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ABSTRACT

Our theoretical and numerical analysis have suggested that for low-mass main sequences stars (of the spectral classes from M5
to GO) rotating much faster than the Sun, the generated large-scale magnetic field is caused by the mean-field «*Q dynamo,
whereby the o? dynamo is modified by a weak differential rotation. Even for a weak differential rotation, the behaviour of the
magnetic activity is changed drastically from aperiodic regime to non-linear oscillations and appearance of a chaotic behaviour
with increase of the differential rotation. Periods of the magnetic cycles decrease with increase of the differential rotation, and
they vary from tens to thousand years. This long-term behaviour of the magnetic cycles may be related to the characteristic
time of the evolution of the magnetic helicity density of the small-scale field. The performed analysis is based on the mean-field
simulations (MFS) of the o*>Q and o> dynamos and a developed non-linear theory of o> dynamo. The applied MFS model was
calibrated using turbulent parameters typical for the solar convective zone.
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1 INTRODUCTION

The cold dwart stars of the main sequences of the spectral class M
composing 70-75 per cent of all star population, have smaller sizes
(0.1Rg < R < 0.8Rp) in comparison with the Sun, smaller masses
(0.08 Mg < M < 0.55Mg), smaller luminosity (L < 0.05Lg) and
effective temperatures of 2500-4000K, where Rg, Mg, and Lg
are the solar radius, mass, and luminosity, respectively (see, e.g.
Bochanski et al. 2010; Pecaut & Mamajek 2013; Winters et al. 2019;
Kochukhov 2021). About 15-20 per cent of these stars have similar
magnetic activity as the Sun with cold magnetic spots and sporadic
flares of very high releasing energy in the form of radiations in
wide range of wavelength including thermal and non-thermal X-ray
(Hawley et al. 2014; Newton et al. 2017). As the Sun, these stars
obey differential rotation and have similar atmospheric structure,
consisting of photosphere, hot chromosphere, and corona (Wright
et al. 2018; Gershberg et al. 2020).

According to various observations (see, e.g. Saar & Linsky 1985;
Saar 1996; Donati et al. 2003, 2008; Reiners & Basri 2007), slow
rotating stars (2 < ) have values and structures of the large-scale
magnetic field similar to solar magnetic field, where Qg is the solar
angular velocity. On the other hand, fast rotating stars (2 > 10 Q)
have strong poloidal magnetic fields at the pole, and sometimes they
have strong toroidal magnetic fields at the pole (Strassmeier 2009;
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Morin et al. 2010). The periods of the stellar cycles can be in several
times larger than the periods of the solar cycles (Bondar’, Katsova &
Livshits 2019). Magnetic fields of fast rotating stars can be more than
several thousands Gauss (Kochukhov et al. 2020; Kochukhov 2021).

Various magnetohydrodynamic (MHD) direct numerical simula-
tions (DNS) and large eddy simulations (LES) of convection and
dynamos in low-mass convective stars have been performed in a
number of studies (see, e.g. Dobler, Stix & Brandenburg 2006;
Browning 2008; Yadav et al. 2016; Brown et al. 2020; Képyld
2021; Bice & Toomre 2022). They use fully compressible MHD
system with weak density stratification or anelastic simulations with
strong density stratification in a box or spherical shell. Main results
of these simulations are summarized in review by Képyld et al.
(2023). In particular, when the magnetic field is weak or absent,
both “solar” and “anti-solar” differential rotation can be formed.
When the dynamo generated large-scale magnetic field is strong, it
reduces the differential rotation sometimes resulting to the solid-body
rotation. The dynamo generated large-scale magnetic field is mainly
axisymmetric, and it has the dipole or quadrupole structure depending
on rotation, shear, and density stratification. In particular, when
rotation is strong and shear is weak, the magnetic field has dipolar
structure (Gastine, Duarte & Wicht 2012; Schrinner, Petitdemange
& Dormy 2012; Yadav et al. 2015). There are many simulations with
highly stratified, vigorous convection that also show dipole magnetic
structure (Yadav et al. 2015). In the presence of large-scale shear,
propagating dynamo waves are observed in simulations (Yadav et al.
2016; Képyld 2021; Bice & Toomre 2022). Some simulations also
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produce non-axisymmetric magnetic field (Kipyld 2021; Bice &
Toomre 2022).

Various mean-field dynamo models have been suggested to explain
generation of large-scale magnetic fields in M-dwarfs (see, e.g.
Chabrier & Kiiker 2006; Kitchatinov, Moss & Sokoloff 2014;
Shulyak et al. 2015; Pipin 2017; Pipin & Yokoi 2018). In particular,
mean-field simulations (MFS) of the &> dynamo have been performed
by Chabrier & Kiiker (2006). They consider a fully convective
rotating star and focus on the kinematic dynamo problem. The large-
scale magnetic field is excited when the Coriolis number Co = 22, t
> 1, and the dynamo generates a non-axisymmetric steady magnetic
field that is symmetric with respect to the equatorial plane (Chabrier
& Kiiker 2006).

Kitchatinov et al. (2014) suggest that M-dwarfs have two types of
magnetic activity: (i) magnetic cycles with strong (kilogauss) almost
axisymmetric poloidal magnetic fields; and (ii) considerably weaker
non-axisymmetric fields with a substantial toroidal component ob-
served at times of magnetic field inversion. To show this, they use
a kinematic model of an o> dynamo with the differential rotation
determined using the numerical mean-field model by Kitchatinov &
Olemskoy (2011). Applying this model, they study a magnetic field
evolution and find a transition from steady to oscillatory dynamos
with increasing turbulent magnetic Prandtl number. Using this
approach, Shulyak et al. (2015) suggest four magnetic configurations
that appear relevant to dwarfs from the viewpoint of the dynamo
theory, and discuss observational tests to identify the configurations
observationally.

Pipin (2017) has performed mean-field numerical simulations
(MFS) with the non-linear axisymmetric and non-axisymmetric o>
dynamos of the fully convective star with the mass M = 0.3 Mg
rotating with a period of 10 d. The differential rotation is determined
using the numerical mean-field model similar to Kitchatinov &
Olemskoy (2011). This dynamo model also includes the meridional
circulation, while the magnetic feedback on the non-axisymmetric
flows is neglected. The dynamical quenching of the a-effect is
described by equation for the total magnetic helicity density. These
mean-field numerical simulations yield different dynamo solutions
depending on parameters, including variations of the turbulent mag-
netic Prandtl number, as a key parameter. Increase of this parameter
increases the period of the magnetic cycles.

The effects of the cross-helicity in the full-sphere large-scale
mean-field dynamo models have been studied by Pipin & Yokoi
(2018) in the absence of the differential rotation. They found
that non-axisymmetric magnetic field is generated when the cross-
helicity and the «-effect operate independently of each other, while
their joint action generates preferably axisymmetric dipole magnetic
fields.

In this theoretical study and MFS, we show that for the main
sequences low-mass fast rotating stars, the generated large-scale
magnetic field is due to the mean-field «>$2 dynamo, in which the o
dynamo is modified by a weak differential rotation. This implies that
for this mean-field dynamo R, < R, R, where R, = (6€2) R?/ Ny
and R, = a,R./n, are the key dimensionless parameters character-
izing the mean-field &> dynamo instability, and R is the threshold
required for the excitation of the mean-field dynamo instability,
defined by the conditions y = 0 and R, = 0. Here, R, is the star
radius, n, is the turbulent magnetic diffusion coefficient, 62 is the
differential rotation, ¢, is the maximum value of the kinetic a-effect,
and y is the dynamo growth rate.

We find that periods of the magnetic activity cycles decrease with
increase of the differential rotation, and they can vary from tens to
thousand years. The dynamical quenching of the «-effect due to the
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evolution of the magnetic helicity density of the small-scale field,
determines a long-term behaviour of the magnetic cycles.

This paper is organized as follows: In Section 2, we consider
the radial profiles of turbulent parameters in a the stellar convective
zones, and discuss the theoretical rotating profiles of the kinetic
a-effect obtained using theory of the convecting rotating MHD
turbulence (Kleeorin & Rogachevskii 2003). In Section 3, we study
mean-field @ Q dynamo, where we start with the kinematic > Q
dynamo (Section 3.1), discuss the algebraic and dynamic non-
linearities (Section 3.2), and continue with MFS of the > dynamo
(Section 3.3) as well as the > dynamo (Section 3.4). In Section 4, we
develop non-linear theory of axisymmetric @ dynamo. Finally, in
Section 5, we discuss the obtained results, compare various numerical
models and outline conclusions.

2 RADIAL PROFILES OF TURBULENT
PARAMETERS IN THE STELLAR CONVECTIVE
ZONES

In this Section, we discuss radial profiles of various turbulent
parameters in the stellar convective zones. As a turbulent model
of stellar convective zones, we use "Modules for Experiments in
Stellar Astrophysics (MESA)” (Paxton et al. 2011). The MESA
(http://mesa.sourceforge.net/) is one-dimensional stellar evolution
module, which combines many of the numerical and physics modules
for simulations of a wide range of stellar evolution scenarios ranging
from very low mass to massive stars.

The MESA includes a module which implements the standard
mixing length theory (MLT) of convection (Cox & Giuli 1968), as
well as the modified MLT (Henyey, Vardya & Bodenheimer 1965).
Whereas the standard MLT assumes high-optical depths and no
radiative losses, the modified MLT allows the convective efficiency
to vary with the opaqueness of the convective element, which is an
important effect for convective zones near the outer layers of stars
(Henyey et al. 1965).

Using the MESA, we plot the radial profiles of the convective
turbulent velocity u. (Fig. 1), the turbulent magnetic diffusivity n,
(Fig. 2) and the Coriolis parameter Q¢ t(7) (Fig. 3) based on the solar
angular velocity Qg and the turbulent turn-over time t(r) = 3n,/u>
for stars of late spectral classes: M6, M4, M2, K7, K4, K2, and G2.
Here, H, is the thickness of the convective zone, & is the height
from the bottom of the convective zone, the velocity is measured in
cms™!, and R, is the star radius. Depending on the spectral class and
the depth of the convective zone, the convective turbulent velocity u.
changes from 107 to 10° cms~!. Strong changes in . occur in the
upper part of the convective zone (see Fig. 1).

On the other hand, the turbulent magnetic diffusivity n, varies
inside the convective zone only in several times for stars of the
spectral classes from M2 to G2, while it changes by two orders of
magnitude for stars of the spectral classes from M4 and M6 (see
Fig. 2). The Coriolis parameter Q2,7 (r) based on the solar angular
velocity Q¢ and the turbulent turn-over time 7 (r) = 37, /u> strongly
decreases from 10? near the base of the convective zone to 1072—
10~ near the star surface depending on the spectral class (see Fig. 3).
Note that models of the solar convective zone are given by Baker &
Temesvary (1966) and Spruit (1974).

Models of the stellar convective zones based on the standard
mixing length theory do not take into account the effect of the Coriolis
force on the convective turbulence. One of the key effects of rotation
in density-stratified convection is

(1) production of the kinetic helicity and the kinetic a-effect,
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Figure 1. The radial profiles of the convective turbulent velocity u. for the
main sequences stars of the spectral classes: M6 (thick solid); M4 (thick
dashed—dotted); M2 (thick dashed); K7 (thin solid); K4 (thin dashed-dotted);
K2 (thin dashed); G2 (thin dotted). The velocity is measured in cms~!. Here,
R, is the star radius.

0 0.2 04 0.6 0.8 h/H.

Figure 2. The radial profiles of the turbulent magnetic diffusivity n, for
the main sequences stars of the spectral classes: M6 (thick solid); M4 (thick
dashed—dotted); M2 (thick dashed); K7 (thin solid); K4 (thin dashed—dotted);
K2 (thin dashed); G2 (thin dotted). The turbulent magnetic diffusivity is
measured in cm? s™!. Here, H, is the thickness of the convective zone, and &
is the height from the bottom of the convective zone.
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Figure 3. The radial profiles of the Coriolis parameter 2t (%) based on the
solar angular velocity 2 and the turbulent turn-over time 7(r) = 35,/ u% for
the main sequences stars of the spectral classes: M6 (thick solid); M4 (thick
dashed—dotted); M2 (thick dashed); K7 (thin solid); K4 (thin dashed—dotted);
K2 (thin dashed); G2 (thin dotted). The turbulent magnetic diffusivity is
measured in cm? s~

(i1) formation of the differential rotation and
(iii) strong anisotropization of turbulence.

Using the results obtained applying the theory of the convecting
rotating MHD turbulence (Kleeorin & Rogachevskii 2003; Branden-
burg et al. 2013), we plot in Figs 4-7 the isotropic part of the kinetic
o tensor that characterizes the kinetic a-effect,

1/02Q\ . .
o= - (—) sing [W1(w) + Wa(w) sin® ¢ ], (1)
6\ H,

1603

(6
40 o ]
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Figure 4. The radial profiles of the kinetic «-effect at the pole (at the latitude
¢ = m/2) for isotropic turbulent convection for o = 1 and ¢ = 0 for the main
sequences stars of the spectral classes: M6 (thick solid); M4 (thick dashed—
dotted); M2 (thick dashed); K7 (thin solid); K4 (thin dashed—dotted); K2 (thin
dashed); G2 (thick dotted). The kinetic « is measured in m s~
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Figure 5. The radial profiles of the kinetic a-effect at the latitude ¢ = 7/6 for
anisotropic turbulent convection for o = 2 and ¢ = 1.2 for the main sequences
stars of the spectral classes: M6 (thick solid); M4 (thick dashed—dotted); M2
(thick dashed); K7 (thin solid); K4 (thin dashed—dotted); K2 (thin dashed);
G2 (thick dotted). The kinetic « is measured in m s~!.
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Figure 6. The radial profiles of the normalized kinetic «-effect, aporm =
a/(Qp nT)l/z, at the pole (¢ = 7/2) for 0 = 2 and ¢ = 1.2, for the main
sequences stars with the solar rotation rate of the spectral classes: M6 (thick
solid); M4 (thick dashed—dotted); M2 (thick dashed); K7 (thin solid); K4 (thin
dashed—dotted); K2 (thin dashed); G2 (thick dotted). Here, H, is the height
of the convective zone, and 4 is the height from the bottom of the convective
zone.

where ¢ is the latitude, €2 is the angular velocity, H,, is the density
stratification height, ¢, is the integral scale of turbulent convection,
the parameter w = 4Q7(r), and the functions ¥ (w) and WV, (w) are
given in Appendix A.

For instance, for a slow rotation (w < 1), the kinetic a-effect is
given by

_4 @ .2 N 2)
= 3(58) 5o
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Figure 7. The radial profiles of the normalized kinetic «-effect, anorm =
«/(10Q2¢ n,)"/2, at the pole (¢ = 7/2) for ¢ = 1 and & = 0, for the main
sequences stars of the spectral classes: M6 (thick solid); M4 (thick dashed—
dotted); M2 (thick dashed); K7 (thin solid); K4 (thin dashed—dotted); K2 (thin
dashed); G2 (thick dotted). Here, H, is the height of the convective zone, and
h is the height from the bottom of the convective zone.

Table 1. The coefficient C, for different spectral classes and different
rotation rates.

Spectral class Qo 10Q¢ 20Q0
G2 0.970 0.933 0.982
K2 0.877 0.874 0.883
K4 0.824 0.858 0.854
K7 0.855 0.815 0.793
M2 0.643 0.687 0.680

and for fast rotation (@ >> 1) it is given by

Lou, . .
o = —%( ;Ib; )(2k+%—3+(a—1)51n2¢) sin ¢,

3

where u. = {y/t is the characteristic turbulent velocity. Here, the
parameter A = 2¢/(e + 2) is related to the degree of anisotropy & of
turbulent velocity field:

Y
= §<<u§> _2)’ @

u, is the horizontal turbulent velocity, u, is the vertical turbulent
velocity (in the direction of gravity). The parameter o determines
the degree of thermal anisotropy. For ¢ < 1, the thermal plumes in a
convective turbulence have the form of column or thermal jets, while
for o > 1, the “pancake” thermal plumes exist in the background
turbulent convection.

For example, in Fig. 4, we show the radial profiles of the kinetic
a-effect at the pole (at the latitude ¢ = 7/2) for isotropic turbulent
convection for o = 1 and ¢ = 0, while in Fig. 5, we plot the kinetic o-
effect at the latitude ¢ = /6 for anisotropic turbulent convection for
o =2 and ¢ = 1.2. Various curves in Figs 4 and 5 correspond to stars
of the spectral classes from M6 to G2. We use here the radial profile
of the Coriolis parameter 2,7(r) to determine the radial profile of
the kinetic a-effect which is the function of the Coriolis parameter.
It follows from Figs 4 and 5 that the maximum value «, of the
kinetic a-effect depends on the spectral class at a given rotation rate.
For instance, the stars of the spectral class G2 have largest values
of a,, while the stars of the spectral class M6 have smallest «,.
The anisotropy of the convective turbulence decreases the values of
o, and causes a localization of the maximum value of the kinetic
a-effect at the vicinity of the star surface and the equator.
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The maximum value of the kinetic a-effect can be estimated as
(Kleeorin, Rogachevskii & Ruzmaikin 1995):

= CulQuny)'?, Q)

where the coefficient C, is given in Table 1 for different spectral
classes and different rotation rates. It follows from Table 1 that the
coefficient C, is weakly dependent on the rotation rates. To derive
equation (5), we use a spatial distribution of the kinetic a-effect.
In particular, the kinetic a-effect is o >~ £(r)S2, for €(r)Q2./uc(r)
< 1, and o =~ uc(r) for £(r)Q2./u.(r) > 1 (Zeldovich, Ruzmaikin
& Sokoloff 1983). The kinetic a-effect reaches a maximum at the
depth r = ry, determined by the condition £,(ry) = uc(rm)/Q2.
The turbulent magnetic diffusivity is 7 2 £y, (rm)uc(rm). Therefore,
Lin(rm) = (n,/ €,)!/2. The maximal value of the kinetic a-effect, a,,
is given by o, >~ uc(rm) = 0y /ln(rm) = (UTQ*)I/Z-

In Figs 6 and 7, we show the radial profiles atnorm = /(20 1)
of the kinetic a-effect normalized by (Q¢ 7,)'/?. This normalization
and anisotropy of the convective turbulence cause the curves of the
different spectral classes oporm almost collapse to each other. This
indicates that the estimate (5) is enough good. In this study, we will
use this estimate to determine the dynamo number (see below).

12

3 MEAN-FIELD o> DYNAMO

Mean-field theories of solar, stellar, and galactic dynamos have been
developing during last 55 yr (see, e.g. books by Moffatt 1978; Parker
1979; Krause & Ridler 1980; Zeldovich et al. 1983; Ruzmaikin,
Shukurov & Sokoloff 1988; Riidiger, Hollerbach & Kitchatinov
2013; Moffatt & Dormy 2019; Rogachevskii 2021; Shukurov &
Subramanian 2021). In this study, we show that magnetic field
generation in fast rotating stars of the spectral classes: from M6 to
GO can be described by the axisymmetric mean-field o> © dynamo,
where the o> dynamo is modified by a weak differential rotation
with R, < Ry R. The axisymmetric large-scale magnetic field can
be written as B = B,e, + V x(Ae,), where r, §, ¢ are the spherical
coordinates and e, is the unit vector. We consider the mean-field
dynamo in a thin convective shell, taking into account strong variation
of the plasma density in the radial direction (see below). We neglect
the curvature of the convective shell and replace it by a flat slab.
Thus, the mean-field ? © dynamo equations are given by:

98, _ [Ra R, sinei —R? (8—2 —Mz)} A
ot a0 % \ 902
92 )\ =
+ (ﬁ — K ) By, (6)
4 _ B +(a—2—;ﬂ)2 )
ot ¢ 962 ’

To take into account strong variation of the plasma density in the
radial direction, we average the dynamo equations over the depth
of the convective zone and use the no-r model. In particular, the
terms describing turbulent diffusion of the mean magnetic field in
the radial direction in equations (6) and (7) in the framework of the
no-r model are given as —u?B, and —u?A (Kleeorin et al. 2003a,
2016; Safiullin et al. 2018). The differential rotation is characterized
by parameter G = 92/dr, and the parameter p is determined by the
following equation: frl(82§¢/8r2) dr = —(u2/3)§¢.

Equations (6) and (07) are written in dimensionless variables: the
coordinate r is measured in the units of the star radius R,, the time ¢
is measured in the units of turbulent magnetic diffusion time R2/7,;
the toroidal component, Ep(t, r, 0), of the mean magnetic field is
measured in the units of B,, where B, =& Beg, & = £o/~/2R, and
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Beq = ug /47 p,.. The magnetic potential, A(z, r, §), of the poloidal
field is measured in the units of R,R.B,, where R, = a. R, /n,, the
fluid density p(r, 8) is measured in the units p,, the differential
rotation 4<2 is measured in units of the maximal value of the angular
velocity €2, the a-effect is measured in units of the maximum value
of the kinetic a-effect, a,; the integral scale of the turbulent motions
£y, and the characteristic turbulent velocity ug at the scale ¢, are
measured in units of their maximum values in the convective region.
The magnetic Reynolds number Rm = £y u/n is defined using the
maximal values of the integral scale £, and the characteristic turbulent
velocity ug, and the turbulent magnetic diffusion coefficient is n, =
£y ug/3. The dynamo number is defined as D = R,R,,, where R, =
(5Q) R? /n,.

Equations (6) and (7) describe the dynamo waves propagating from
the central latitudes towards the equator when the dynamo number is
negative. The radius r varies from r to 1 inside the convective shell,
so that, e.g. for stars of the spectral class G2 (the solar-like stars),
the value i = 3 corresponds to a convective zone with a thickness
of about 1/3 of the radius.

3.1 Kinematic o>  dynamo

First, we consider a kinematic dynamo problem, assuming for
simplicity that the kinetic «-effect is a constant. Note that the
kinematic and weakly nonlinear «>2 dynamos have been studied
in a number of publications (see, e.g., Meunier et al. 1996; Griffiths
et al. 2001; Bassom et al. 2005, and references therein). We seek
a solution for equations (6) and (7) as a real part of the following
functions:

A= Agexp(jt —ik), ®)

B, = Byexp(yt —ik0), )

where 7 = y + iw. Equations (6)—(9) yield the growth rate of the
dynamo instability and the frequency of the dynamo waves as

R.RS R 2172 1/2 i
oty w or
y="r 1+(RRcr) +1]  —(RY)",
o ta
(10)
) 12 172
o = —sgn(R,) — o 1+ (R, \* -1 (11)
V2 Ry RS

where ¢2=1— (u/ Rg’)z. Here we took into account that (x +
iNn!”? = £(X + i), where X =2712[(x* + y»)'/2 + x]'/? and
Y = sgn(y) 2712 (x4 yz)l/2 — x]'/2. Here the threshold RY for
the mean-field dynamo instability, defined by the conditions y = 0
and R, = 0, is given by RS = (k* + pu?)!/2.

Equations (6)—(9) allow one to determine the squared amplitude
ratio |Ao/Bo|? as:

—1/2
¢R, )’
1 , 12
+ ( R, R;f) 12)
and the phase shift § between the toroidal field B, and the vector
potential A is given by the following equation:

2

Ao _ (R R) ™

By

. ) -12
sin(28) = —CR, [(RQR;') +;‘2Ri] . (13)

1605

Equation (12) yields the energy ratio of poloidal Bpo = RyRE A and
toroidal B, mean magnetic field components as:

(R, \? —12
1+<&&J] . (14)

Asymptotic formulas for the growth rate of the dynamo instability
and the frequency of the dynamo waves for a weak differential
rotation, ¢ R, < R, R, are given by

=2

B pol
72 -
B‘P

_ cr 1 ;-R(U : cr)2
Yy = R,RS |1+ 3 (RaRgf) ] — (RS, (15)
{Ry
w 7 (16)

In this case, the mean-field « dynamo is slightly modified by a weak
differential rotation, and the phase shift between the fields EV, and By
vanishes, while Epol /EH ~ 1 (see equations 13 and 14). The period
of the dynamo wave is Tyy, = 27 /w) (R%/ n.), where w is the non-
dimensional frequency of the dynamo wave given by equation (16).
In this study, we show that this case corresponds to fast rotating stars
of the spectral class from M6 to GO. Since in this case Bpoi ~ By,
the star spots can be formed for any latitude.

In the opposite case, for a strong differential rotation, ¢ R, >
Ry R, the growth rate of the dynamo instability and the frequency
of the dynamo waves are given by

1 1/2 R

Yy = [5 {RY RalRm|:| —(RY)". (17)
1 172

® = —sgn(R,) {5 ¢ RY RalRw|] . (18)

In this case the mean-field @2 dynamo is slightly modified by a
weak o effect, and the phase shift between the fields B, and By
tends to —/4, while Byoi/B, < 1 (see equations 13 and 14). This
case corresponds to the solar dynamo. The necessary condition for
the dynamo (y > 0) is:

(a) when R, /R < /2, the mean-field o2 Q dynamo is excited
when

2
D> : (R); (19)
(b) when R, /RS > /2, the mean-field & Q dynamo is excited
for any differential rotation, R,.

3.2 Algebraic and dynamic non-linearities

Now, we discuss the algebraic and dynamic non-linearities in the non-
linear dynamo model. The total a-effect is the sum of the kinetic and
magnetic a-effects,

o = x, D (B) + 0,x, P, (B), (20)

where x, = —(79/3) (u - (V xu)) is proportional to the kinetic helic-
ity (u - (Vxu)) and x,, = (vo/127tp) (b - (V x b)) is proportional to
the current helicity (b - (V xb)) (Frisch et al. 1975; Pouquet, Frisch
& Leorat 1976). Here, 1 is the correlation time of the turbulent
velocity field, # and b are velocity and magnetic fluctuations, and
0, = fri (ﬁ(r)/ﬁ*)_' dr (Kleeorin et al. 2016; Safiullin et al. 2018).

The quenching functions @, (B) and ®,,(B) in equation for the
total «-effect are given by (Rogachevskii & Kleeorin 2000, 2001,
2004, 2006),

@, (B) = % [4®,,(B) +3®,(B)], 21)
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and (Field, Blackman & Chou 1999)

— 3 arctan(«/gﬁ)
oB)=—- |l - —— 22
where 8 = B/Beq
@, (B)=1-168"+1288"In[1 +(88H)7'], (23)

and x, and yx,, are measured in units of maximal value of the «-effect,
a,. The function &, describes the algebraic quenching of the kinetic
«-effect that is caused by the feedback effects of the mean magnetic
field on plasma motions. The densities of the kinetic and current
helicities, and quenching functions are associated with a middle part
of the convective zone. The parameter o, > 1 is a free parameter.

The magnetic a-effect, «,,, is based on two non-linearities: the
algebraic non-linearity due to the feedback effects of the mean
magnetic field on plasma motions, that is described by the quenching
function ®,,(B), and the dynamic non-linearity, characterized by the
function x,,(B) that is determined by a dynamical equation (Klee-
orin & Ruzmaikin 1982; Gruzinov & Diamond 1994; Kleeorin
& Rogachevskii 1999; Kleeorin et al. 1995; 2000, 2002, 2003a,
b; Blackman & Field 2000; Brandenburg & Subramanian 2005;
Zhang et al. 2006, 2012). In particular, the total magnetic helicity,
J(Hm + Hy)dr, is conserved for very small microscopic magnetic
diffusivity 5, where Hy = A-B is the magnetic helicity density of
the large-scale field B = VxA with A being the mean magnetic
vector potential, Hy, = (a-b) is the magnetic helicity density of the
small-scale field b = V xa with a being fluctuations of magnetic
vector potential.

When the mean-field dynamo amplifies the large-scale magnetic
field, the magnetic helicity density Hy; of the large-scale field
grows in time. Since the total magnetic helicity [(Hy + Hy)dr is
conserved, the magnetic helicity density H,, of the small-scale field
changes during the dynamo action, and its evolution is determined
by the non-dimensional dynamical equation (Kleeorin et al. 2016;
Safiullin et al. 2018):

X . ) dAIB,
=2 === AB
3 (o Fek) x 96 00 100
3 (= 3A dxe
—aB — —|By— —Kk;— |, 24
T T < T @4
where F, = —«,V x. is the turbulent diffusion flux of the magnetic

helicity density of small-scale field and «, is the coefficient of the
turbulent diffusion of the magnetic helicity. Dynamics of magnetic
helicity of small-scale field is a crucial mechanism in a non-linear
dynamo saturation where turbulent magnetic helicity fluxes allow
to avoid catastrophic quenching of the «-effect. Recently, turbulent
fluxes of magnetic helicity density of small-scale magnetic field
have been rigorously derived by Kleeorin & Rogachevskii (2022)
and Gopalakrishnan & Subramanian (2023).

In equation (24), the time 7, = 2%/ is the relaxation time of
magnetic helicity. The average value of 7,° ! is given by

H, R?p
H, %n,’

1

-1 _ -1 =—1 -
T, =H, / T, (r)dr (25)
where H, is the depth of the convective zone, H, is the character-
istic scale of variations £y, and T,(r) = (nT/Rf)(ég/n) is the non-
dimensional relaxation time of the density of the magnetic helicity.
The values Hy, n, £ in equation (25) are associated with the upper
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Figure 8. The ratio of the maximum values of the poloidal to toroidal mean
magnetic fields Bpol/ Bior versus R,/R,, obtained from numerical simulations
of «?$ mean-field dynamo.

part of the convective zone. The mean magnetic field is given by

N\ 2
=2 =2 2 | a2 A
B =B R A — . 26
o TR |1 +(89> (26)

3.3 Mean-field numerical simulations of the «’>Q dynamo

We perform MFS of the «?Q dynamo by solving numerically
equations (6), (7), and (24). We use MATLAB code, which solves
initial-boundary value problems for systems of parabolic and elliptic
partial-differential equations that employs a second-order explicit
finite differences in space. We use the spatial resolution of 203 mesh
points in co-latitude 0 (this odd number provides mesh intervals
below 1 degree). The time grid in simulations varied between 6 x 10°
and 18 x 10° time instants for a different set of initial parameters
due to long transitional processes.

For numerical simulations, we use the standard profile of the
kinetic a-effect: a(9) = agsin>6cos . We use the following initial
conditions: E,;,(t =0,0) = S;sin6 + S, sin(20) and A(t = 0, 0) =
0 corresponding to a combination of the dipole and quadropole
type solutions. The parameters of the numerical simulation are
as follows: G =1, § = 0.1, ¥, =0.1, T = 6.3, §; = 0.051,
S, = 0.95 for different u, R,, and R,. These parameters and
initial conditions have been used by us for modelling of the solar
activity by the axisymmetric mean-field & €2 dynamo (Kleeorin et al.
2016, 2020; Safiullin et al. 2018), where mechanism of the sunspot
formation related to negative effective magnetic pressure instability
have been taken into account (Kleeorin, Rogachevskii & Ruzmaikin
1989, 1990; Kleeorin & Rogachevskii 1994; Kleeorin, Mond &
Rogachevskii 1996; Rogachevskii & Kleeorin 2007; Brandenburg
et al. 2011; Warnecke et al. 2013, 2016; Brandenburg, Rogachevskii
& Kleeorin 2016).

First we perform numerical simulations of the «’Q mean-field
dynamo at R, = 10. This value of the parameter R, corresponds
to the kinetic a-effect arising in rotating convective turbulence with
the rotating frequency that is in 25 times larger than that for the
Sun. In Fig. 8, we plot the ratio of the maximum values of the
poloidal to toroidal mean magnetic fields Epol /ﬁmr versus R,/R,.
Depending on the ratio R,/R,, there are ranges of the aperiodic
behaviouur, the quasi-periodic oscillations of the mean magnetic
field, and the chaotic behaviour. This is seen in Fig. 9, where we
show the time evolution of the flux of the toroidal mean magnetic
field ® = [ |B,|do obtained from numerical simulations of the o>
mean-field dynamo for different values of R,/R, =1.6, 3.2, 4.7, and
6.4. The time is normalized by 122.2 yr, and the flux ® is normalized
by the magnetic field of 300 G.
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Figure 9. The time evolution of the flux of the toroidal mean magnetic
field® = [ |§¢| do obtained from numerical simulations of > mean-field
dynamo at different values of R,/R, = 1.6 (a), 3.2 (b), 4.7 (¢), and 6.4 (d).
The time is normalized by 122.2 yr, and the flux @ is normalized by the
magnetic field of 300 G.

Note that 122.2 yr corresponds to the turbulent diffusion time
R2/n, with R, = Ry and n, = 1.4 x 10'2 cm?s~!. Here, we take
into account that the integral scale ¢, of the turbulent convection
is smaller by a factor 5-7 than the size of the coherent structures
(the large-scale circulations). The latter is justified by the results
of analytical study (Elperin et al. 2002, 2006a, b) and laboratory
experiments (Bukai et al. 2009). This causes the mixing length used
in the mixing length theory is about 5-7 times larger than the integral
scale ¢, of the turbulent convection. Correspondingly, the turbulent
diffusion coefficients should be 5-7 times smaller than those from
the mixing length theory.

Increase of R,/R,, causes decrease in the periods T of the stellar
magnetic cycles. Thisis seen in Fig. 10, where we show the periods 7,
of the stellar magnetic cycles normalized by 122.2 yr versus R,/R,,
which decreases from about 10° to 10 yr depending on the value

Figure 10. The period T, of the stellar magnetic cycles normalized by
122.2 yr versus R, /R, obtained from numerical simulations of the non-linear
«?Q mean-field dynamo at R, = 10.

a
RY

Figure 11. The threshold, RS, in generation of the large-scale magnetic field
(snowflakes) versus parameter p obtained from numerical simulations of the
non-linear o mean-field dynamo. Here, the solid line corresponds to the
fitting curve.

of the differential rotation. In chaotic regime there can be transition
from one attractor with a short period (of several tens years) to that
of a larger period (of thousand years), see Fig. 9c. For larger values
of R,/R,, the dynamo is similar to the &2 mean-field dynamo, while
for small values of R,,/R,,, the dynamo is similar to the > mean-field
dynamo.

We will show in the next section that for low-mass main sequences
stars rotating much faster than the Sun, the generated large-scale
magnetic field is caused by the mean-field @>Q2 dynamo, whereby
the @ dynamo is slightly modified by a weak differential rotation.
This means that R, < R, R

3.4 Mean-field numerical simulations of the o> dynamo

We also perform numerical simulations of the o> mean-field dynamo
with R, = 0. First, we plot the threshold, Ry, required for the

generation of the large-scale magnetic field versus

(i) parameter u (Fig. 11),
(ii) the spectral class (Fig. 12), and
(iii) the stellar effective temperature T (Fig. 13),

obtained from numerical simulations. For u > 3, the function
RS (1) is closed to the linear one (see Fig. 11). Indeed, our asymptotic
analysis for a constant kinetic a-effect shows that RS = (k> + u2)!/2.
This implies that when k* < 112, we obtain that RS ~ f.

InFig. 12, in addition to the threshold Ry versus the stellar spectral
class, we also plot the parameter R, = . R./n, = (Q/n,)"* R,
based on the solar rotation rate (see equation 5). As follows from
Fig. 12, the parameter R, is in several times less than the threshold
RY required for the generation of the large-scale magnetic field.
This implies that the pure o?> dynamo with the kinetic a-effect
o = (Qpn;)"/? based on the solar rotation rate cannot explain the
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Figure 12. The threshold RS (snowflakes, dashed line) in generation of the
large-scale magnetic field and the parameter R, (crosses, solid line) versus
the parameter p obtained from numerical simulations of the non-linear o
mean-field dynamo. The parameter R, = (Q@/nT)]/2 R, is determined for
the main sequence stars, where the angular velocity coincides with the mean
(averaged over the latitude) solar angular velocity Q.
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Figure 13. The threshold RS (crosses, thin solid line) in generation of the
large-scale magnetic field and the parameter R, = (Q@ /nT)]/ 2 R, (solid
line) versus the star effective temperature T obtained from numerical
simulations of the non-linear &> mean-field dynamo. The parameter Ry, is
calculated for the main sequence stars, where the angular velocity coincides
with the mean (averaged over the latitude) solar angular velocity Q2. The
parameter Ry, (stars) is also estimated for real main sequence stars, where we
use equation (5), the rotating rates (see Gershberg et al. 2020) and turbulent
magnetic diffusion coefficients for the stars of these spectral classes.

generation of large-scale magnetic field in the main sequences stars.
To describe correctly the magnetic field generation in the main
sequences stars in the framework of the &> dynamo, one need to
increase the stellar rotation rate by one order of magnitude to obtain
the required value of the «-effect. That is why we consider stars
rotating much faster than the Sun.

In Fig. 13, we show the threshold R_" (crosses, thin solid line) in
generation of the large-scale magnetic field and the parameter R, =
(Qo/n;) '/2 R, (thick solid line) versus the star effective temperature
T.s obtained from numerical simulations of the non-linear o> mean-
field dynamo. This parameter R, is calculated for the main sequence
stars, where the angular velocity coincides with the mean (averaged
over the latitude) solar angular velocity 2. In addition, we also show
the parameter R, (shown as stars) that is estimated for real main
sequence stars, where we use equation (5), the rotating rates (see
Gershberg et al. 2020) and turbulent magnetic diffusion coefficients
for the stars of these spectral classes. Fig. 13 demonstrates that the
parameter R, for the observed stars is in several times larger than the
threshold Ry required for the generation of the large-scale magnetic
field by pure &> dynamo. This shows that the pure &> dynamo can
describe the generation of large-scale magnetic field for these stars.
However, some observed features (appearance of star spots in the
polar regions, long period of cyclic behaviour, etc.) for the main
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1 2 3 4 5 6 7 R./RE
Figure 14. The ratio of the maximum values of the poloidal to toroidal mean
magnetic fields Epol /Bior versus R,/ R for the main sequence stars of three
spectral classes: M5 (solid); MO (dashed—dotted); K5 (dashed), obtained from
numerical simulations of the non-linear > mean-field dynamo.

sequence fast rotating stars require presence of small differential
rotation.

In Fig. 14, we show the ratio of the maximum values of the poloidal
to toroidal mean magnetic field Fpol /B versus R/ R for the
main sequence stars of three spectral classes: M5, MO, and K5,
obtained from numerical simulations in non-linear saturated stage.
It seen that in non-linear saturated stage Epol /Bior ~ 1. This is in
agreement with equation (14) for R, < Ry R derived for the mean-
field «?Q dynamo. The latter implies that the generated large-scale
magnetic field is caused by the mean-field > dynamo, whereby
the &> dynamo is modified by a weak differential rotation.

4 NON-LINEAR THEORY OF AXISYMMETRIC
o> DYNAMO

In this section, we discuss a non-linear theory of axisymmetric a?

dynamo. We consider the axisymmetric mean-field &> dynamo in
spherical coordinates. The non-linear mean-field induction equa-
tion reads

2 (g) —(L+5) (;}), @7)

where
s As  a(r,0)
P=(aga, 0" @
o 0 an(r,0)
and
R B LR 19 1 3 .
AD=-— O+ - — — " (sin6 &
Far T g (sine ag S ))
3 1 3
o r2sin? 0
and
Ay Lo 8(<1>)
e = L m
km ror % ar
L0 (om0 )
2 30 \ sin6 99 :

Equations (27)—(29) are written in dimensionless variables (see
Section 3). The operator L. describes the kinematic dynamo. Here,
ay(r, 0) = —o(r, m — 0).

We neglect algebraic quenching of the kinetic and magnetic a-
effect, but take into account the dynamical non-linearity related to
the conservation law of the total magnetic helicity for very large
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magnetic Reynolds numbers. The magnetic a-effect is determined
by the evolutionary equation

oy, Um 2 B
Py + Tu =V. (KTVOlm) — ;|:(ak+am)R§BP2
. A
—M(B,A)+B§]v (30)

where Fp =rot[A(¢, r, O)e,] is the poloidal component of the mean
magnetic field, and

M(B,A)=rot (Be,) -tot (Ae,).

We seek a solution of the non-linear equations (27) and (30) in the
following form:

(2) =3 F'er,0), e = (Z) (31)

n=1
where e, are the eigenvectors of the operator L for R, = Ry,
ie. Lee, = pile,. Substituting equation (31) into equation (27)
and taking into account the properties of the eigenvectors , we
obtain the following system of equations for the coefficients F*(f)
in equation (31):

dFt 1/ dp, =
- FZ (S —— F'(t [ t
dr Pe =73 (dlnRa . n;oo @1

+R2al+ [R2 — (R G, (32)

where pi" = p; (R, = R"),and functions o, &', and G¢ are defined
by equations (B1)-(B3) in Appendix B.

The coefficients F*(f) depend on the non-linearity characterized
by af. The equation for ! is derived from equation (30):

= dF* .
-2 Z Fk(t){wslfsn_F |:M]fsn

k,s=—00

Y4
_R (‘;L + K,f) @,,)@,,)S} } 26, (Cral — &),
X

dof N a,
e T,

(33)

where (b,), = rot (a, €,), and the tensors My, Sy, and K} are
determined by equations (B5)—(B8) in Appendix A. The equation for
@ is derived from equation (30) as well:

- k dF* R4 s | a7t
-2 > F'o) = Sk — P M,

k,s=—00

at L)\ - -
_Ri (?’1 + K;f) (bp)k(bp)s:| } - KTCQdﬁ,
X

dat N a,
e T,

(34)

where the functions M{,,, 8f,,, K are determined by equations (B9)—
(B11)in Appendix B. It is assumed here that the relaxation time 7, of
the magnetic helicity is independent of r. Thus, the problem reduces
to the study of this infinite system of equations with coefficients
determined by the eigenfunctions and eigenvalues of the linear
problem for R, = R;". When R, in the stellar convective zone is
not much larger than the critical value R required for the excitation
of the dynamo instability, only few modes are excited.

Let us consider the simplest case, when only one mode is excited.
This is sufficient to estimate the magnitude of the mean magnetic
field in a steady state. The multi-mode regime could be considered
similarly. The equations of the single-mode approximation follow
from equations (32)—(34):
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Figure 15. The maximum mean magnetic field B, versus (Ry/RS)? for
the main sequence stars of the spectral class MO, obtained from numerical

simulations (solid) of the non-linear «? mean-field dynamo and analytical
result (dashed) described by equations (38) and (39).

dF
E—Fp”:F(t)[[Rg—(R;r)z] G+a+R§&}, (35)
dOl+ L e %) 1 dFZS
—+ -+« a—a)=—= —

a 1, ! 2 dr

P2 {M— R? (K + %51)] (36)

X

da a _ _ a —2
— + Coei = F*|M —R> K+ —b

dt+Ta+KT 2 [ "( +tX p)]

1 dF? .
i 37)
2 dr

The steady-state solution of equations (35)—(37) for this single-mode
approximation yields the magnitude of the mean toroidal magnetic
field near the stellar surface as

— a3k (2GT,N\Y? R2
B=(mo) " T ( K ) ! LRS;)Z]’ 9
where
xX) = (X -1 )1/2 [(R”)2X +2]_|
f - X _ C a

—2
(X —C) [(Re2X +2] 1,

~

ery2 _ 2N 1729172
(R X(X—-1) bp> ] . (39)

1 —4G e
+( X —0) [(RPX +2] 1,

and we consider the case when K ~ K, M ~ M, K/IM = C, ty = Iy,
and C, = C, = 1. The characteristic times t,, and 7, are defined by
equations (B8) and (B12) in Appendix B.

InFig. 15, we show the maximum mean magnetic field Emfx (solid)
versus (Ri / Rgf)2 for the main sequence stars of the spectral class MO
obtained from the MFS, that is in an agreement with analytical result
(dashed) described by equations (38) and (39).

M

5 DISCUSSIONS AND CONCLUSIONS

We start the discussion with some comments related to various
numerical simulations. There are two different kinds of numerical
simulations discussed in this paper which are very important for
investigations of the stellar magnetic activity. The first kind of
simulations is DNS and LES (see, e.g. Dobler et al. 2006; Browning
2008; Yadav et al. 2016; Brown et al. 2020; Képyld 2021; Bice &
Toomre 2022; Képyld et al. 2023). The DNS and LES solve exact
(or nearly exact) equations and demonstrate physical effects which
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mimic the processes occurring inside stars. For instance, the key
feature of the DNS and LES which investigate the stellar magnetic
activity, is that they study small-scale turbulent effects and their
influence to large-scale magnetic activity. However, the used range
for the key parameters (e.g. fluid and magnetic Reynolds numbers,
Péclet number, Rayleigh number, degree of density stratification,
etc.) which can be achieved in the DNS and LES, is essentially
different from the parameter range which is typical for stars (see,
e.g. review by Kipyld et al. 2023).

The second type of simulations is MFS (see, e.g. Chabrier & Kiiker
2006; Kitchatinov et al. 2014; Shulyak et al. 2015; Pipin 2017; Pipin
& Yokoi 2018), which are based on various mean-field theories and
take into account various turbulence effects by means of turbulent
transport coefficients (e.g. turbulent viscosity, turbulent magnetic
diffusivity, turbulent heat conductivity, the alpha effect, the lambda
effect, etc). The MFS allow to study the large-scale and long-term
effects in spatial and time scales which are much larger than the
turbulent scales. Mean-field models have been tested using various
solar and geophysical observations of magnetic activity. Note also
that mean-field models are usually improved using the results of the
DNS and LES.

In this paper in addition to the analytical study, we perform non-
linear MFS. Thus, we can compare our model with others MFS. In
particular, some studies (Chabrier & Kiiker 2006; Kitchatinov et al.
2014; Shulyak et al. 2015) mainly investigate the kinematic (linear)
stage of the mean-field dynamo instabilities, while in our paper we
study non-linear mean-field dynamo instabilities, taking into account
algebraic and dynamic non-linearities.

Pipin (2017) has performed the MFS of the non-linear axisymmet-
ric and non-axisymmetric o> dynamos of the fully convective star.
However, the dynamical quenching of the a-effect is determined in
this dynamo model by equation for the total magnetic helicity density
rather than that for the evolution of magnetic helicity density of the
small-scale field. The latter is a weak point of this non-linear dynamo
model, because the magnetic a-effect is determined by the evolution
of the current helicity of the small-scale field, which is caused by
the production and transport of the magnetic helicity density of the
small-scale magnetic field.

In this study, we investigate the non-linear axisymmetric «>$2 and
a? dynamos using the dynamic equation for the evolution of magnetic
helicity density of the small-scale field. We compare the results of the
performed MFS with the developed non-linear theory of mean-field
dynamo. In particular, the derived scaling for the magnitude of the
mean toroidal magnetic field near the stellar surface as a function
of various key parameters is in agreement with the results of the
performed MFS (see, e.g. Fig. 15).

A majority of the observed stars are fast rotating, because much
more easy to observe fast rotating stars generated strong magnetic
fields. Our theoretical study and mean-field numerical simulations
suggest that for fast rotating low-mass main sequences stars with the
spectral classes from M5 to G5, the generated large-scale magnetic
field is caused by the mean-field @>$2 dynamo, where the > dynamo
is modified by a weak differential rotation. The latter implies that
R, < R4R; . However, even a weak differential rotation in the non-
linear phase of magnetic field evolution causes drastic changes in
magnetic activity, resulting in chaotic behaviour where long-term
evolution (with the period about thousand years) is accompanied by
fast changes of the several tens years.

In view of observations, this multi-time-scale system causes very
complicated patters in magnetic activity, e.g. the fast rotating stars
with the same rotation rates and the same spectral classes may
have different magnetic activity. This implies necessity of long-term
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observational programs of the stellar magnetic activity. The long-
term behaviour of the magnetic activity is related to the characteristic
time of the evolution of the magnetic helicity density of the small-
scale magnetic field. The performed MFS have shown that the
kinematic and non-linear phases of magnetic field evolution are
very different. For instance, non-linear effects cause a threshold in
the differential rotation that is necessary for a transition between
aperiodic and quasi-periodic regime. We demonstrate that period
of non-linear oscillations decreases with increase of the differential
rotation.
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APPENDIX A: THE FUNCTIONS V¥,(w) AND
¥, (w)

The functions ¥, (w) and ¥,(w) are given by
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In the case of w < 1 these functions are given by
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APPENDIX B: FUNCTIONS FOR
AXI-SYMMETRIC NON-LINEAR o> DYNAMO

The functions !, @’ and G¢ entering in equation (32), are given by

af = 07! /am a"* b, d’r, (B1)
at =0, /am MY, a,)dr, (B2)
G, =0, / a Mb"*, a,) d’r, (B3)
= /ak a“* by dr. (B4)
The tensors MY, S, and K} entering in equation (33) are given
by
M by, a,
m, = ot [ MO ey, g, (B5)
‘ p(r)
1
st = 07! /—Wb,,b a, d°r, (B6)
S ) ‘
KL= 07" | 2 g, dr, (B7)
p(r)
n'= 0 [a b (B8)

The tensors M

s Sk K entering in equation (34) are given by

1

M/fsn = Z_l VRN M(bk’ ax) M(bz.*y an)dars (B9)
or)
- 1 .
Slfsn = QZI N M(bé,*’ an)bk Ay d3r, (Blo)
] o(r)
K =0; /ﬂlﬂ(b“’*,an)d% (B11)
p(r)
1 .
=0, | —M®", a)d’r. (B12)
p(r)

This paper has been typeset from a TEX/IZTEX file prepared by the author.
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