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A mean-field theory of differential rotation in a density stratified turbulent convection
has been developed. This theory is based on the combined effects of the turbulent heat
flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system
of dynamical budget equations consisting in the equations for the Reynolds stress, the
entropy fluctuations and the turbulent heat flux has been solved. To close the system of
these equations, the spectral τ approach, which is valid for large Reynolds and Péclet
numbers, has been applied. The adopted model of the background turbulent convection
takes into account an increase of the turbulence anisotropy and a decrease of the
turbulent correlation time with the rotation rate. This theory yields the radial profile
of the differential rotation which is in agreement with that for the solar differential
rotation.

Key words: astrophysical plasmas, plasma nonlinear phenomena

1. Introduction
The origin of the solar and stellar magnetic fields is associated with a mean-field

dynamo (referred to as the αΩ or α2Ω dynamo) that is based on the combined effect
of helical turbulent motions and a differential rotation (see, e.g. Moffatt 1978; Parker
1979; Krause & Rädler 1980; Zeldovich, Ruzmaikin & Sokolov 1983; Rüdiger,
Kitchatinov & Hollerbach 2013). A non-zero mean kinetic helicity produced by
a rotating density stratified turbulent convection, causes the α effect in the solar
convective zone. One potential origin of the solar differential rotation is related
to an anisotropic eddy viscosity (Kippenhahn 1963; Rüdiger 1980; Durney 1985;
Rüdiger 1989). This idea has been applied in developing a theory of the differential
rotation (Durney 1993; Kichatinov & Rüdiger 1993; Kitchatinov & Rüdiger 2005).
The turbulent heat flux in these theories has been introduced phenomenologically
using the mixing-length theory relation: 〈u′2〉 ∝ gτ0〈u′zs′〉, where 〈u′zs′〉 is the vertical
turbulent heat flux, u′ and s′ are fluctuations of fluid velocity and entropy, g is the
gravity acceleration and τ0 is the characteristic turbulent time. Also a quasi-linear
approach that is valid for small fluid Reynolds numbers has been applied in these
studies.
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2 I. Rogachevskii and N. Kleeorin

An additional possibility for the production of the solar differential rotation is
associated with an effect of the turbulent heat flux on the Reynolds stress in a rotating
density stratified turbulent convection. Based on this idea, Kleeorin & Rogachevskii
(2006) develop a mean-field theory of the differential rotation, where a coupled
system of dynamical equations for the Reynolds stress, the entropy fluctuations
and the turbulent heat flux has been solved adopting a spectral τ approach. It was
demonstrated (Kleeorin & Rogachevskii 2006) that the ratio of the contributions to the
Reynolds stress caused by the turbulent heat flux and the anisotropic eddy viscosity
is of the order of ∼10(Hρ/`0)

2, where `0 is the maximum scale of turbulent motions
and Hρ is the fluid density variation scale. This theory allows us to determine the
profiles of the differential rotation in the upper part of the solar convection zone
where the rotation is slow in comparison with the turbulent time.

In the lower part of the solar convective zone, the rotation is fast in comparison
with the turbulent time. This causes a strong anisotropy of the turbulent convection
that is an additional source of solar differential rotation. Key theoretical questions
are how can turbulent convection be modified by the fast rotation, and how can it
affect the production of the differential rotation? These issues remain open unresolved
problems in solar physics and astrophysics. Note that different theories of the solar
differential rotation can be validated using data from the surface measurements of
the solar angular velocity (see, e.g. Howard & Harvey 1970; Snodgrass, Howard &
Webster 1984) and helioseismology based on measurements of the frequency of p-
mode oscillations (see, e.g. Duvall, Harvey & Pomerantz 1986; Dziembowski, Goode
& Libbrecht 1989; Thompson 1990; Kosovichev et al. 1997; Schou, Antia & Basu
1998).

In the present study, the combined effects of the turbulent heat flux and the
turbulence anisotropy increasing with the rotation rate on the Reynolds stress have
been studied for a rotating density stratified turbulent convection. The spectral τ
approach, which is valid for large Reynolds and Péclet numbers, has been used in
this study. This allows us to advance the mean-field theory of the solar differential
rotation and obtain profiles of the differential rotation versus radius which are in
agreement with the measured profiles of the solar differential rotation.

2. Effect of rotation on the Reynolds stress, entropy fluctuations and turbulent
heat flux
To develop the theory of differential rotation in small-scale density stratified

turbulent convection, we use a mean-field approach whereby the velocity, pressure
and entropy are decomposed into mean and fluctuating parts. This approach implies
that there is a separation of temporal and spatial scales, so that the mean fields are
varied on much larger scales in comparison with those for the fluctuations.

Let us determine the dependencies of the Reynolds stresses 〈u′i(t, x)u′j(t, x)〉 and the
turbulent heat flux 〈s′(t, x)u′i(t, x)〉 on the mean fields, where angular brackets denote
ensemble averaging. To this end we use equations for the fluctuations of velocity and
entropy in rotating turbulent convection, which are obtained by subtracting equations
for the mean fields from the corresponding equations for the total fields. The equations
for fluctuations of velocity u′ and entropy s′ are given by

∂u′

∂t
=−(U · ∇)u′ − (u′ · ∇)U−∇

(
p′

ρ0

)
− gs′ + 2u′ ×Ω +UN, (2.1)

∂s′

∂t
=−Ω

2
b

g
(u′ · e)− (U · ∇)s′ + SN . (2.2)
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Mean-field theory of differential rotation 3

Equations (2.1) and (2.2) are written in the reference frame rotating with angular
velocity Ω . Here p′ are fluctuations of fluid pressure, the entropy fluctuations are
determined by s′= (γP0)

−1p′− ρ−1
0 ρ ′, the mean fields U and S are the mean velocity

and entropy, e is the unit vector directed opposite to g and Ω2
b =−g · ∇S. The fluid

velocity for a low Mach number flows satisfies the continuity equation written in
the anelastic approximation, div(ρ0U) = 0 and div (ρ0u′) = 0. The variables with the
subscript ‘0’ correspond to the hydrostatic nearly isentropic basic reference state, i.e.
∇P0= ρ0 g and g · [(γP0)

−1∇P0− ρ−1
0 ∇ρ0] ≈ 0, where γ is the ratio of specific heats.

The turbulent convection is regarded as a small deviation from a well-mixed adiabatic
reference state. The nonlinear terms UN and SN in (2.1) and (2.2) which include the
molecular dissipative terms, are given by

UN = 〈(u′ · ∇)u′〉 − (u′ · ∇)u′ + f ν(u
′), (2.3)

SN = 〈(u′ · ∇)s′〉 − (u′ · ∇)s′ − (1/T0)∇ ·Fκ(u′, s′), (2.4)

where ρ0 f ν(u′) is the molecular viscous force, Fκ(u′, s′) is the heat flux associated
with the molecular thermal conductivity.

To study the rotating turbulent convection we perform the derivations which include
the following steps: (i) adopting new variables for fluctuations of velocity v =√ρ0u′

and entropy s = √ρ0s′; (ii) derivation of the equations for the second moments of
the velocity fluctuations 〈vivj〉, the entropy fluctuations 〈s2〉 and the turbulent heat
flux 〈vis〉 in the k space, where we apply a multi-scale approach (Roberts & Soward
1975), which separates the mean fields varied on large scales from fluctuations varied
on small scales; (iii) application of the spectral τ approximation and solution of the
derived second-moment equations in the k space; (iv) returning to the physical space
to obtain formulae for the Reynolds stress and the turbulent heat flux as the functions
of the rotation rate.

Using (A 3)–(A 4) for the fluctuations of velocity and entropy in k space
derived in appendix A, we obtain equations for the following correlation functions:
f ij(k,K)=〈vi(t, k1)vj(t, k2)〉, Fi(k,K)=〈s(t, k1)vi(t, k2)〉 and Θ(k,K)=〈s(t, k1)s(t, k2)〉,
where k1 = k+ K/2 and k2 =−k+ K/2. Here the wave vectors K and k are related
to the large and small scales, respectively. Hereafter we omit the argument t in the
correlation functions to simplify notations. The equations for these second moments
are given by

∂ f ij(k,K)
∂t

= (IU
ijmn + LΩijmn)fmn +MF

ij + N̂ f̃ ij, (2.5)

∂Fi(k,K)
∂t

= (JU
im +DΩ

im)Fm + gemPim(k1)Θ + N̂ F̃i, (2.6)

∂Θ(k,K)
∂t

=−div(UΘ)+ N̂Θ, (2.7)
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4 I. Rogachevskii and N. Kleeorin

where

IU
ijmn = JU

im(k1)δjn + JU
jn(k2)δim =

[
2kiqδmpδjn + 2kjqδimδpn − δimδjqδnp

− δiqδjnδmp + δimδjnkq
∂

∂kp

]
∇pUq − δimδjn(div U+U · ∇), (2.8)

MF
ij = gem[Pim(k1)Fj(k,K)+ Pjm(k2)Fi(−k,K)], (2.9)

and LΩijmn = DΩ
im(k1)δjn + DΩ

jn (k2)δim, JU
ij (k) = 2kin∇jUn − ∇jUi − (1/2) div Uδij and

DΩ
ij (k) = 2εijmΩnkmn. Here δij is the Kronecker tensor, k ij = kikj/k2, εijk is the

Levi-Civita tensor and Fi(−k, K) = 〈s(k2)vi(k1)〉. The correlation functions f ij, Fi

and Θ are proportional to the non-uniform fluid density ρ0. Here N̂ f̃ ij, N̂ F̃i and
N̂Θ are the terms which are related to the third-order moments appearing due to the
nonlinear terms. In particular,

N̂ f̃ ij = 〈Pim(k1)v
N
m(k1)vj(k2)〉 + 〈vi(k1)Pjm(k2)v

N
m(k2)〉, (2.10)

N̂ F̃i = 〈sN(k1)uj(k2)〉 + 〈s(k1)Pim(k2)v
N
m(k2)〉, (2.11)

N̂Θ = 〈sN(k1)s(k2)〉 + 〈s(k1)sN(k2)〉. (2.12)

The equations for the second-order moments contain high-order moments and a
closure problem arises (see, e.g. McComb 1990; Monin & Yaglom 2013). We apply
the spectral τ approximation that is a sort of third-order closure procedure (see, e.g.
Orszag 1970; Pouquet, Frisch & Léorat 1976; Kleeorin, Rogachevskii & Ruzmaikin
1990; Rogachevskii & Kleeorin 2004). The spectral τ approximation postulates that
the deviations of the third-order-moment terms, N̂ f ij(k), from the contributions to
these terms afforded by the background turbulent convection, N̂ f (0)ij (k), are expressed
through the similar deviations of the second moments, f ij(k)− f (0)ij (k), i.e.

N̂ f ij(k)− N̂ f (0)ij (k)=−
f ij(k)− f (0)ij (k)

τr(k)
, (2.13)

and similarly for other tensors, where N̂ f ij = N̂ f̃ ij + MF
ij (F

Ω=0) and N̂Fi =
N̂ F̃i + genPin(k)ΘΩ=0, the superscript (0) corresponds to the background turbulent
convection (i.e. a turbulent convection with ∇iUj = 0), τr(k) is the characteristic
relaxation time of the statistical moments, which can be identified with the correlation
time τ(k) of the turbulent velocity field for large Reynolds numbers. The quantities
FΩ=0 and ΘΩ=0 are for a non-rotating turbulent convection with non-zero spatial
derivatives of the mean velocity. Validation of the τ approximation has been done in
various numerical simulations and analytical studies (see, e.g. Brandenburg, Käpylä &
Mohammed 2004; Brandenburg & Subramanian 2005; Rogachevskii & Kleeorin 2007;
Rogachevskii et al. 2011; Brandenburg et al. 2012; Käpylä et al. 2012; Rogachevskii
et al. 2012). Note that we apply the τ approximation (2.13) only to study the
deviations from the background turbulent convection which are caused by the spatial
derivatives of the mean velocity. The background turbulent convection is assumed to
be known (see below).
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Mean-field theory of differential rotation 5

We use the following model of the background turbulent convection which takes
into account an increase of the anisotropy of turbulence with increase of the rate of
rotation:

f (0)ij ≡ 〈vi(k1)vj(k2)〉(0) = E(k)[1+ 2kεuδ(kz)]
8π k2(k2 + λ̃2)(1+ εu)

[
δij(k2 + λ̃2)− kikj − λ̃iλ̃j

+ i(λ̃ikj − λ̃jki)
]
ρ0〈u′2〉(0), (2.14)

F(0)
i ≡ 〈vi(k1)s(k2)〉(0) = 3E(k)

8πk4
[k2ejPij(k)− iλ̃kjPij(e)]ρ0〈s′u′z〉(0), (2.15)

and Θ (0)≡〈s(k1)s(k2)〉(0)=ρ0〈(s′)2〉(0)E(k)/4πk2, where λ̃= (λ−∇)/2, λ=−(∇ρ0)/ρ0.
We assume that the background turbulent convection is Kolmogorov-type turbulence
with a constant flux of energy over the spectrum, i.e. the kinetic energy spectrum
E(k)=−dτ̄ (k)/dk, τ̄ (k)= (k/k0)

1−q with the exponent of the kinetic energy spectrum
1 < q < 3, e.g. q = 5/3 for the Kolmogorov spectrum. The turbulent correlation
time τ(k) = 2τΩ τ̄ (k), where τΩ = `0/u0, and `0 is the energy containing scale of
turbulent motions, u0 =

√〈u′2〉(0) is the characteristic turbulent velocity in the scale
`0 and k0 = 1/`0. We consider anisotropic turbulent convection as a combination of
a three-dimensional isotropic turbulence and two-dimensional turbulence in the plane
perpendicular to the rotational axis. The degree of anisotropy εu is defined as the
ratio of turbulent kinetic energies of two-dimensional to three-dimensional motions.
In this model we neglect effects which are O(λ3,∇3〈v2〉(0)).

The effect of rotation on the turbulent correlation time is described just by a
heuristic argument, i.e. we assume that τ−2

Ω = τ−2
0 +Ω2/C2

Ω , that yields:

τΩ = τ0

[1+ (C−1
Ω Ωτ0)2]1/2

. (2.16)

This implies that for fast rotation, Ωτ0 � 1, the parameter ω = 8ΩτΩ tends to the
limiting value ωm = 8CΩ , where the dimensionless constant CΩ ∼ 1.

The solution of (2.5)–(2.7) after application of the spectral τ approximation, and
the integration over the k space (see appendix B) allow us to determine the Reynolds
stress and the effective force versus angular velocity. The latter yields the mean-field
equation for the differential rotation (see next section), which takes into account the
effects of rotating density stratified turbulent convection.

3. Mean-field equation for differential rotation

The differential rotation in the axisymmetric fluid flow is determined by the
linearized Navier–Stokes equation for the toroidal component Uϕ(r, θ)≡ r sin θδΩ of
the mean velocity:

ρ0
∂Uϕ

∂t
= 1

r3

∂

∂r
(r3σrϕ)+ 1

r sin2 θ

∂

∂θ
(sin2 θσθϕ)+ 2ρ0(U×Ω)ϕ, (3.1)

where the tensor σij =−〈vivj〉 is determined by the Reynolds stress:

σrϕ ≡−eϕj er
i 〈vivj〉 = σ νT

rϕ + σ F
rϕ + σ u

rϕ, (3.2)

σθϕ ≡−eϕj eθi 〈vivj〉 = σ νT
θϕ + σ F

θϕ + σ u
θϕ. (3.3)
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6 I. Rogachevskii and N. Kleeorin

FIGURE 1. The functions Φ1(Ωτ0) (solid) and Φ2(Ωτ0) (dashed) versus Ωτ0.

and er, eθ and eϕ are the unit vectors along the radial, meridional and toroidal
directions of the spherical coordinates r, θ, ϕ. There are three contributions to the
tensor σij=−〈vivj〉 in (3.2) and (3.3). The first terms on the right-hand sides of (3.2)
and (3.3) describe the contribution σ

νT
ij to the Reynolds stress caused by turbulent

viscosity νT :

σ νT
rϕ = ρ0νTr

∂

∂r

(
Uϕ

r

)
, (3.4)

σ
νT
θϕ = ρ0νT

sin θ
r

∂

∂θ

(
Uϕ

sin θ

)
. (3.5)

The second terms in (3.2) and (3.3) determine the contribution σ F to the Reynolds
stress caused by the turbulent heat flux:

σ F
rϕ = 1

6ρ0τ
2
Ωg〈s′u′z〉(0)Ω sin θ [Φ1(ω)+ cos2 θΦ2(ω)] , (3.6)

σ F
θϕ = 1

3ρ0τ
2
Ωg〈s′u′z〉(0)Ω sin2 θ cos θΦ2(ω), (3.7)

where the parameter ω = 8ΩτΩ . The functions Φ1(ω) and Φ2(ω) are given by
(B 15a,b)–(B 17) in appendix B and are shown in figure 1. When the turbulent
correlation time is independent of the rotation rate, equations (3.6) and (3.7) coincide
with those obtained by Kleeorin & Rogachevskii (2006).

The third terms in (3.2) and (3.3) determine the contribution σ u to the Reynolds
stress caused by the anisotropy of turbulence due to the non-uniform fluid density and
fast uniform rotation (see (B 13) in appendix B):

σ u
rϕ =−

λ2`2
0

20
ρ0〈u′2〉(0)τΩΩ sin θ(1+ cos2 θ), (3.8)

σ u
θϕ =

λ2`2
0

20
ρ0〈u′2〉(0)τΩΩ sin2 θ cos θ. (3.9)
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Mean-field theory of differential rotation 7

Equation (3.1) in a steady state that determines the profiles of the differential rotation,
reads:

Ŵ(r)ρ0νT

{
∂

∂r
δΩ

Ω
+ 1

r

[
aF(Φ1(ω)+Φ2(ω)X2)− 2auλ

2`2
0(1+ X2)

]}
− ρ0νT

r2
M̂(X)

{
δΩ

Ω
− [aFΦ2(ω)+ auλ

2`2
0]X2

}
= 0, (3.10)

where the operators Ŵ(r) and M̂(X) are defined as

Ŵ(r)f (r)= 1
r4

∂

∂r
[r4f (r)], M̂(X)φ(X)=

[
(X2 − 1)

∂2

∂X2
+ 4X

∂

∂X

]
φ(X),

(3.11a,b)

X = cos θ , and the parameters aF and au are given by aF = τ 2
Ωg〈s′u′z〉(0)/6νT and au =

τΩ〈u′2〉(0)/40νT . We seek a solution of (3.10) in the form:

δΩ

Ω
=
∞∑

n=0

C3/2
2n (X)Ω̃2n(r), (3.12)

where the radius r is measured in units of the solar radius R�, and the function
C3/2

n (X) satisfies the equation for the ultra-spherical polynomials:

[M̂(X)− n(n+ 3)]C3/2
n (X)= 0. (3.13)

The function C3/2
n (X) has the following properties:∫ 1

−1
(1− X2)C3/2

n (X)C3/2
m (X) dX = (n+ 1)(n+ 2)

n+ 3/2
δnm, (3.14)

C3/2
0 (X)= 1 and C3/2

2 (X)= (3/2)(5X2 − 1). Substituting (3.12) into (3.10), we obtain
equations for the functions Ω̃0(r):

Ω̃0(r)= Ω̃∗ − 1
5

∫ 1

r/R�
{12auλ

2`2
0 − aF[5Φ1(ω)+Φ2(ω)]} dr

r
, (3.15)

and Ω̃2(r):

Ŵ(r)ρ0νT

[
∂Ω̃2(r)
∂r

+ 2
15r

(aFΦ2(ω)− 2auλ
2`2

0)

]
− 10ρ0νT

r2

[
Ω̃2(r)− 2

15
(aFΦ2(ω)+ auλ

2`2
0)

]
= 0, (3.16)

where Ω̃∗ is the free constant determined by the surface boundary condition.
In figure 2 we show the total angular velocity Ω̃tot = Ω̃0 + 1 that includes the

uniform rotation Ω versus the radius r/R�. This theoretical profile is compared with
the radial profile of the solar angular velocity obtained from the helioseismology
observational data (Kosovichev et al. 1997) specified for the latitude φ = 30◦ and
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8 I. Rogachevskii and N. Kleeorin

FIGURE 2. The total angular velocity Ω̃tot = Ω̃0+ 1 that includes the uniform rotation Ω
versus the radius r/R� (solid). This theoretical profile is compared with the radial profile
of the solar angular velocity obtained from helioseismology observational data (stars) at
the latitude φ = 30◦ and normalized by the solar rotation frequency Ω�(φ = 0) at the
equator, where R� is the solar radius.

FIGURE 3. The rotation rate dependence of the functions Φν(Ωτ0), where νT(Ωτ0) =
ν∗TΦν(Ωτ0).

normalized by the solar angular velocity Ω�(φ = 0) at the equator. Note that at
φ = 30◦ the contribution from the term C3/2

2 (X)Ω̃2(r) to the differential rotation
vanishes, because the function C3/2

2 (X)= (3/2)(5X2− 1) at an angle of approximately
φ = 30◦ vanishes. To determine Ω̃tot we use the rotation rate dependence of the
turbulent viscosity νT(ω) = ν∗TΦν(ω), where ν∗T = τ0〈u′2〉(0)/6, the functions Φν(ω)

is given by (B 18) in appendix B and is shown in figure 3. Strong change of the
turbulent viscosity is caused by the fast rotation during the transition from isotropic
three-dimensional turbulence to strongly anisotropic quasi two-dimensional turbulence.

For the comparison of the theoretical profiles of the differential rotation and
observational data, we use the radial profiles of Ωτ0(r) (see figure 4) and the ratio
`M(r)/Hρ(r) (see figure 5) of the mixing length `M to the density stratification length
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Mean-field theory of differential rotation 9

FIGURE 4. The profile of Ωτ0 versus r/R� based on the model of the solar convective
zone by Spruit (1974).

FIGURE 5. The profile of the ratio `M/Hρ of the mixing length `M to the density
stratification length Hρ versus r/R� that is based on the model of the solar convective
zone by Spruit (1974).

Hρ based on the model of the solar convective zone by Spruit (1974). Inspection
of figure 2 demonstrates that the theoretical profile of the differential rotation is in
agreement with the profile of the solar differential rotation when `M/`0 = 5. The
latter is justified by the results of analytical study (Elperin et al. 2002, 2006) and
laboratory experiments (Bukai et al. 2009), which show that the integral scale `0

of the turbulent convection is smaller by a factor five than the size of the coherent
structures (the large-scale circulations). We compare the theoretical and observation
profiles of the differential rotation for the latitude φ = 30◦ because for the latitudes
which are far from φ= 30◦, the contribution of the term ∝ Ω̃2 (determined by (3.16))
to the differential rotation cannot be ignored. A more detailed comparison of the
theoretical and observation profiles of the differential rotation for different latitudes
requires mean-field numerical modelling that is a subject of a separate study.
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10 I. Rogachevskii and N. Kleeorin

4. Conclusions

We discuss a new theory of differential rotation based on the combined effects
of the turbulent heat flux and the turbulence anisotropy increasing with the rate of
rotation on the Reynolds stress in a density stratified turbulent convection. We solve
a coupled system of dynamical budget equations which includes the equations for
the Reynolds stress, the entropy fluctuations and the turbulent heat flux, applying a
spectral τ approach to close this system of equations. The model of the background
turbulent convection takes into account an increase of the turbulence anisotropy and
a decrease of the turbulent correlation time with the rotation rate. This theory allows
us to obtain the profile of the differential rotation versus radius which is in agreement
with the profile of the solar differential rotation.

The mechanism of the differential rotation that is related to the effect of the
turbulent heat flux on Reynolds stress in a rotating turbulent convection is as follows.
The total angular velocity includes the uniform rotation Ω and the differential rotation
δΩ . The uniform rotation results in the counter-rotation turbulent heat flux 〈s′u′ϕ〉 that
is directed oppositely to the uniform rotation Ω . The counter-rotation turbulent heat
flux is similar to the counter-wind turbulent heat flux that is directed oppositely
to the mean wind known in atmospheric physics (Elperin et al. 2002, 2006). In
turbulent convection an ascending fluid element has a larger temperature than the
temperature of the surrounding fluid and smaller toroidal fluid velocity, while a
descending fluid element has a smaller temperature and larger toroidal fluid velocity.
This results in a turbulent heat flux in the direction opposite to the uniform rotation.
The entropy fluctuations produce fluctuations of the buoyancy force, that increases
the fluctuations of the vertical and meridional components of the velocity which
are correlated with the fluctuations of the toroidal component of the velocity. This
implies that the off-diagonal components of the Reynolds stress, 〈u′ru′ϕ〉 and 〈u′θu′ϕ〉 are
non-zero, producing the toroidal component of the effective force. The latter results
in the formation of the differential rotation δΩ in turbulent convection.
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Appendix A. Derivation of equations for the second moments

Equations (2.1) and (2.2), in the new variables, for fluctuations of velocity v =√
ρ0u′ and entropy s=√ρ0s′ are given by

1√
ρ0

∂v(x, t)
∂t

=−∇
(

p′

ρ0

)
+ 1√

ρ0
[2v×Ω − (v · ∇)U−GUv − gs] + vN, (A 1)

∂s(x, t)
∂t

=−Ω
2
b

g
(v · e)−GUs+ sN, (A 2)

where GU = (1/2)divU+U · ∇, vN and sN are the nonlinear terms which include the
molecular viscous and dissipative terms. The fluid velocity fluctuations v satisfy the
equation ∇ · v = v · λ/2.
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Mean-field theory of differential rotation 11

Let us derive equations for the second-order moments. For this purpose we rewrite
the momentum equation and the entropy equation in Fourier space. In particular,

dvi(k)
dt
= [DΩ

im(k)+ J̃U
im(k)]vm(k)+ gemPim(k)s(k)+ vN

i (k), (A 3)

ds(k)
dt
=−GU(k)s(k)+ sN, (A 4)

where

J̃U
ij (k)= 2kin∇jUn −∇jUi −GU(k)δij, GU(k)= 1

2 div U+ i(U · k), (A 5a,b)

DΩ
ij (k)= 2εijmΩnkmn, δij is the Kronecker tensor, k ij= kikj/k2 and εijk is the Levi-Civita

tensor. To derive (A 3) we multiply the momentum equation written in k-space by
Pij(k)= δij − k ij to exclude the pressure term. We also use the following identities:

√
ρ0
[
∇× [∇× (u′ ×Ω)]]= (Ω ×∇(λ))(λ · v)+ (Ω · ∇(λ))(∇(λ) × v

)
, (A 6)

√
ρ0
[
∇× [∇× (gs′)]]=−gj

[
δij
(
∇
(λ)
)2 −∇(λ)i ∇

(λ)
j

]
s, (A 7)√

ρ0[∇×[∇× u]]k =−[Λ2δij −Λiλj]vj(k), (A 8)

where ∇(λ)=∇+ λ/2, λ=−(∇ρ0)/ρ0, Λ= ik+ λ/2. Using (A 3) and (A 4) we derive
equations for the second moments which are given by (2.5)–(2.7).

Appendix B. Solutions for the second moments

Equations (2.5)–(2.7) in a steady state and after applying the spectral τ

approximation (2.13), read

f ij(k)= L−1
ijmn

[
f (0)mn + τM̃F

mn + τ(IU
mnpq + L∇mnpq + Lλmnpq + L∇

2

mnpq + Lλ
2

mnpq)fpq
]
, (B 1)

Fi(k)=D−1
im

[
F(0)

m (k)+ τ(JU
mn +D∇mn +Dλmn +D∇

2

mn +Dλ
2

mn)Fn
]
, (B 2)

and Θ(k)= [1− τ(U · ∇)]Θ (0)(k), where

M̃F
ij = gem

{[
Pim(k)+ k∇im + kλim − k∇

2

im + kλ
2

im

]
F̃j(k)

+ [Pjm(k)− k∇jm − kλjm − k∇
2

jm + kλ
2

jm

]
F̃i(−k)

}
, (B 3)

and F̃i=Fi−FΩ=0
i and we have neglected terms ∼O(∇3,λ3). Here the operator D−1

ij =
χ(ψ)(δij+ψεijmk̂m+ψ2k ij) is the inverse of δij− τ D̃ij and the operator L−1

ijmn(Ω) is the
inverse of δimδjn− τ L̃ijmn (Kleeorin & Rogachevskii 2003; Elperin et al. 2005), where

L−1
ijmn(Ω) = 1

2

[
B1δimδjn + B2kijmn + B3(εimpδjn + εjnpδim)k̂p + B4

(
δimkjn + δjnkim

)
+B5εipmεjqnkpq + B6(εimpkjpn + εjnpkipm)

]
, (B 4)

and k̂i= ki/k, χ(ψ)= 1/(1+ψ2), ψ = 2τ(k)(k ·Ω)/k, B1= 1+χ(2ψ), B2=B1+ 2−
4χ(ψ), B3 = 2ψχ(2ψ), B4 = 2χ(ψ)− B1, B5 = 2− B1 and B6 = 2ψ[χ(ψ)− χ(2ψ)].

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377818000272
Downloaded from https://www.cambridge.org/core. Access paid by the UCSB Libraries, on 25 Apr 2018 at 19:16:47, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377818000272
https://www.cambridge.org/core


12 I. Rogachevskii and N. Kleeorin

To obtain solutions for the second moments, we extract in tensors DΩ
ij and LΩijmn

the parts which depend on the large-scale spatial derivatives and on the density
stratification effects:

DΩ
ij = D̃ij + D∇ij + D∇

2

ij + Dλij + Dλ
2

ij +O(∇3), (B 5)

LΩijmn = L̃ijmn + L∇ijmn + L∇
2

ijmn + Lλijmn + Lλ
2

ijmn +O(∇3), (B 6)

where

L̃ijmn = 2Ωq(εimpδjn + εjnpδim)kpq, L∇ijmn =−2Ωq(εimpδjn − εjnpδim)k∇pq, (B 7a,b)

Lλijmn =−2Ωq

[
(εimpδjn − εjnpδim)kλpq +

i
k2
(εilqδjnλm − εjlqδimλn)kl

]
, (B 8)

L∇
2

ijmn = 2Ωq(εimpδjn + εjnpδim)k∇
2

pq , Lλ
2

ijmn = 2Ωq(εimpδjn + εjnpδim)kλ
2

pq, (B 9a,b)

and D̃ij = 2εijpΩqkpq, D∇ij = 2εijpΩqk∇pq, Dλij = 2εijpΩqkλpq, D∇
2

ij = 2εijpΩqk∇
2

pq , and Dλ
2

ij =
2εijpΩqkλ

2

pq. Here

k∇ij =
i

2k2
[ki∇j + kj∇i − 2k ij(k · ∇)], kλij =

i
2k2
[kiλj + kjλi − 2k ij(k · λ)],

(B 10a,b)

k∇
2

ij =
1

4k2

[
k ij∇

2 + 2(kip∇j + kjp∇i)∇p − 4kijpq∇p∇q −∇i∇j
]
, (B 11)

kλ
2

ij =
1

4k2

[
λi∇̃j + λj∇̃i − 2λm(kim∇̃j + kjm∇̃i + k ij∇̃m)+ λiλj − k ijλ

2 + 4kijpqλpλq
]
,

(B 12a,b)

and ∇̃i =∇i − 4kil∇l.
After integration in k space we obtain contributions to the Reynolds stress caused

by turbulence anisotropy due to the rapid rotation:

f (u)ij =
λ

20

{[(ω̂× e)iej + (ω̂× e)jei](λ−∇z)+ (ω̂ · e) [(ω̂× e)iω̂j

+(ω̂× e)jω̂i](λ+∇z)
} εu

1+ εu
ρ0〈u′2〉(0)ΩτΩ`2

0. (B 13)

To derive (B 13), we use the following integrals:∫
k⊥ij dϕ =πδ

(2)
ij ,

∫
k⊥ijmn dϕ = π

4
∆
(2)
ijmn, (B 14a,b)

where δ(2)ij ≡Pij(Ω)= δij−ΩiΩj/Ω
2 and ∆(2)

ijmn= δ(2)ij δ
(2)
mn + δ(2)im δ

(2)
jn + δ(2)in δ

(2)
jm . The tensors

k⊥ij = k̃ik̃j/k̃2 and k⊥ijmn= k̃ik̃jk̃mk̃n/k̃4 are based on the vector ki in the plane perpendicular
to the angular velocity Ωi.

The contributions to the Reynolds stress caused by the turbulent heat flux are given
by (3.6) and (3.7), where the functions Φ1(ω) and Φ2(ω) are given by

Φ1(ω)= 2Ψ1(ω)+Ψ2(ω/2), Φ2(ω)= 2Ψ2(ω)+Ψ2(ω/2), (B 15a,b)

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377818000272
Downloaded from https://www.cambridge.org/core. Access paid by the UCSB Libraries, on 25 Apr 2018 at 19:16:47, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377818000272
https://www.cambridge.org/core


Mean-field theory of differential rotation 13

Ψ1(ω)=− 6
ω4

[
arctanω
ω

(1+ω2)− 8ω2

3
− 1+ 2ωY(ω)

]
, (B 16)

Ψ2(ω)= 6
ω4

[
5

arctanω
ω

(1+ω2)+ 8ω2

3
− 5− 6ωY(ω)

]
, (B 17)

ω = 8ΩτΩ and Y(ω) = ∫ ω0 [arctan y/y] dy. When the turbulent correlation time is
independent of the rotation rate, equations (3.6) and (3.7) coincide with those obtained
by Kleeorin & Rogachevskii (2006).

To determine the profile of the differential rotation, we use the rotation rate
dependence of the turbulent viscosity νT(ω) = ν∗TΦν(ω), where ν∗T = τ0〈u′2〉(0)/6 and
the function Φν(ω) given by

Φν(ω) = 1
8(1+ εu)

{
(q+ 3)εu + 2

[
A(1)1 (ω)− A(1)1 (0)+ (q+ 2)C(1)

1 (0)+C(1)
1 (ω)

]
+A(1)2 (ω)+C(1)

3 (ω)
}
. (B 18)

Here

A(1)1 (ω)= 12
[

arctan(ω)
ω

(
1− 1

ω2

)
+ 1
ω2
[1− ln(1+ω2)]

]
, (B 19)

A(1)2 (ω)=−12
[

arctan(ω)
ω

(
1− 3

ω2

)
+ 1
ω2
[3− 2 ln(1+ω2)]

]
, (B 20)

C(1)
1 (ω)=

arctan(ω)
ω

(
3− 6

ω2
− 1
ω4

)
+ 1
ω2

(
17
3
+ 1
ω2
− 4 ln(1+ω2)

)
, (B 21)

where C(1)
3 (ω) = A(1)1 (ω) − 5C(1)

1 (ω), and we use equations derived by Elperin et al.
(2005), which are adapted for the spherical geometry.
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