 1

3
hn hi: (A16)

Now, we determine the correlation function hnD�1r2
zhi for an

anisotropic turbulence,

hnðt; xÞD�1r2
zhðt; xÞi ¼

ð1
~‘
�1
z

dkz

ð1
~‘
�1
h

kh dkh



ð2p
0

d/ 1� 1
1þ k2z=k

2
h

� �
hnðkÞhð�kÞi;

(A17)

where we use the cylindrical coordinates ðkh;/; kzÞ in k-space, and
~‘z and ~‘h are the correlation lengths of the correlation function
hnðt; xÞ hðt; yÞi in the vertical and horizontal directions. For
strongly anisotropic turbulence, i.e., when ~‘z � ~‘h, the contribution
of the first term on the right-hand side of Eq. (A17) is dominant so
that

hnðt; xÞD�1r2
zhðt; xÞi � hn hi: (A18)

Therefore, hnðt; xÞD�1r2
zhðt; xÞi ¼ C� hn hi, where C� varies from

0.3 to 1 depending on the degree of anisotropy of turbulence.
When i ¼ x; y, the correlation function hnD�1rzrihi van-

ishes in isotropic turbulence. Equations (A7), (A16), and (A18)
yield the expression for the correlation term QðnÞi as

QðnÞi ¼ �
CD

2
b tT ei F

ðnÞ
j rj

�H þ brihnD�1rzhi; (A19)

where e is the vertical unit vector and CD ¼ Cnh ð1þ C�Þ is an
empirical dimensionless constant.
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