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A B S T R A C T 

Combined action of helical motions of plasma (the kinetic α effect) and non-uniform (differential) rotation is a key dynamo 

mechanism of solar and galactic large-scale magnetic fields. Dynamics of magnetic helicity of small-scale fields is a crucial 
mechanism in a non-linear dynamo saturation where turbulent magnetic helicity fluxes allow to a v oid catastrophic quenching 

of the α effect. The conv ectiv e zone of the Sun and solar-like stars, as well as galactic discs, are the source for production of 
turbulent magnetic helicity fluxes. In the framework of the mean-field approach and the spectral τ approximation, we derive 
turbulent magnetic helicity fluxes using the Coulomb gauge in a density-stratified turb ulence. The turb ulent magnetic helicity 

fluxes include non-gradient and gradient contributions. The non-gradient magnetic helicity flux is proportional to a non-linear 
ef fecti v e v elocity (which vanishes in the absence of the density stratification) multiplied by small-scale magnetic helicity, while 
the gradient contributions describe turbulent magnetic diffusion of the small-scale magnetic helicity. In addition, the turbulent 
magnetic helicity fluxes contain source terms proportional to the kinetic α effect or its gradients, and also contributions caused 

by the large-scale shear (solar differential rotation). We have demonstrated that the turbulent magnetic helicity fluxes due to 

the kinetic α effect and its radial deri v ati ve in combination with the non-linear magnetic diffusion of the small-scale magnetic 
helicity are dominant in the solar conv ectiv e zone. 

Key words: MHD – Sun: dynamo – Sun: interior – Sun: magnetic fields – turbulence. 
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 I N T RO D U C T I O N  

he large-scale solar and galactic magnetic fields are generated by a 
ombined action of helical turbulent motions and large-scale differ- 
ntial rotation due to the α� dynamo (see e.g. Moffatt 1978 ; Parker
979 ; Krause & R ̈adler 1980 ; Zeldovich, Ruzmaikin & Sokoloff
983 ; Moffatt & Dormy 2019 ). A non-zero kinetic helicity produced
y a rotating density stratified conv ectiv e turbulence, causes the 
inetic α effect. The dynamo instability is saturated by non-linear 
ffects. One of the important non-linear effects is the feedback of the
rowing large-scale magnetic field on the plasma turbulent motions, 
o that the turbulent transport coefficients (the α effect, the effective 
umping velocity, and the turbulent magnetic diffusion) depend 
n the mean magnetic field B . The simplest non-linear saturation 
echanism of the dynamo instability is related to the α quenching 

hat prescribes the kinetic α effect to be a decreasing function of

he mean magnetic field strength, e.g. α( B ) = αK 

(
1 + B 

2 
/ B 

2 
eq 

)−1 
, 

here αK ∝ −τ0 H u is the kinetic α effect that is proportional to the

inetic helicity H u = 〈 u ·( ∇ ×u ) 〉 , B 

2 
eq = 4 π ρ

〈
u 

2 
〉

is the squared
quipartition mean magnetic field, u is the turbulent velocity field, 
0 is the turbulent time, and ρ is the mean density. This implies 

hat the mean magnetic field strength, at which quenching becomes 
ignificant, is estimated from the equipartition between the energy 
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ensity of the mean magnetic field and the turbulent kinetic energy
ensity. When applied to galactic dynamos, this picture results in 
obust magnetic field models that are compatible with observations 
see e.g. Ruzmaikin, Shukurov & Sokoloff 1988 ; Shukurov & 

ubramanian 2021 ). The abo v e-mention non-linearity is referred as
lgebraic non-linearity. 

Ho we ver, this picture is obviously oversimplified and various 
ttempts to suggest a more advanced version of non-linear dynamo 
heory have been undertaken (see e.g. re vie ws and books by Bran-
enburg & Subramanian 2005b ; R ̈udiger, Hollerbach & Kitchatinov 
013 ; Rincon 2019 ; Rogachevskii 2021 , and references therein).
he quantitative theories of the algebraic non-linearities of the α
ffect, the turbulent magnetic diffusion, and the effective pumping 
 elocity hav e been dev eloped using the quasi-linear approach for
mall fluid and magnetic Reynolds numbers (R ̈udiger & Kichatinov 
993 ; Kitchatinov, Pipin & R ̈udiger 1994 ; R ̈udiger et al. 2013 ) and
he tau approach for large fluid and magnetic Reynolds numbers 
Field, Blackman & Chou 1999 ; Rogachevskii & Kleeorin 2000 ,
001 , 2004 , 2006 ). 
In addition to the algebraic non-linearity, there is also a dy-

amic non-linearity caused by an evolution of magnetic helicity 
ensity of small-scale fields during the non-linear stage of the 
ean-field dynamo. In particular, the α effect is the sum of the

inetic and magnetic parts, α = αK + αm 

, where the magnetic α
ffect, αm 

∝ τ0 H c / (12 π ρ), is proportional to the current helicity
 c = 〈 b ·( ∇ ×b ) 〉 of the small-scale magnetic field b (Pouquet,
risch & L ́eorat 1976 ). The dynamics of the current helicity, H c ,
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s determined by the evolution of the small-scale magnetic helicity
ensity H m 

= 〈 a ·b 〉 , where magnetic fluctuations b = ∇ ×a and a 
re fluctuations of magnetic vector potential. 

Magnetic helicity is a fundamental quantity in magnetohydrody-
amics and plasma physics (see e.g. Berger 1999 ). In particular,
he total magnetic helicity, i.e. the sum of the magnetic helicity
ensities of the large-scale and small-scale magnetic fields, H M 

+
 m 

, inte grated o v er the volume, 
∫ 

( H M 

+ H m 

) d r 3 , is conserv ed for
ery small microscopic magnetic dif fusi vity η. Here, H M 

= A ·B is
he magnetic helicity density of the large-scale field B = ∇ ×A .
ignature of magnetic helicity has been detected in many solar
eatures, including solar active regions (see e.g. Zhang et al. 2006 ,
012 ; Pevtsov et al. 2014 , and references therein). 
The go v erning equation for small-scale magnetic helicity density,
 m 

, has been derived for an isotropic turbulence by Kleeorin &
uzmaikin ( 1982 ) and for an arbitrary anisotropic turbulence by
leeorin & Rogachevskii ( 1999 ). This equation has been used for

he analytical study of solar dynamos (Kleeorin, Rogachevskii &
uzmaikin 1994 , 1995 ) as well as for mean-field numerical mod-
lling of solar and galactic dynamos (see e.g. Covas et al. 1997 ,
998 ; Kleeorin et al. 2000 , 2002 , 2003b , a , 2016 ; Brandenburg &
ubramanian 2005b ; Sokoloff et al. 2006 ; Zhang et al. 2006 , 2012 ;
el Sordo, Guerrero & Brandenburg 2013 ; Safiullin et al. 2018 ). 
As the dynamo amplifies the large-scale magnetic field, the
agnetic helicity density H M 

of the large-scale field grows in time. In
articular, the evolution of the large-scale magnetic helicity density,
 M 

, is determined by the following equation: 

∂H M 

∂t 
+ ∇ · F 

(M) = 2 E · B − 2 ηH C , (1) 

here E = 〈 u ×b 〉 is the turbulent electromotive force that deter-
ines generation and dissipation of the large-scale magnetic field,
 E · B is the source of H M 

due to the dynamo generated large-scale
agnetic field, F 

(M) is the flux of magnetic helicity density of the
arge-scale field that determines its transport, and H C = B ·( ∇ ×B )
s the current helicity of large-scale field. 

Since the total magnetic helicity 
∫ 

( H M 

+ H m 

) d r 3 is conserved,
he magnetic helicity density H m 

of the small-scale field changes
uring the dynamo action, and its evolution is determined by the
ynamic equation (Kleeorin & Ruzmaikin 1982 ; Zeldovich et al.
983 ; Kleeorin et al. 1995 ; Kleeorin & Rogachevskii 1999 ): 

∂H m 

∂t 
+ ∇ · F 

(m) = −2 E · B − 2 ηH c , (2) 

here −2 E · B is the source of H m 

due to the dynamo generated
arge-scale magnetic field, F 

(m) is the flux of magnetic helicity
ensity of the small-scale field that determines its transport, and
2 ηH c is the dissipation rate of H m 

. The source of the small-scale
nd large-scale magnetic helicity densities is only located in turbulent
egion. 

The characteristic decay time of the magnetic helicity density
 m 

of the small-scale field is of the order T m 

= τ0 Rm , while the
haracteristic time for the decay of kinetic helicity is of the order
f the turn-o v er time τ 0 = 
 0 / u 0 of turbulent eddies in the integral
urbulence scale 
 0 , where Rm = 
 0 u 0 /η is the magnetic Reynolds
umber. The current helicity H c of the small-scale field is not a
onserved quantity, and the characteristic decay time of H c varies
rom a short time-scale τ 0 to much larger time-scales. On the other
and, the characteristic decay times of the current helicity of large-
cale field, H C , and of the large-scale magnetic helicity H M 

are of
he order of the turbulent diffusion time. For weakly inhomogeneous
urbulence, the current helicity density H c of the small-scale field
NRAS 515, 5437–5448 (2022) 
s proportional to the small-scale magnetic helicity density H m 

Kleeorin & Rogachevskii 1999 ). 
Using the steady-state solution of equation ( 2 ) with a zero turbulent

ux F 

(m) = 0 of magnetic helicity density of small-scale field and a
ero current helicity of large-scale field, H C , it has been concluded
hat the critical mean magnetic field strength, B cr , at which the
ynamic α quenching becomes significant, in fact is much lower
han the equipartition value, e.g. B cr = B eq Rm 

−1 / 2 (Vainshtein &
attaneo 1992 ; Gruzinov & Diamond 1994 ). In astrophysics, e.g.

n galactic discs and in the conv ectiv e zone of the sun, magnetic
eynolds numbers are very large. Therefore, for large magnetic
eynolds numbers, the dynamo action should saturate at a magnetic
eld strength that is much lower than the equipartition value.
his effect is referred to a catastrophic quenching of the α effect

Vainshtein & Cattaneo 1992 ; Gruzinov & Diamond 1994 ). On the
ther hand, the observed large-scale field strengths in spiral galaxies
s the order of the equipartition value (see e.g. Ruzmaikin et al. 1988 ;
hukurov & Subramanian 2021 ), and the observed solar and stellar
agnetic fields are much larger than B cr (see e.g. Moffatt 1978 ;
arker 1979 ; Krause & R ̈adler 1980 ; Zeldovich et al. 1983 ). 
The evolution of magnetic helicity appears, ho we ver, to be a more

omplicated process than can simply be described by a balance of
agnetic helicity in a given volume. It is necessary to take into

ccount fluxes of magnetic helicity (Kleeorin et al. 2000 ). This
mplies that the turbulent transport of magnetic helicity through the
oundaries (the open boundary conditions in simulations) should
e taken into account (Blackman & Field 2000 ). Different forms
f magnetic helicity fluxes have been suggested in various studies
Covas et al. 1997 , 1998 ; Kleeorin & Rogachevskii 1999 ; Kleeorin
t al. 2000 , 2002 ; Vishniac & Cho 2001 ; Subramanian & Branden-
 urg 2004 ; Brandenb urg & Subramanian 2005b ). Turbulent fluxes
f small-scale magnetic helicity have been measured in numerical
imulations (Hubbard & Brandenburg 2010 , 2011 , 2012 ; K ̈apyl ̈a,
orpi & Brandenburg 2010 ; Mitra et al. 2010 ; Del Sordo et al. 2013 ),
nd in solar observations (Chae et al. 2001 ; Pariat, D ́emoulin &
erger 2005 ; Pevtsov et al. 2014 ; Hawkes & Berger 2018 ). 
Taking into account turbulent fluxes of the small-scale magnetic

elicity, it has been shown by numerical simulations that a non-
inear galactic dynamo go v erned by a dynamic equation for the

agnetic helicity density H m 

of small-scale field saturates at a mean
agnetic field comparable with the equipartition magnetic field (see

.g. Kleeorin et al. 2000 , 2002 , 2003b , a ; Blackman & Brandenburg
002 ; Brandenburg & Subramanian 2005b ; Shukurov et al. 2006 ;
el Sordo et al. 2013 ). Numerical simulations demonstrate that

he dynamics of the small-scale magnetic helicity in the presence
f the turbulent magnetic helicity fluxes play a crucial role in the
olar dynamo as well (see e.g. Kleeorin et al. 2003b , 2016 , 2020 ;
okoloff et al. 2006 ; Zhang et al. 2006 , 2012 ; Guerrero, Chatterjee &
randenburg 2010 ; K ̈apyl ̈a et al. 2010 ; Hubbard & Brandenburg
012 ; Del Sordo et al. 2013 ; Safiullin et al. 2018 ; Rincon 2021 ) 
Due to very important role of the turbulent magnetic helicity

uxes in non-linear dynamos, in the present study, we perform a
igorous deri v ation of these fluxes applying the mean-field theory,
dopting the Coulomb gauge and considering a strongly density-
tratified turbulence. We show that the turbulent magnetic helicity
uxes contain non-gradient and gradient contributions. The non-
radient magnetic helicity fluxes are product of a non-linear ef fecti ve
elocity and small-scale magnetic helicity. The gradient contribu-
ions determine a non-linear magnetic diffusion of the small-scale

agnetic helicity. We also demonstrate that the turbulent magnetic
elicity fluxes include source terms proportional to the kinetic α
ffect or its gradients. In the present study, we do not consider an
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lgebraic quenching of the turbulent magnetic helicity fluxes that is 
 subject of a separate study. 

This paper is organized as follows. In Section 2 , we derive
quation for the magnetic helicity of small-scale fields that includes 
ivergence of the turbulent magnetic helicity flux. In Section 3 , we
iscuss the results of calculations of the turbulent flux of magnetic 
elicity of the small-scale fields. In addition, we obtain a general 
orm of turbulent flux of the magnetic helicity using symmetry 
rguments. In Section 4 , we consider the turbulent magnetic helicity 
ux in the solar conv ectiv e zone. Finally, in Section 5 , we discuss our
esults and draw conclusions. In Appendixes A and B , we discuss
pproximations and procedure of the deri v ation of turbulent flux 
f magnetic helicity. In Appendix C , we determine the effect of
arge-scale shear on turbulent flux of the magnetic helicity. Applying 
he method described in Appendixes A –C , we determine various 
ontributions to the turbulent flux of the small-scale magnetic helicity 
n Appendix D . In particular, we present the general form of turbulent
ransport coefficients entering in the turbulent flux of the small-scale 
agnetic helicity. For better understanding of the physics related to 

arious contributions to the turbulent flux of the small-scale magnetic 
elicity, in Appendix E , we consider a more simple case with a large-
cale linear velocity shear and present turbulent transport coefficients 
n the Cartesian coordinates. 

 EQUATION  F O R  T H E  MAGNETIC  HELICI TY  

n this section, we derive an equation for the small-scale magnetic 
elicity. The induction equation for fluctuations of magnetic field b 
eads 

∂ b 
∂t 

= ∇ ×
[ 
U × b + u × B + u × b − 〈 u × b 〉 

− η∇ × b 
] 
, (3) 

here in the framework of the mean-field approach, we separate 
agnetic and velocity fields into mean and fluctuations, B = B + b 

nd B = 〈 B 〉 is the mean magnetic field, U = U + u , and U = 〈 U 〉
s the mean fluid velocity describing, e.g. the differential rotation, 

is the magnetic diffusion due to electrical conductivity of fluid. 
he equation for magnetic fluctuations is obtained by subtracting 

nduction equation for the mean magnetic field B from that for 
he total field B ( t, x ). The equation for fluctuations of the vector
otential a follows from induction equation ( 3 ) 

∂ a 
∂t 

= U × b + u × B + u × b − 〈 u × b 〉 
− η∇ × b + ∇ φ, (4) 

here B = ∇ × A and A = A + a , and A = 〈 A 〉 is the mean vector
otential, b = ∇ × a , and φ are fluctuations of the scalar potential. 
e multiply equation ( 3 ) by a and equation ( 4 ) by b , add them and

v erage o v er an ensemble of turbulent fields. This yields an equation
or the magnetic helicity H m 

= 〈 a ( x ) · b ( x ) 〉 of the small-scale fields
s 

∂H m 

∂t 
= −2 E · B − 2 η〈 b · ( ∇ × b ) 〉 − ∇ · F 

(m) , (5) 

here E = 〈 u × b 〉 is the turbulent electromotive force, and the 
urbulent flux of magnetic helicity F 

(m) of the small-scale fields 
s given by 

F 

(m) = U H m 

− 〈
b ( a · U ) 

〉 + 

〈
u ( a · B ) 

〉 − B 〈 a · u 〉 
− η 〈 a × ( ∇ × b ) 〉 + 〈 a × ( u × b ) 〉 − 〈 b φ〉 . (6) 
sing the Coulomb gauge ∇ · a = 0, we obtain that ∇ × b = −� a 
nd a = −� 

−1 ∇ × b . The Coulomb gauge also allows us to find
uctuations of the scalar potential φ. Indeed, equation for ∇ · a , 
hich follows from equation ( 4 ), yields expression for fluctuations
f the scalar potential φ, so that the correlation function 〈 b i φ〉 reads 

〈 b i φ〉 = 

〈
b i a j 

〉
U j −

〈
b i � 

−1 ( ∇ × u ) j 
〉

B j 

− 〈
b i � 

−1 b j 
〉

W j + 

〈
b i � 

−1 u j 

〉
( ∇ × B ) j 

− 〈
b i � 

−1 ∇ · ( u × b ) 
〉
. (7) 

here W = ∇ × U is the mean vorticity and 
〈
b i a j 

〉 = 〈
b i � 

−1 ( ∇ × b ) j 
〉
. Equations ( 6 –7 ) yield the turbulent flux of

agnetic helicity F 

(m) of the small-scale fields as 

 

(m) 
i = U i H m 

+ W j 

〈
b i � 

−1 b j 
〉 + B j 

〈
u i a j 

〉
− B i 

〈
u j a j 

〉 + B j 

〈
b i � 

−1 ( ∇ × u ) j 
〉 + F 

( η) 
i 

− ( ∇ × B ) j 
〈
b i � 

−1 u j 

〉 + F 

( III ) 
i , (8) 

here 
〈
u i a j 

〉 = − 〈
u i � 

−1 ( ∇ × b ) j 
〉
, F 

( η) = −η 〈 a × ( ∇ × b ) 〉 is 
he flux caused by the microscopic magnetic diffusion η, and F 

( III ) 

s the flux that is determined by the third-order moments, and it is
iven by 

F 

( III ) = 

〈
b � 

−1 ∇ · ( u × b ) 
〉 + 〈 a × ( u × b ) 〉 . (9) 

quations ( 5 –9 ) are exact equations. Note that only in the Coulomb
auge, the scalar potential φ is described by the stationary equation. 
or all other gauge conditions, the scalar potential φ is determined by
 non-stationary equation. Also, for the Coulomb gauge, the relation 
etween the magnetic α effect and small-scale magnetic helicity is 
he most simple. 

 G E N E R A L  F O R M  O F  T U R BU L E N T  FLUX  O F  

H E  MAGNETI C  HELI CI TY  

n this section, we discuss the results of calculations of the turbulent
ux of magnetic helicity of the small-scale fields. General form of

urbulent flux F 

(m) of the magnetic helicity can be obtained from 

ymmetry reasoning. Indeed, the turbulent flux F 

(m) is the pseudo- 
ector that should contain two pseudo-scalars: the magnetic helicity, 
 m 

, and the kinetic α effect, αK , and their first spatial deri v ati ves.
n addition, the contributions F 

(S0) 
i to the turbulent magnetic helicity 

ux caused by the large-scale shear (differential rotation) should 
ontain the pseudo-vector W = ∇ × U , where U = δ� × r is the 
arge-scale velocity describing the differential rotation δ�. 

All turbulent transport coefficients entering in the turbulent flux 
F 

(m) of magnetic helicity of the small-scale fields should be quadratic 
n the large-scale magnetic field B , i.e. they should be proportional to

 

2 
or V 

2 
A = B 

2 
/ (4 πρ), where ρ is the mean plasma density and V A 

s the mean Alfv ́en speed. On the other hand, the turbulent flux F 

(m) 

f the magnetic helicity should vanish in the absence of turbulence.
his implies that all turbulent transport coefficients entering in the 

urbulent flux F 

(m) should be proportional to turbulent correlation 
ime τ 0 or turbulent integral scale 
 0 . Some of the turbulent transport
oefficients are caused by the plasma density stratification, i.e. they 
re proportional to λ = −∇ ln ρ. 

Using the theoretical approach based on the spectral τ approxima- 
ion, which is valid for large fluid and magnetic Reynolds numbers,
nd the multiscale approach, we obtain the turbulent flux of the
mall-scale magnetic helicity as 

 

(m) 
i = 

(
U i + V 

(H) 
i 

)
H m 

− D 

(H) 
ij ∇ j H m 

+ N 

( α) 
i αK 

+ M 

( α) 
ij ∇ j αK + F 

(S0) 
i , (10) 
MNRAS 515, 5437–5448 (2022) 
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here αK = −τ0 H u / 3 is the kinetic α effect. Details of the deri v ation
f equation ( 10 ) are described in Appendixes A –C . The general
orm of the turbulent transport coefficients entering in the turbulent
ux ( 10 ) of magnetic helicity of the small-scale fields is given
y equations ( D2 –D6 ) in Appendix D . These turbulent transport
oefficients of the turbulent magnetic helicity flux in spherical
oordinates are given in the next section and in the Cartesian
oordinates are discussed in Appendix E . 

The turbulent flux of the small-scale magnetic helicity includes
he non-gradient and gradient contributions. The non-gradient con-
ribution to the turbulent flux of magnetic helicity is proportional
o the sum of the mean velocity U = δ� × r and the turbulent
umping velocity V 

(H) , which is multiplied by small-scale magnetic
elicity H m 

, while the gradient contribution −D 

(H) 
ij ∇ j H m 

describes
he turbulent magnetic diffusion of the small-scale magnetic helicity.
he ef fecti v e pumping v elocity of the small-scale magnetic helicity

V 

(H) vanishes in the absence of the density stratification. In addition,
he turbulent magnetic helicity flux contains the source term N 

( α) αK 

roportional to the kinetic α effect, and the source term −M 

( α) 
ij ∇ j αK 

roportional to the gradient ∇ j αK of the kinetic α effect. The
urbulent magnetic helicity flux also have contributions caused by
he large-scale shear (differential rotation) in the turbulent flow. 

We assume that the turbulent flux of the magnetic helicity F 

( III ) 

ontaining the third-order moments [see equation ( 9 )], is determined
sing the turbulent diffusion approximation as F 

( III ) = −D 

(H) 
T ∇ H m 

.
he contribution to the turbulent magnetic helicity flux, −D 

(H) 
T ∇ H m 

,
aused by the turbulent diffusion, has been used in mean-field
umerical simulations by Covas et al. ( 1997 , 1998 ) and Kleeorin
t al. ( 2002 , 2003a ). 

The turbulent diffusion of the small-scale magnetic helicity can be
nterpreted as follows. The random flows existing in the interstellar

edium consist of a combination of small-scale motions, which
re affected by magnetic forces (tangling fluctuations) resulting in
 steady-state of the dynamo, and a background micro-turbulence
hich is supported by a strong random driv er (e.g. superno vae

xplosions which can be considered as independent of the galactic
agnetic field). The large-scale magnetic field is smoothed o v er both

inds of turbulent fluctuations, while the small-scale magnetic field is
moothed o v er microturbulent fluctuations only. It is the smoothing
 v er the microturbulent fluctuations that give the coefficient D 

(H) 
T =

 D 

η
T 

with a free dimensionless constant C D ∼ 0.1. Here, η
T 

is the
urbulent diffusion coefficient of the mean magnetic field. 

The magnetic helicity flux F 

( η) = −η 〈 a × ( ∇ × b ) 〉 due to the
icroscopic magnetic diffusion η is given by F 

( η) = − 1 
3 η∇ H m 

. This
ux in astrophysical systems is very small and neglected here. 

 T U R BU L E N T  MAGNETIC  HELICITY  FLUX  IN
H E  SOLAR  C O N V E C T I V E  Z O N E  

n this section we discuss the results of calculations of the turbulent
agnetic helicity flux in the solar conv ectiv e zone, where we use

pherical coordinates ( r , ϑ, ϕ). The radial turbulent flux of the small-
cale magnetic helicity is given by 

 

(m) 
r = V 

(H) 
r H m 

− D 

(H) 
rj ∇ j H m 

+ N 

( α) 
r αK 

+ M 

( α) 
rj ∇ j αK + F 

(S0) 
r . (11) 

he general forms of the turbulent transport coefficients entering
n the turbulent flux F 

(m) of magnetic helicity of the small-scale
elds are given by equations ( D2 –D6 ) in Appendix D . In view of
pplications to the solar conv ectiv e zone, the turbulent transport
NRAS 515, 5437–5448 (2022) 
oefficients of the turbulent magnetic helicity flux in spherical
oordinates are specified below: 

 

(H) 
r = − 1 

15 
τ0 V 

2 
A λ

[
1 + 7 β2 

r −
173 

14 
sin ϑ τ0 δ�βr βϕ 

]
, (12) 

 

(H) 
rr = D 

(H) 
T + 

1 

30 
τ0 V 

2 
A 

(
5 − 4 β2 

r 

)
, (13) 

 

(H) 
rϑ = 

2(80 + 17 q) 

105 
τ 2 

0 V 

2 
A δ�βr βϕ cos ϑ, (14) 

 

( α) 
r = − 1 

10 

 2 0 B 

2 
λ

[
1 + 

7 q − 2 

q 
β2 

r 

− 216( q − 1) 

7(3 q − 1) 
τ0 δ�βr βϕ sin ϑ 

]
, (15) 

 

( α) 
rr = 

2 q − 1 

20 q 

 2 0 B 

2 
[

1 + 

20 q − 23 

2 q − 1 
β2 

r 

− 32 q( q − 1) 

(2 q − 1) (3 q − 1) 
τ0 δ�βr βϕ sin ϑ 

]
, (16) 

 

( α) 
rϑ = 

8( q − 1) 

3 q − 1 

 2 0 B 

2 
τ0 δ� βr βϕ cos ϑ, (17) 

 

(S0) 
r = −2 

9 
δ� cos ϑ 

{
4 
 2 0 B 

2 
r + 

[
V 

2 
A 〈

u 

2 
〉 (

1 − 3 

11 
β2 

r 

)

+ 

3( q − 1) 

q + 1 

]

 2 b 

〈
b 2 
〉}

, (18) 

here β = B / B is the unit vector along the mean magnetic field and
 = δ� r sin ϑ e ϕ is the mean velocity caused by the differential

otation δ� = �( r , ϑ) − �( r = R �, ϑ). Here, �( r = R �, ϑ) = �0 (1
C 2 cos 2 ϑ − C 4 cos 4 ϑ) with �0 = 2.83 × 10 −6 s −1 , C 2 = 0.121

nd C 4 = 0.173 (LaBonte & Howard 1982 ), R � is the solar radius,
= λ e r , 
 b is the energy containing scale of magnetic fluctuations
ith a zero mean magnetic field, and q is the exponent in the spectrum
f the turbulent kinetic energy (the exponent q = 5/3 corresponds to
he Kolmogorov spectrum of the turbulent kinetic energy). 

In deri v ation of equations ( 12 )–( 18 ), we take into account that
or weakly inhomogeneous turbulence H c ≈ H m 

/
 2 0 , and we neglect
mall terms ∼ O[ 
 2 0 /L 

2 
m 

] with L m 

being characteristic scale of spatial
ariations of H m 

. We also neglect small contributions proportional to
patial deri v ati ves of the mean magnetic field, and spatial deri v ati ves
f 
〈

u 

2 
〉

and δ�. 
Let us discuss the obtained results. For illustration, in Fig. 1 ,

e show the radial profile of the total angular velocity �( r )/ �� in
he solar conv ectiv e zone that includes the uniform and differential
otation specified for the latitude φ∗ = 30 ◦. The theoretical profile
solid line) of the total angular velocity (Rogachevskii & Kleeorin
018 ) is compared with the radial profile of the solar angular
elocity (stars) obtained from the helioseismology observational
ata (Kosovichev et al. 1997 ) specified for the latitude φ = 30 ◦ and
ormalized by the solar rotation frequency ��( φ∗ = 0) at the equator,
here �/ �� is given by equation (3.14) derived by Rogachevskii &
leeorin ( 2018 ). In Figs 1 –2 , we also show the radial profile of the
inetic α effect, αK /αmax which is specified for the latitude φ =
0 ◦ and given by equation (22) derived by Kleeorin & Rogachevskii
 2003 ). 

In the upper part of the solar conv ectiv e zone for the latitude
∗ > 0 (the Northern Hemisphere), the kinetic α effect is pos-

tive, α > 0 (see Fig. 2 ). On the other hand, the magnetic α
K 
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Figure 1. The theoretical radial profiles of the total angular velocity �( r )/ ��
(solid) that includes the uniform and differential rotation specified for the 
latitude φ∗ = 30 ◦ and the normalized kinetic α effect, αK /αmax (dashed). 
The theoretical profile of the total angular velocity is compared with the 
radial profile of the solar angular velocity obtained from the helioseismology 
observational data (stars) specified for the latitude φ∗ = 30 ◦ and normalized 
by the solar rotation frequency ��( φ∗ = 0) at the equator (Kosovichev et al. 

1997 ), where R � is the solar radius. The profile αK ( r) ≡ α
(K) 

ϕϕ is given by 
equation (22) derived by Kleeorin & Rogachevskii ( 2003 ), and �( r )/ �� is 
given by equation (3.14) derived by Rogachevskii & Kleeorin ( 2018 ). 
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Figure 2. The radial profile of the normalized kinetic α effect, ˜ αK = 

αK /αmax , specified for the latitude φ∗ = 30 ◦ and given by equation (22) 
derived by Kleeorin & Rogachevskii ( 2003 ). 
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Figure 3. The radial profile of the ef fecti ve pumping velocity V 

(H) 
r of the 

small-scale magnetic helicity given by equation ( 12 ) and measured in m s −1 . 
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Figure 4. The radial profile of turbulent diffusion D 

(H) 
rr ( r) of the small-scale 

magnetic helicity given by equation ( 13 ) and measured in cm 

2 s −1 . 
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Figure 5. The radial profile of the turbulent magnetic helicity fluxes caused 
by the source terms F 

( α) 
1 = N 

( α) 
r αK (dashed) and F 

( α) 
2 = M 

( α) 
rr ∇ r αK (dashed- 

dotted), which are proportional to the kinetic α effect and its radial deri v ati ve, 
as well as their sum F 

( α) 
r = N 

( α) 
r αK + M 

( α) 
rr ∇ r αK (solid), where N 

( α) 
r and 

M 

( α) 
rr are given by equations ( 15 ) and ( 16 ), respectively. The fluxes are 

specified for the latitude φ∗ = 30 ◦ and measured in G 

2 cm 

2 s −1 . 
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Figure 6. The radial profiles of the turbulent magnetic helicity fluxes caused 
by the source terms F 

( α) 
1 = N 

( α) 
r αK (solid), F 

( α) 
2 = M 

( α) 
rr ∇ r αK (dashed) and 

the contribution F 

(S0) 
r (dashed-dotted) to the turbulent magnetic helicity flux 

caused by the large-scale shear (differential rotation), where N 

( α) 
r , M 

( α) 
rr , and 

F 

(S0) 
r are given by equations ( 15 ), ( 16 ), and ( 18 ), respectiv ely. The flux es are 

specified for the latitude φ∗ = 30 ◦ and measured in G 

2 cm 

2 s −1 . 
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Figure 7. The radial profile of the total source flux F tot = N 

( α) 
r αK + 

M 

( α) 
rr ∇ r αK + F 

(S0) 
r of the magnetic helicity that is independent of the 

magnetic helicity and its radial deri v ati ve. Here, the flux is measured in 
G 

2 cm 

2 s −1 . 
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ffect in this region is negative, i.e. αM = τ0 H c / (4 πρ) < 0. This
mplies that the current helicity H c < 0, as well as the magnetic
elicity H m 

< 0, are ne gativ e for the Northern Hemisphere. Here,
or simplicity, we choose the radial profile of the poloidal and 
oroidal field as B r = B r0 sin [ π ( r − 0 . 73 R �) / (0 . 6 R �)] and B ϕ =
 ϕ0 cos [ π ( r − 0 . 73 R �) / (0 . 6 R �)], where B r0 is the surface mean
agnetic field measured in Gauss. To a v oid catastrophic quenching, 

he radial component of the turbulent flux of the small-scale magnetic 
elicity F 

(m) 
r < 0 should be ne gativ e for the Northern Hemisphere. 

In Figs 3 and 4 , we show the radial profiles of the effective pumping
elocity V 

(H) 
r ( r) and turbulent diffusion D 

(H) 
rr ( r) of the small-scale

agnetic helicity. In Figs 5 and 6 , we plot the radial profiles of
he turbulent magnetic helicity fluxes caused by the source terms 
 

( α) 
1 ( r) = N 

( α) 
r αK and F 

( α) 
2 ( r) = M 

( α) 
rr ∇ r αK , which are proportional

o the kinetic α effect and its radial derivative, as well as their
um F 

( α) 
r ( r) = N 

( α) 
r αK + M 

( α) 
rr ∇ r αK . In Fig. 6 , we also show the

ontribution F 

(S0) ( r) to the turbulent magnetic helicity flux caused 
y the large-scale shear (differential rotation). Finally, in Fig. 7 ,
e plot the radial profile of the total source flux of the magnetic
elicity F tot ( r) = N 

( α) 
r αK + M 

( α) 
rr ∇ r αK + F 

(S0) 
r that is independent

f the magnetic helicity and its radial deri v ati ve. 
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Figure 8. Turbulent diffusion flux r 2 F 

( D) 
r (solid line) and the flux 

r 2 [ F 

( D) 
r ( r) + F tot ( r)] (dashed-dotted line) of magnetic helicity per unit solid 

angle, which are measured in Mx 2 h −1 . 
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Figure 9. Comparison of the theoretical predictions for � D 

= F 

( D) 
r ( r = 

R �) R 

2 � δφ∗ with the observational values of � D (slanting crosses), which 
are taken from fig. 8(a) of Chae et al. ( 2001 ), where time variations of the rates 
of magnetic helicity change by photospheric motions (which do not include 
differential rotation) are shown. Here, the flux � D is measured in Mx 2 h −1 

and δφ∗ = 2 π sin ( π/ 4) is the solid angle corresponding to the thickness of 
the Royal sunspot region. The theoretical values for � D are given for different 
values of the mean magnetic field, B bot and B top , at the bottom and top of the 
solar conv ectiv e zone (i.e. thick solid line is for B bot = 10 3 G and B top = 8 
G; dashed line is for B bot = 1 . 4 × 10 3 G and B top = 11 G and dashed-dotted 
line is for B bot = 2 × 10 3 G and B top = 16 G). 

 

n
i  

s
t  

(  

<  

−
 

s  

I  

o  

F  

a  

fl  

t  

s

[

H  

0  

0  

E  

m

F  

t  

o  

(  

fl  

s  

r  

o  

o  

t  

e  

e  

fi  

b  

w  

F  

d  

o

5

I  

fi
a  

b  

c  

m  

c  

t  

T  

p  

t  

t
 

g  

h  

α  

m  

i  

r  

o  

c  

h  

t
 

M  

p  

m  

i

A

T  

d  

p  

e  

(

D

T

R

B

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/515/4/5437/6656011 by Ben-G
urion U

niversity of the N
egev Aran Library user on 18 August 2022
As follows from Figs 3 –7 as well as equations ( 11 –18 ), the
e gativ e contribution to the turbulent magnetic helicity flux F 

(m) 
r 

n the range of the generation of the mean magnetic field is due to the
ource flux F 

( α) 
r = N 

( α) 
r αK + M 

( α) 
rr ∇ r αK , and the contribution F 

(S0) 

o the turbulent magnetic helicity flux caused by the large-scale shear
differential rotation). Here, we take into account that δ� > 0 at 0.8
 r / R � < 1 (see Fig. 1 ), where the differential rotation δ� = �( r )
�( r = R �). 
The small-scale magnetic helicity is not accumulated inside the

olar conv ectiv e zone due to turbulent magnetic diffusion flux, F 

( D) 
r .

n Fig. 8 , we show the turbulent diffusion flux r 2 F 

( D) 
r (solid line)

f magnetic helicity per unit solid angle and the flux [ F 

( D) 
r ( r) +

 tot ( r )] r 2 (dashed-dotted line) of magnetic helicity per unit solid
ngle, which are measured in Mx 2 h −1 . As follows from Fig. 8 , the
ux [ F 

( D) 
r ( r) + F tot ( r)] r 2 (the sum of the turbulent diffusion flux and

otal source flux of magnetic helicity) of small-scale field per unit
olid angle is independent of r , i.e. 

 F 

( D) 
r ( r) + F tot ( r)] r 2 ≈ F tot ( r = 0 . 73 R �) (0 . 73 R �) 2 . (19) 

ere, we take into account that the turbulent diffusion flux F 

( D) 
r ( r =

 . 73 R �) → 0 vanishes at the bottom of the conv ectiv e zone, r =
.73 R �, where the turbulence intensity vanishes (see Fig. 8 ).
quation ( 19 ) implies that there is no accumulation of small-scale
agnetic helicity inside the solar conv ectiv e zone. 
In Fig. 9 , we compare the theoretical predictions for flux � D 

≡
 

( D) 
r ( r = R �) R 

2 
� δφ∗ with the observational values of � D which are

aken from fig. 8(a) of Chae et al. ( 2001 ), where time variations
f the rates of magnetic helicity change by photospheric motions
NRAS 515, 5437–5448 (2022) 
which do not include differential rotation) are shown. Here, the
ux � D is measured in Mx 2 h −1 and δφ∗ = 2 π sin ( π/ 4) is the
olid angle corresponding to the thickness of the Royal sunspot
egion. The theoretical values for � D are given for different values
f the mean magnetic field, B bot and B top , at the bottom and top
f the solar conv ectiv e zone (see the caption of Fig. 9 ). Note that
he measurements of the magnetic helicity flux are based on the
quation ∂ H m 

/∂ t = −2 
∮ 

( u · a p ) b z d S (Chae et al. 2001 ; Pevtsov
t al. 2014 ), where we use the lower-case letters for the small-scale
elds. This implies that the measurements by Chae et al. ( 2001 ) are
ased on the calculation of the third-order moment, 〈 ( u · a p ) b z 〉 ,
hich we describe using the turbulent diffusion approximation,
 

( D) 
r = −D 

(H) 
rr ∇ r H m 

. As follows from Fig. 9 , the theoretical pre-
ictions for flux � D are in agreement with the observational values
f � D . 

 DI SCUSSI ON  A N D  C O N C L U S I O N S  

n the present study, turbulent magnetic helicity fluxes of small-scale
eld are derived applying the mean-field approach and the spectral τ
pproximation using the Coulomb gauge in a density-stratified tur-
 ulence. The turb ulent magnetic helicity fluxes contain non-gradient
ontribution that is proportional to the ef fecti v e pumping v elocity
ultiplied by the small-scale magnetic helicity. There is the gradient

ontribution to the turbulent magnetic helicity flux describing the
urbulent magnetic diffusion of the small-scale magnetic helicity.
he turbulent magnetic helicity flux also includes the source term
roportional to the kinetic α effect or its radial gradient. Finally,
here is a contribution to the turbulent magnetic helicity flux due to
he solar differential rotation. 

The conv ectiv e zone of the Sun and solar-like stars, as well as
alactic discs, are the source for production of turbulent magnetic
elicity fluxes. The turbulent magnetic helicity flux due to the kinetic
effect and its radial derivative in combination with the turbulent
agnetic diffusion of the small-scale magnetic helicity are dominant

n the solar conv ectiv e zone. The turbulent magnetic helicity fluxes
esult in e v acuation of small-scale magnetic helicity from the regions
f generation of the solar magnetic field, which allows to a v oid the
atastrophic quenching of the α effect. The small-scale magnetic
elicity is not accumulated inside the solar conv ectiv e zone due to
he turbulent magnetic diffusion flux. 

The magnetic helicity fluxes are measured in the solar surface.
ost of the measurements of the magnetic helicity fluxes are

erformed in active regions. The contributions to the measured
agnetic helicity flux are from both, the solar surface and solar

nteriors. 
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PPENDI X  A :  D E R I VAT I O N  O F  T U R BU L E N T  

LUX  O F  MAGNETI C  HELI CI TY  

n this section, we derive turbulent flux of the magnetic helicity.
e consider developed turbulence with large fluid and magnetic 
eynolds numbers, so that the Strouhal number (the ratio of turbulent

ime τ to turn-o v er time 
 0 / u 0 ) is of the order of unity, and the
urbulent correlation time is scale-dependent, like in Kolmogorov- 
ype turbulence. In this case, we perform the Fourier transformation 
nly in k space but not in ω space, as is usually done in studies of
urbulent transport in a fully dev eloped Kolmogoro v-type turbulence. 

e take into account the non-linear terms in equations for velocity
nd magnetic fluctuations and apply the τ approach. 

The τ approach is a universal tool in turbulent transport for strongly
on-linear systems that allows us to obtain closed results and compare 
hem with the results of laboratory experiments, observations, and 
umerical simulations. The τ approximation reproduces many well- 
nown phenomena found by other methods in turbulent transport 
f particles and magnetic fields, in turbulent convection and stably 
tratified turbulent flows for large fluid and magnetic Reynolds and 
 ́eclet numbers. 
To derive equations for the turbulent fluxes of the magnetic 

elicity, we need expressions in a Fourier space for the cross-
elicity tensor g ij ( k ) = 〈 u i ( t , k ) b j ( t , −k ) 〉 and the tensor h ij ( k ) =
 b i ( t , k ) b j ( t , −k ) 〉 for magnetic fluctuations. Indeed, as follows
rom equation ( 8 ), the turbulent fluxes of the magnetic helicity depend
nly on the second moments g ij and h ij (except for the last two terms,
〈 a × ( ∇ × b ) 〉 and F 

( III ) which are considered separately). Using 
nduction equation ( 3 ) for magnetic fluctuations b and the Navier–
tokes equation for velocity fluctuations u written in a Fourier space, 
MNRAS 515, 5437–5448 (2022) 
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e derive equations for the cross-helicity tensor g ij ( k ) and the tensor
 ij ( k ) for magnetic fluctuations as 

∂g ij ( k ) 
∂t 

= −
[

i k ·B − 1 

2 
B ·∇ 

] [ 
f ij ( k ) − h ij ( k ) 

] 

+ 

ˆ M 

( b) 
g 

( I I I ) 
ij ( k ) , (A1) 

∂h ij ( k ) 
∂t 

= i 
(

k ·B 

) [ 
g ij ( k ) − g ji ( −k ) 

] 
+ 

1 

2 

(
B ·∇ 

)

×
[ 
g ij ( k ) + g ji ( −k ) 

] 
+ 

ˆ M 

( b) h 

( I I I ) 
ij ( k ) , (A2) 

here in equations ( A1 )–( A2 ) we neglect terms proportional to spa-
ial deri v ati ves of the mean magnetic field [i.e. terms ∝ O 

(∇ i B j 

)
].

ere, f ij ( k ) = 〈 u i ( t , k ) u j ( t , −k ) 〉 , and ˆ M 

( b) g 
( I I I ) 
ij and ˆ M 

( b) h 

( I I I )
ij 

re the third-order moment terms appearing due to the non-linear
erms: 

ˆ 
 

( b) g 
( I I I ) 
ij ( k ) = −

〈 

u i ( t , k ) T 
( b) 
j ( t , −k ) 

〉 

+ 

〈
∂u i ( t, k ) 

∂t 
b j ( t, −k ) 

〉
, (A3) 

ˆ 
 

( b) h 

( I I I ) 
ij ( k ) = −

〈 

b i ( t , k ) T 
( b) 
j ( t , −k ) 

〉 

−
〈 

T 
( b) 
i ( t , k ) b j ( t , −k ) 

〉 

, (A4) 

here 

 

( b) 
j = [ ∇ × ( u ×b − 〈 u ×b 〉 ) ] j . (A5) 

Equations ( A1 and A2 ) for the second moment includes the first-
rder spatial differential operators applied to the third-order moments
ˆ 
 

( b) g 
( I I I ) 
ij ( k ) and ˆ M 

( b) h 

( I I I ) 
ij ( k ). A problem arises how to close the

ystem, i.e. how to express the third-order moments through the
ower moments, g ij and h ij denoted as F 

( II ) . We use the spectral τ
pproximation that postulates that the deviations of the third-order
oments, denoted as ˆ M F 

( I I I ) ( k ), from the contributions to these
erms afforded by a background turbulence, ˆ M F 

( I I I , 0) ( k ), can be
xpressed through the similar deviations of the second moments,
 

( I I ) ( k ) − F 

( I I , 0) ( k ) as 

ˆ 
 F 

( I I I ) ( k ) − ˆ M F 

( I I I , 0) ( k ) = − 1 

τr ( k) 

[ 
F 

( I I ) ( k ) − F 

( I I , 0) ( k ) 
] 
, 

(A6) 

here τ r ( k ) is the scale-dependent relaxation time, which can be
dentified with the correlation time τ ( k ) of the turbulent velocity
eld for large fluid and magnetic Reynolds numbers. The functions
ith the superscript (0) correspond to the background turbulence with
 zero mean-magnetic field. Validation of the τ approximation for
ifferent situations has been performed in various numerical simula-
ions (Brandenburg, K ̈apyl ̈a & Mohammed 2004 ; Brandenburg &
ubramanian 2005b , c , a ; Brandenburg et al. 2008 ; Brandenburg,
 ̈adler & Kemel 2012 ; R ̈adler et al. 2011 ; Rogachevskii et al.
011 , 2012 ; Haugen et al. 2012 ; Elperin et al. 2017 ; Rogachevskii,
leeorin & Brandenburg 2018 ). When the mean magnetic field is

ero, the turbulent electromotive force vanishes, which implies that
 

(0) 
ij ( k ) = 0. We also take into account magnetic fluctuations caused
y a small-scale dynamo (the dynamo with a zero mean-magnetic
eld). Consequently, equation ( A6 ) reduces to ˆ M 

( b) g 
( I I I ) 
ij ( k ) =

g ij ( k ) /τ ( k) and ˆ M 

( b) h 

( I I I ) 
ij ( k ) = −[ h ij ( k ) − h 

(0) 
ij ( k )] /τ ( k). 

We assume that the characteristic time of variation of the second
oments g ij ( k ) and h ij ( k ) are substantially larger than the correlation

ime τ ( k ) for all turbulence scales. Therefore, in a steady state,
NRAS 515, 5437–5448 (2022) 
quations ( A1 and A2 ) yield the following formulae for the cross-
elicity tensor g ij ( k ) = 

〈
u i ( k ) b j ( −k ) 

〉
, and the function h ij ( k ) =

b i ( k ) b j ( −k ) 
〉
: 

 ij ( k ) = −τ ( k) 

{[ 
i 
(

k ·B 

)
− 1 

2 

(
B ·∇ 

)] [ 
f ij ( k ) 

−h ij ( k ) 
] 

− B j 

(
i k n − 1 

2 
∇ n 

)
f in ( k ) 

}
, (A7) 

 ij ( k ) = h 

(0) 
ij ( k ) + τ 2 ( k) 

(
k ·B 

)[
2 
(

k ·B 

)
f ij ( k ) 

−k n 

(
B j f in ( k ) + B i f nj ( k ) 

)]
. (A8) 

n equations ( A7 & A8 ), we neglect small contributions proportional
o spatial deri v ati ves of the mean magnetic field. Since we consider
 one-way coupling (i.e. we do not consider the algebraic quenching
f the turbulent fluxes of the magnetic helicity), the correlation
unctions f ij and h ij in the right-hand sides of equations ( A7 and
8 ) should be replaced by f (0) 

ij and h 

(0) 
ij , respectively. 

We use the following model for the second moment, f (0) 
ij ( k , R ) =

u i ( k ) u j ( −k ) 
〉(0) 

of velocity fluctuations in density stratified and he-
ical turbulence in a Fourier space (R ̈adler, Kleeorin & Rogachevskii
003 ): 

 

(0) 
ij = 

E u ( k) 

8 πk 2 

{[ 
( δij − k ij ) + 

i 

k 2 

(
˜ λi k j − ˜ λj k i 

)] 〈
u 

2 
〉

− 1 

k 2 

[ 
i ε ijp k p + ( ε jpm 

k ip + ε ipm 

k jp ) ̃ λm 

] 
H u 

}
, (A9) 

here δij is the Kronecker tensor, k ij = k i k j /k 
2 and ˜ λm 

= λm 

−
 m 

/ 2. The energy spectrum function E u ( k ) of velocity fluctu-
tions in the inertial range of turbulence is given by E u ( k) =
 q − 1) k −1 

0 ( k/k 0 ) −q , where the exponent q = 5/3 corresponds to the
olmogorov spectrum, k 0 ≤ k ≤ k ν , the wavenumber k 0 = 1/ 
 0 , the

ength 
 0 is the maximum scale of random motions, the wavenumber
 ν = 
 −1 

ν , and the length 
 ν = 
 0 Re −3/4 is the Kolmogorov (viscous)
cale. The expression for the turbulent correlation time is given by
( k) = 2 τ0 ( k/k 0 ) 1 −q , where τ 0 = 
 0 / u 0 is the characteristic turbulent

ime. In equation ( A9 ), we take into account inhomogeneity of the
inetic helicity. 
The model for the second moment, h 

(0) 
ij ( k , R ) =

b i ( k ) b j ( −k ) 
〉(0) 

, of magnetic fluctuations in a Fourier space
s analogous to equation ( A9 ) 

 

(0) 
ij = 

1 

8 πk 2 

{
E b ( k ) ( δij − k ij ) 

〈
b 2 
〉 − 1 

k 2 

[
i ε ijp k p 

−1 

2 
( ε jpm 

k ip + ε ipm 

k jp ) ∇ m 

]
H c δ( k − k 0 ) 

}
, (A10) 

here H c = 〈 b · ( ∇ × b ) 〉 is the current helicity, E b ( k) = ( q m 

−
) k −1 

b ( k/k b ) −q m is the magnetic energy spectrum function in the
ange k b ≤ k ≤ k η, the wavenumber k b = 1/ 
 b , the length 
 b is the
aximum scale of magnetic fluctuations caused by the small-scale

ynamo, and the exponent q m = 5/3 corresponds to the Kolmogorov
pectrum for the magnetic energy. In equation ( A10 ), we take into
ccount inhomogeneity of the current helicity. We also take into
ccount that due to the realizability condition, the current helicity
f the small-scale field is located at the integral turbulence scale
Kleeorin & Rogachevskii 1999 ). 

F or the inte gration o v er angles in k -space, we use the following
ntegrals: 
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∫ 2 π

0 
d ϕ 

∫ π

0 
sin ϑ d ϑ k ij = 

4 π

3 
δij , (A11) 

∫ 2 π

0 
d ϕ 

∫ π

0 
sin ϑ d ϑ k ijmn = 

4 π

15 
� ijmn , (A12) 

∫ 2 π

0 
d ϕ 

∫ π

0 
sin ϑ d ϑ k ijmnpq = 

4 π

105 
� ijmnpq , (A13) 

here 

� ijmn = δij δmn + δim 

δjn + δin δjm 

, (A14) 

 ijmnpq = � mnpq δij + � jmnq δip + � imnq δjp + � jmnp δiq 

+ � imnp δjq + � ijmn δpq − � ijpq δmn , (A15) 

nd k ij = k i k j /k 
2 , k ijmn = k i k j k m 

k n /k 
4 and k ijmnpq =

 i k j k m 

k n k p k q /k 
6 . We also take into account that � ijmm =

 δij and � ijmnpp = 7 � ijmn . 
F or the inte gration o v er k , we use the following inte grals for large

eynolds numbers, Re = u 0 
 0 / ν � 1: 
∫ k ν

k 0 

τ ( k ) E u ( k ) d k = τ0 , (A16) 

∫ k ν

k 0 

τ ( k ) E u ( k ) 

k 2 
d k = 

q − 1 

q 
τ0 
 

2 
0 , (A17) 

∫ k ν

k 0 

τ 2 ( k ) E u ( k ) 

k 2 
d k = 

4( q − 1) 

3 q − 1 
τ 2 

0 
 
2 
0 , (A18) 

∫ k ν

k 0 

τ 2 ( k ) E u ( k ) d k = 

4 

3 
τ 2 

0 . (A19) 

Using equations ( A7 –A19 ), and integrating in k space, we de-
ermine various contributions to the turbulent flux of the small-scale 

agnetic helicity, see equations (12–17) and Appendix D . The details 
f the deri v ations of the effect of large-scale shear on turbulent fluxes
f the magnetic helicity are discussed in Appendix C . 

PPENDIX  B:  D E R I VAT I O N  O F  E QUAT I O N S  

O R  T H E  S E C O N D  M O M E N T S  

n this appendix, we derive equations ( A1 and A2 ) for the cross
elicity tensor g ij ( k ) = 〈 u i ( t , k ) b j ( t , −k ) 〉 and the tensor h ij ( k ) =
 b i ( t , k ) b j ( t , −k ) 〉 for magnetic fluctuations. To this end, we perform
everal calculations that are similar to the following. We use the equa-
ion for magnetic fluctuations obtained by subtracting equation for 
he mean magnetic field from the equation for the total field: 

∂ b 
∂t 

− ∇ × ( u × b − 〈 u × b 〉 ) − η � b = ( B ·∇ ) u − ( u · ∇ ) B . (B1) 

he source term, ( B ·∇ ) u , in the right-hand side of equation ( B1 ) in
 Fourier space reads: 

[(
B ·∇ 

)
u j 

]
k = i k p 

∫ 
B p ( Q ) u j ( k − Q ) d Q , (B2) 

o that the induction equation for b j ( k 2 ) in k space is given by: 

∂b j ( k 2 ) 
∂t 

= i k (2) 
p 

∫ 
B p ( Q ) u j ( k 2 − Q ) d Q 

− u n ( k 2 ) ∇ n B j + N 

( b) 
j ( k 2 ) , (B3) 
here k (2) ≡ k 2 = −k + K / 2. We use the identity: 

∂ 

∂t 

〈
u i ( k 1 , t) b j ( k 2 , t) 

〉 = 

〈
∂u i ( k 1 , t) 

∂t 
b j ( k 2 , t) 

〉

+ 

〈
u i ( k 1 , t) 

∂b j ( k 2 , t) 
∂t 

〉
. (B4) 

irst, we derive equation for the second term in the right-hand side
f equation ( B4 ). To this end, we multiply equation ( B3 ) by u i ( k 1 )
nd averaging over ensemble of turbulent velocity field, where k 1 = 

k + K / 2. This yields: 
〈

u i ( k 1 ) 
∂b j ( k 2 ) 

∂t 

〉
= i 

(−k p + K p / 2 
) ∫ 

d Q B p ( Q ) 

× 〈
u i ( k 1 ) u j ( k 2 − Q ) 

〉− 〈 u i ( k 1 ) u n ( k 2 ) 〉 
× ∇ n B j + 

〈 

u i ( k 1 ) N 

( b) 
j ( k 2 ) 

〉 

, (B5) 

here for brevity of notations we omit the argument t in the
elocity and magnetic fields. Next, we perform in equation ( B5 )
he Fourier transformation in the large-scale variable K , i.e. we use
he transformation 

 ( R ) = 

∫ 
F ( K ) exp (i K ·R ) d K . 

he first term S ij ( k , R ) in the right-hand side of the obtained
quation [which originates from the first term in the right-hand side
f equation ( B3 )], is given by: 

 ij ( k , R ) = i 
∫ ∫ 

B p ( Q ) 
(−k p + K p / 2 

)
exp (i K ·R ) 

×〈 u i ( k + K / 2) u j ( −k + K / 2 − Q ) 〉 d K d Q . 

(B6) 

ext, we introduce new variables: 

˜ k = ( ̃ k 1 − ˜ k 2 ) / 2 = k + Q / 2 , 
˜ K = 

˜ k 1 + 

˜ k 2 = K − Q , (B7) 

here 

˜ k 1 = k + K / 2 , ˜ k 2 = −k + K / 2 − Q . (B8) 

herefore, equation ( B6 ) in the new variables reads 

 ij ( k , R ) = i 
∫ ∫ 

f ij ( k + Q / 2 , K − Q ) B p ( Q ) 

× (−k p + K p / 2 
)

exp (i K ·R ) d K d Q . (B9) 

ince | Q | � | k | , we use the Taylor expansion 

f ij ( k + Q / 2 , K − Q ) � f ij ( k , K − Q ) 

+ 

1 

2 

∂f ij ( k , K − Q ) 

∂k s 
Q s + O( Q 

2 ) , (B10) 

nd the following identity: 

 p [ f ij ( k , R ) B p ( R )] = i 
∫ 

d K K p [ f ij ( k , R ) B p ( R )] K 

× exp (i K ·R ) , (B11) 

here 

[ f ij ( k , R ) B p ( R )] K = 

∫ 
f ij ( k , K − Q ) B p ( Q ) d Q . (B12) 
MNRAS 515, 5437–5448 (2022) 
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herefore, equations ( B9 –B11 ) yield 

 ij ( k , R ) � 

[
−i ( k · B ) + 

1 

2 
( B · ∇ ) 

]
f ij ( k , R ) 

−1 

2 
k p 

∂f ij ( k ) 
∂k s 

∇ s B p . (B13) 

e take into account that the terms in g ij ( k , R ) with symmetric
ensors with respect to the inde x es ‘i’ and ‘j’ do not contribute to
he turbulent electromotive force because E m 

= ε mij 

∫ 
g ij ( k , R ) d k .

n g ij ( k , R ), we also neglect the second and higher deri v ati ves over
R . This procedure yields equation ( A1 ). Similar calculations are
erformed to derive equation ( A2 ). 
To determine various contributions to the turbulent flux of small-

cale magnetic helicity, we use the following identities: 

(
� 

−1 
)

k 1 
= −k −2 

[
1 + 

i ( k · ∇ ) 

k 2 

]
, (B14) 

(
� 

−1 
)

k 2 
= −k −2 

[
1 − i ( k · ∇ ) 

k 2 

]
. (B15) 

PPENDIX  C :  EFFECT  O F  LARGE-SCALE  

HE AR  

n this appendix, we determine the effect of large-scale shear on
urbulent fluxes of the magnetic helicity. The cross-helicity tensor
 

( S) 
ij ( k ) = 〈 v i ( k ) b j ( −k ) 〉 in turbulence with large-scale shear is given
y (Rogachevskii & Kleeorin 2004 ): 

 

( S) 
ij ( k ) = −i τ ( k · B ) 

[
f 

( S) 
ij ( k ) − h 

( S) 
ij ( k ) 

4 πρ

+ τ J ijmn ( U ) 

(
f (0) 

mn ( k ) −
h 

(0) 
mn ( k ) 
4 πρ

)]
, (C1) 

here the effect of large-scale shear on the tensors f 
( S) 
ij ( k ) =

 v i ( k ) v j ( −k ) 〉 and h 

( S) 
ij ( k ) = 〈 b i ( k ) b j ( −k ) 〉 is determined by 

f 
( S) 
ij ( k ) = τ I ijmn ( U ) f (0) 

mn ( k ) , (C2) 

h 

( S) 
ij ( k ) = τ E ijmn ( U ) h 

(0) 
mn ( k ) , (C3) 

nd the tensors I ijmn ( U ), E ijmn ( U ), and J ijmn ( U ) are given by 

 ijmn ( U ) = 

{
2 k iq δmp δjn + 2 k jq δim 

δpn − δim 

δjq δnp 

− δiq δjn δmp + 4 k pq δim 

δjn + δim 

δjn k q 
∂ 

∂k p 

− i λr 

2 k 2 

[(
k i δjn δpm 

− k j δim 

δpn 

)(
2 k rq − δrq 

)

+ k q 

(
δip δjn δrm 

− δim 

δjp δrn 

)
− 2 k pq 

(
k i δjn δrm 

− k j δim 

δrn 

)]}
∇ p U q , (C4) 

 ijmn ( U ) = 

[
δim 

δjq δpn + δiq δjn δpm 

+ δim 

δjn k q 
∂ 

∂k p 

]
∇ p U q , (C5) 
NRAS 515, 5437–5448 (2022) 
 ijmn ( U ) = 

{
2 k iq δjn δpm 

− δiq δjn δpm 

+ δim 

δjq δpl 

+ 2 k pq δim 

δjn + δim 

δjn k q 
∂ 

∂k p 
− i λr 

2 k 2 

×
[
k i δjn δpm 

(
2 k rq − δrq 

)
+ δjn δrm 

×
(
k q δip − 2 k i k pq 

)]}
∇ p U q . (C6) 

sing equations ( A9 –A19, B14– B15 and C1 –C6 ), and integrating in
k space, we determine various contributions to the turbulent flux of
he small-scale magnetic helicity caused by the differential rotation,
ee equation ( 18 ) and Appendix D . 

PPENDI X  D :  G E N E R A L  F O R M  O F  

U R BU L E N T  T R A N S P O RT  COEFFI CI ENTS  

pplying the method described in Appendixes A –C , we have
etermined various contributions to the turbulent flux of the small-
cale magnetic helicity. In particular, the general form of turbulent
ux of the small-scale magnetic helicity is given by 

 

(m) 
i = V 

(H) 
i H m 

− D 

(H) 
ij ∇ j H m 

+ N 

( α) 
i αK 

+ M 

( α) 
ij ∇ j αK + F 

(S0) 
i , (D1) 

here the turbulent transport coefficients are given below. The
urbulent pumping velocity V 

(H) of the small-scale magnetic helicity
s 

V 

(H) = − 1 

15 
τ0 V 

2 
A 

{
λ + 7 β( β · λ) + 

1 

7 
τ0 

[
28 ( W × λ) 

+ 

139 

2 
( β · λ) ( W × β) − 2 Q 

( λ) + β
(

17 W · ( β × λ) 

+ 58 λ · Q 

( β) 
)

− 31 Q 

( β) ( β · λ) − 3 λ( β · Q 

( β) ) 

− 7 ( β × λ) ( β · W ) 

]}
. (D2) 

ere β = B / B is the unit vector along the mean magnetic field,
 A = B / (4 πρ ) 1 / 2 is the mean Alfv ́en speed, W = ∇ × U is the
ean vorticity, the vectors Q 

( β) and Q 

( λ) are defined as Q 

( β) 
i =

m 

( ∂ U ) mi and Q 

( λ) 
i = λm 

( ∂ U ) mi , and the gradient of the mean
elocity ∇ i U j is decomposed into symmetric, ( ∂ U ) ij = ( ∇ i U j +
 j U i ) / 2, and antisymmetric, ε ijp W p / 2 parts, i.e. ∇ i U j = ( ∂ U ) ij +
 ijp W p / 2. 

The total diffusion tensor D 

(H) 
ij that describes the turbulent mag-

etic diffusion of the small-scale magnetic helicity, reads: 

 

(H) 
ij = D 

(H) 
T δij + 

1 

30 
τ0 V 

2 
A 

{
5 δij − 4 βi βj + τ0 

[
8 ε ijp 

×( W · β) βp + 8 βi ( β × W ) j + 14 βj ( β × W ) i 

+ 4 ε iqm 

ε jpn βm 

βn ( ∂ U ) pq + 

1 

7 

(
8( q + 1) ( ∂ U ) ij 

+ 2(41 + 34 q) βi Q 

( β) 
j + 2(1 − 6 q) βj Q 

( β) 
i + (1 + 8 q) δij 

×( β · Q 

( β) ) 

)]}
+ 

τ0 

2 

[
η

T 
+ 

8 

15 
τ0 V 

2 
A 

]
ε ijp W p . (D3) 

n deri v ation of equations ( D2 )–( D3 ), we take into account that
 c = H m 

/
 2 0 , and we neglect small terms ∼ O[ 
 2 0 /L 

2 
m 

] with L m 

eing characteristic scale of spatial variations of H m 

. The turbulent



Turbulent magnetic helicity fluxes 5447 

m
b

w  

m
t  

K

M  

M

M

T
fl
b

H  

s

c
 

s
u
(

t
g
b
c

δ

a

(

T  

λ

w  

i

ε

W  

d  

d  

c
i

A
C
C

F
b
[  

w  

c  

t  

s  

t  

t  

t  

t

t
m  

fi  

w  

t

T
t
g

w

D

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/515/4/5437/6656011 by Ben-G
urion U

niversity of the N
egev Aran Library user on 18 August 2022
agnetic helicity flux also includes the source term N 

( α) αK caused 
y the kinetic α effect with N 

( α) being 

N 

( α) = − 1 

10 

 2 0 B 

2 
{

λ + 

7 q − 2 

q 
( β · λ) β + 

( q − 1) τ0 

(3 q − 1) 

×
[

10 ( β × W ) ( β · λ) − 37( W · β) ( β × λ) − 4 Q 

( λ) 

− 4 ( β × Q 

( β,λ) ) + 

2 

7 

(
19 β [( β × W ) · λ] − 4 Q 

( β) 

× ( β · λ) − 24 β ( λ · Q 

( β) ) + 4 λ ( β · Q 

( β) ) 

)]}
, (D4) 

here Q 

( β,λ) 
i = ( β × λ) m 

( ∂ U ) mi . The contribution to the turbulent

agnetic helicity flux, ∝ − 
 2 0 B 

2 
λ αK [see the first term in equa- 

ion ( D4 )], caused by the kinetic α effect, has been suggested by
leeorin et al. ( 2000 , 2002 , 2003a ). 
The turbulent magnetic helicity flux also contains the source term 

 

( α) 
ij ∇ j αK caused by the gradient ∇ j αK of the kinetic α effect with

 

( α) 
ij being 

 

( α) 
ij = 

1 

20 q 

 2 0 B 

2 
{

(2 q − 1) δij + (20 q − 23) βi βj 

+ 

16 q ( q − 1) τ0 

3 q − 1 

[
βi ( β × W ) j + ( W · β) ε ijp βp 

]}
. 

(D5) 

he additional contribution F 

(S0) to the turbulent magnetic helicity 
ux caused by the large-scale shear (differential rotation) is given 
y 

F 

(S0) = − q − 1 

3( q + 1) 

 2 b 

〈
b 2 
〉

W + 

2 

45 

 2 0 B 

2 
[ 
11 ε W 

+ (3 ε − 10) ( β · W ) β + ( β × Q 

( β) )[8 q + 35 

+ ε(8 q − 20)] 
] 
. (D6) 

ere, ε = 
 2 b 
〈

b 2 
〉
/ ( 
 2 0 4 πρ

〈
u 

2 
〉
), and 
 b is the energy containing

cale of magnetic fluctuations with a zero mean-magnetic field. The 

ontribution to the turbulent magnetic helicity flux, ∝ 
 2 0 B 

2 
( β ×

Q 

( β) ) [see the last term in equation ( D6 )], caused by the large-scale
hear, has been derived by Brandenburg & Subramanian ( 2005a ), 
sing a general expression originally suggested by Vishniac & Cho 
 2001 ). 

To derive equations for the turbulent magnetic helicity flux due to 
he differential rotation in spherical coordinates, we use the identities 
i ven belo w. The large-scale shear velocity U = δ� × r is caused 
y the differential (non-uniform) rotation, which is in spherical 
oordinates ( r , ϑ, ϕ) reads 

� = δ�( r, ϑ) ( cos ϑ, − sin ϑ, 0) , (D7) 

nd the stress tensor ( ∂ U ) ij reads 

 ∂ U ) ij = 

r n 

2 

(
ε imn ∇ j + ε jmn ∇ i 

)
δ�m 

. (D8) 

he vectors Q 

( β) and Q 

( λ) defined as Q 

( β) 
i = βm 

( ∂ U ) mi and Q 

( λ) 
i =

m 

( ∂ U ) mi , are given by 

Q 

( β) = ( r × β) m 

( ∇ δ�m 

) − r × ( β · ∇ ) δ�, (D9) 

Q 

( λ) = −r × ( λ · ∇ ) δ�, (D10) 
here λ = λ e r and β = B / B = ( βr , βϑ , βϕ ). We also use the
dentity 

 iqm 

ε jpn βm 

βn ( ∂ U ) pq = 

1 

2 
( r · β) 

[ 
( β × ∇ ) i δ�j 

+ ( β × ∇ ) j δ�i 

] 
− 1 

2 
βm 

[ 
r i ( β × ∇ ) j 

+ r j ( β × ∇ ) i 
] 
δ�m 

. (D11) 

e have taken into account that 
(
β × Q 

( β) 
)

r 
= O( ∇ δ�), i.e it

oes not contain contributions ∝ δ�, but it includes their spatial
eri v ati ves, ∇ δ�. Using equations ( D1 –D11 ), we determine various
ontributions to the turbulent flux of the small-scale magnetic helicity 
n spherical coordinates, see equations ( 11 –18 ). 

PPENDI X  E:  T U R BU L E N T  TRANSPORT  

OEFFI CI ENTS  IN  T H E  CARTESI AN  

O O R D I NAT E S  

or better understanding of the physics related to various contri- 
utions to the turbulent flux of the small-scale magnetic helicity 
see equations ( D1 )–( D11 )], we consider a small-scale turbulence
ith large-scale linear velocity shear U = (0 , S x , 0) in the Cartesian

oordinates. In this case, the large-scale vorticity is W = (0 , 0 , S),
he stress tensor ( ∂ U ) ij = ( S/ 2) ( e x i e 

y 

j + e x j e 
y 

i ), the vector λ that de-
cribes the non-uniform mean fluid density is λ = λ ( sin ϑ, 0 , cos ϑ),
he unit vector along the large-scale magnetic is β = ( cos ˜ β, sin ˜ β, 0),
he vector Q 

( β) 
i = βm 

( ∂ U ) mi = ( S/ 2) ( sin ˜ β, cos ˜ β, 0), and the vec-
or Q 

( λ) 
i = λm 

( ∂ U ) mi = ( λ S/ 2) sin ϑ e 
y 

i . We also take into account
hat 

β × λ = λ ( cos ϑ sin ˜ β, − cos ϑ cos ˜ β, − sin ϑ sin ˜ β) , (E1) 

( β × Q 

( β) ) i = ( S/ 2) cos (2 ̃  β) e z i , (E2) 

( β × Q 

( λ) ) i = ( S λ/ 2) sin ϑ cos ˜ β e z i , (E3) 

β × W = S ( sin ˜ β, − cos ˜ β, 0) , (E4) 

( W × λ) i = S λ sin ϑ e 
y 

i . (E5) 

First, we determine various contributions to the turbulent flux of 
he magnetic helicity inside the turbulent region where the toroidal 
ean magnetic field is much larger than the poloidal mean magnetic
eld, i.e. β = (0 , 1 , 0). In this case, the turbulent pumping velocity

V 

(H) of the small-scale magnetic helicity is 

V 

(H) = − 1 

15 
τ0 V 

2 
A λ

[(
1 + 

3 

14 
S τ0 

)
e λ + 5 . 6 S τ0 e y 

]
, (E6) 

here e λ = λ/λ. The turbulent magnetic helicity flux has the source
erm N 

( α) αK caused by the kinetic α effect with N 

( α) being 

N 

( α) = − 1 

10 

 2 0 B 

2 
λ

[
1 − 4( q − 1) 

7(3 q − 1) 
S τ0 

]
. (E7) 

he total diffusion tensor D 

(H) 
ij that describes the microscopic and 

urbulent magnetic diffusion of the small-scale magnetic helicity is 
iven by: 

D 

(H) 
ij = D 1 δij − D 2 e 

y 

i e 
y 

j + D 3 e 
x 
i e 

y 

j − D 4 e 
y 

i e 
x 
j , (E8) 

here D 2 = (2 / 15) τ0 V 

2 
A , 

 1 = D 

(H) 
T + 

1 

3 
η + 

1 

6 
τ0 V 

2 
A 

[
1 − 1 + 8 q 

70 
S τ0 

]
, (E9) 
MNRAS 515, 5437–5448 (2022) 
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ni
 3 = 

1 

2 
S τ0 

[
η

T 
+ 

159 − 6 q 

105 
τ0 V 

2 
A 

]
, (E10) 

 4 = 

1 

2 
S τ0 

[
η

T 
− 34 q + 45 

105 
τ0 V 

2 
A 

]
. (E11) 

quation ( E8 ) implies that D 

(H) 
xx = D 

(H) 
zz = D 1 , D 

(H) 
yy = D 1 − D 2 ,

 

(H) 
xy = D 3 , D 

(H) 
yx = −D 4 , and other components of the total diffusion

ensor D 

(H) 
ij vanish. The turbulent magnetic helicity flux containing

he source term M 

( α) 
ij ∇ j αK with M 

( α) 
ij being 

 

( α) 
ij = 

1 

20 q 

 2 0 B 

2 
[

(2 q − 1) δij + (20 q − 23) e y i e 
y 

j 

+ 

16 q ( q − 1) 

3 q − 1 
S τ0 e 

y 

i e 
x 
j 

]
. (E12) 

he additional contribution F 

(S0) to the turbulent magnetic helicity
ux caused by the large-scale shear is given by 

F 

(S0) = −
[

q − 1 

3( q + 1) 
− 22 

45 

V 

2 
A 〈

u 

2 
〉
]


 2 b 
〈

b 2 
〉

S e z . (E13) 

Now we determine various contributions to the turbulent flux of the
agnetic helicity at the surface (the upper boundary of the turbulent

egion), where the toroidal mean magnetic field is much smaller than
he poloidal mean magnetic field, i.e. β = (1 , 0 , 0). In this case, the
urbulent pumping velocity V 

(H) of the small-scale magnetic helicity
s 

V 

(H) = − 1 

15 
τ0 V 

2 
A λ

[
e λ + 7 sin ϑ 

(
e x + 

81 

49 
S τ0 e y 

)]
. (E14) 

he turbulent magnetic helicity flux has the source term N 

( α) αK 

aused by the kinetic α effect with N 

( α) being 

N 

( α) = − 1 

10 

 2 0 B 

2 
λ

[
e λ + 

7 q − 2 

q 
sin ϑ e x 

− 2( q − 1) 

3 q − 1 
S τ0 

(
e z + 

44 

7 
sin ϑ e y 

)]
. (E15) 
NRAS 515, 5437–5448 (2022) 
he total diffusion tensor D ij that describes the microscopic and
urbulent magnetic diffusion of the small-scale magnetic helicity is
iven by: 

D 

(H) 
ij = D 1 δij − D 2 e 

x 
i e 

x 
j + D 3 e 

x 
i e 

y 

j − D 4 e 
y 

i e 
x 
j , (E16) 

here D 2 = (2 / 15) τ0 V 

2 
A , 

 1 = D 

(H) 
T + 

1 

3 
η + 

1 

6 
τ0 V 

2 
A , (E17) 

 3 = 

1 

2 
S τ0 

[
η

T 
+ 

49 + 42 q 

105 
τ0 V 

2 
A 

]
, (E18) 

 4 = 

1 

2 
S τ0 

[
η

T 
+ 

145 − 2 q 

105 
τ0 V 

2 
A 

]
. (E19) 

quation ( E16 ) implies that D 

(H) 
yy = D 

(H) 
zz = D 1 , D 

(H) 
xx = D 1 − D 2 ,

 

(H) 
xy = D 3 , D 

(H) 
yx = −D 4 , and other components of the total diffusion

ensor D 

(H) 
ij vanish. The turbulent magnetic helicity flux containing

he source term M 

( α) 
ij ∇ j αK with M 

( α) 
ij being 

 

( α) 
ij = 

1 

20 q 

 2 0 B 

2 
[

(2 q − 1) δij + (20 q − 23) e x i e 
x 
j 

−16 q ( q − 1) 

3 q − 1 
S τ0 e 

x 
i e 

y 

j 

]
. (E20) 

he additional contribution F 

(S0) to the turbulent magnetic helicity
ux caused by the large-scale shear is given by 

F 

(S0) = 

1 

3 

[
8 q + 35 

15 

 2 0 B 

2 − 
 2 b 
〈

b 2 
〉 (

q − 1 

q + 1 

− 2 (4 q + 1) 

15 

V 

2 
A 〈

u 

2 
〉
)]

S e z . (E21) 
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