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ABSTRACT
An asymmetry in the number density of left- and right-handed
fermions is known to give rise to a new term in the induction
equation that can result in a dynamo instability. At high tempera-
tures, when a chiral asymmetry can survive for long enough, this chi-
ral dynamo instability canamplifymagnetic fields efficiently,which in
turn drive turbulence via the Lorentz force.While it has been demon-
strated in numerical simulations that this chiral magnetically driven
turbulence exists and strongly affects the dynamics of the magnetic
field, the details of this process remain unclear. The goal of this paper
is to analyse the energetics of chiral magnetically driven turbulence
and its effect on the generation and dynamics of the magnetic field
using direct numerical simulations. We study these effects for differ-
ent initial conditions, including a variation of the initial chiral chemi-
cal potential and themagnetic Prandtl number, PrM . In particular, we
determine the ratio of kinetic to magnetic energy, Υ , in chiral mag-
netically driven turbulence. Within the parameter space explored in
this study, Υ reaches a value of approximately 0.064–0.074–inde-
pendently of the initial chiral asymmetry and for PrM = 1. Our sim-
ulations suggest, that Υ decreases as a power law when increasing
PrM by decreasing the viscosity. While the exact scaling depends on
the details of the fitting criteria and the Reynolds number regime,
an approximate result of Υ (PrM) = 0.1 Pr−0.4

M is reported. Using the
findings from our numerical simulations, we analyse the energetics
of chiral magnetically driven turbulence in the early Universe.
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1. Introduction

Turbulence and magnetic fields are closely connected in many geophysical and astrophys-
ical flows: Magnetohydrodynamic (MHD) dynamos are often related to turbulence, so, for
example, in the cases of the small-scale (Kazantsev 1968, Kulsrud and Anderson 1992) and
large-scale dynamos, especially those driven by helical turbulent motions causing the α

effect (Parker 1955, Steenbeck et al. 1966). On the other hand, the Lorentz force resulting
frommagnetic fields can drive turbulentmotions. Howmuchmagnetic energy can be con-
verted into kinetic energy depends on various properties of the plasma, characterised by the
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fluid and magnetic Reynolds numbers, and the structure of the magnetic field. Hence, tur-
bulence is a key ingredient for understanding the origin and evolution of cosmic magnetic
fields.

Observational constraints on the lower limits on the strength of intergalactic magnetic
fields (Neronov and Vovk 2010, Dermer et al. 2011) challenge theoretical scenarios like
the ones including the turbulent dynamo. A theory explaining these possible remains of
primordial fields includes the generation of seed fields on small spatial scales, below the
co-movingHubble radius of the earlyUniverse, and a subsequent cascade to larger scales in
decayingMHD turbulence eitherwithmagnetic helicity (Brandenburg et al. 1996, Biskamp
andMüller 1999, Field andCarroll 2000, Kahniashvili et al. 2013, Brandenburg et al. 2017a)
or without (Zrake 2014, Brandenburg et al. 2015). Cosmological seed fields, however, are a
highly debated topic inmodern cosmology; see e.g. Grasso and Rubinstein (2001), Kulsrud
and Zweibel (2008), Subramanian (2016). In addition to various generation mechanisms
suggested in the literature, seed fields have recently been connected to a microphysical
effect that is related to the two opposite handedness of fermions. In the presence of an
external magnetic field, the momenta of fermions align along the field lines according
to their spin: right-handed fermions are accelerated along the field lines, while left-
handed ones are accelerated in the opposite direction. Collisions between particles lead
to a constant flow along the field lines, with the direction depending on the handedness.
Consequently, an asymmetry in the number density of left- and right-handed charged
particles leads to a net current along the magnetic field. This effect is called the chiral
magnetic anomaly (Vilenkin 1980, Redlich and Wijewardhana 1985, Tsokos 1985, Alek-
seev et al. 1998, Fröhlich and Pedrini 2000, 2002, Kharzeev et al. 2008, Fukushima et
al. 2008, Son and Surowka 2009) and the resulting current can lead to a magnetic dynamo
instability (Joyce and Shaposhnikov 1997). Especially the studies of the chiral inverse mag-
netic cascade and the evolution of a non-uniform chiral chemical potential by Boyarsky
et al. (2012, 2015) who found that a chiral asymmetry can, in principle, survive down to
energies of the order of 10MeV (≈ 1011 K), made this effect an interesting candidate for
cosmological applications.

Recently, a systematic analytical study of the system of chiralMHD equations, including
the back-reaction of themagnetic field on the chiral chemical potential, and the coupling to
the plasma velocity field has been performed byRogachevskii et al. (2017). High-resolution
numerical simulations, presented in Schober et al. (2017), confirm results frommean-field
theory, in particular the existence of a new chiral α effect that is not related to the kinetic
helicity, the so-called αμ effect. Spectral properties of chiral MHD turbulence have been
analysed in Brandenburg et al. (2017b). A key result from these direct numerical simu-
lations (DNS) is that turbulence can be magnetically driven by the Lorentz force due to
a small-scale chiral dynamo instability. In particular, a new three-stage-scenario of the
magnetic field evolution has been found in Schober et al. (2017). The small-scale chiral
dynamo instability is followed by a phase in which magnetically produced turbulence trig-
gers a large-scale dynamo instability, which eventually saturates due to the decrease of the
chiral chemical potential.

In this paper, we extend thework of Schober et al. (2017) to analyse the energetics of chi-
ralmagnetically driven turbulence.We explore different initial values of the chiral chemical
potential to find the dependence of the ratio of the kinetic energy over themagnetic energy
on the initial chiral asymmetry and the magnetic Prandtl number, PrM ≡ ν/η, where ν is



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 109

the kinematic viscosity and η is the magnetic diffusivity. We also determine energy trans-
fer rates between the different energy reservoirs and obtain the dependence of the ratio of
kinetic to magnetic energy dissipation rates on the magnetic Prandtl number.

The paper is structured as follows: In section 2, we outline the chiral MHD equations,
the growth rates of their instabilities, and the saturation magnetic fields expected from the
conservation law in chiralMHD. In this section, we also discuss the different stages ofmag-
netic field evolution and the production of chiralmagnetically driven turbulence. The setup
of our numerical simulations is described in section 3 and compared with those presented
in Schober et al. (2017). We discuss here also the results of the direct numerical simula-
tions related to the dynamics of the velocity and magnetic fields. In section 3.3, we analyse
the ratio of kinetic over magnetic energy for different dynamo growth rates and different
magnetic Prandtl numbers. Additionally, the transfer of energy from the chiral chemical
potential, via magnetic energy, to turbulent kinetic energy is studied by determining the
energy production and dissipation rates. In section 4, we estimate themagnetic Prandtl and
Reynolds numbers in the relativistic plasma of the early Universe and apply our results on
the magnetic Prandtl number dependence.

2. Chiral MHD

2.1. Governing equations

We begin by reviewing the basic equations of chiral MHD, as derived by Rogachevskii et
al. (2017). We consider the case of very low microscopic magnetic diffusivity, η, which is
the relevant regime for astrophysical applications. The chiral asymmetry is described by
the chiral chemical potential,

μ5 = 6 (nL − nR)
(�c)3

(kBT)2
, (1)

which is proportional to the difference in the number densities of left- and right-chiral
fermions, nL and nR, respectively. Here,T is the temperature, kB is the Boltzmann constant,
c is the speed of light, and � is the reduced Planck constant. In an external magnetic field,
μ5 gives rise to a current due to the chiral magnetic effect (CME)

JCME = αem

π�
μ5B, (2)

where αem ≈ 1/137 is the fine structure constant. This quantum relativistic effect,
described by the standard model of particle physics, results in an additional term in the
Maxwell equations. Based on these modified Maxwell equations, Boyarsky et al. (2015)
and Rogachevskii et al. (2017) derived the following set of chiral MHD equations:

∂B
∂t

= ∇ × [U × B − η (∇ × B − μB)] , (3)

ρ
DU
Dt

= (∇ × B) × B − ∇p + ∇·(2νρS), (4)
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Dρ

Dt
= −ρ ∇ · U , (5)

Dμ

Dt
= D5 	μ + λ η

[
B·(∇ × B) − μB2] , (6)

where U is the fluid velocity, the magnetic field B is normalised such that the mag-
netic energy density is B2/2 (so the magnetic field in Gauss is

√
4π B), and D/Dt =

∂/∂t + U · ∇ is the advective derivative. Further, a normalisation of μ5 is used such that
μ = (4αem/�c)μ5 and the chiral feedback parameter λ has been introduced, which char-
acterises the strength of the back-reaction from the electromagnetic field on the evolution
of μ. For hot plasmas, when kBT � max(|μL|, |μR|), it is given by Boyarsky et al. (2015)

λ = 3�c
(
8αem

kBT

)2
. (7)

In equations (3)–(6), D5 is a chiral diffusion coefficient, p is the fluid pressure, Sij =
1
2 (Ui,j + Uj,i) − 1

3δij∇·U are the components of the trace-free strain tensor, where com-
mas denote partial spatial differentiation. For an isothermal equation of state, the pressure
p is related to the fluid density ρ via p = c2sρ, where cs is the isothermal sound speed. Flip-
ping reactions between right- and left-handed states of fermions have been neglected in
equations (3)–(6). For an overview of the parameters and characteristic scales governing
chiral MHD, we refer to table 1.

The systemof equations is determined by several non-dimensional parameters. In terms
of chiral MHD dynamos, the most relevant ones are the chiral Mach number

Maμ = ημ0

cs
≡ vμ

cs
, (8)

where μ0 is the initial value of μ, and the dimensionless chiral nonlinearity parameter:

λμ = λη2ρ. (9)

The parameterMaμ measures the relevance of the chiral term in the induction equation (3)
and determines the growth rate of the small-scale chiral dynamo instability. The nonlin-
ear back-reaction of the magnetic field on the chiral chemical potential μ is characterised
by λμ, which affects the strength of the saturation magnetic field and the strength of the
magnetically driven turbulence. In this paper, we consider only cases with λμ � 1, i.e.
when turbulence is produced efficiently due to strong magnetic fields generated by the
small-scale chiral dynamo instability. The turbulent cascade properties have previously
been studied by Brandenburg et al. (2017b) in the range 2 × 10−6 ≤ λμ ≤ 200, Schober et
al. (2017) in the range 10−9 ≤ λμ ≤ 10−5.

The illustration in figure 1 shows how energy is converted from a chiral chemical
potential, to magnetic energy, further to turbulent kinetic energy, and finally to energy
of the large-scale magnetic field. The relevant transport terms are indicated in the sketch
together with the diffusion terms, εμ ≡ 〈D5∇2μ〉, εM ≡ 〈ηJ2〉, εK ≡ 〈2νρS2〉, and ε̃M ≡
〈(η + ηT )J2〉. Here, J and J are the total and mean values of the electric current, respec-
tively, and ηT is the turbulent magnetic diffusivity. The latter is defined as ηT = urms/(3kf ),
where urms is the rms velocity and kf integral length scale of turbulence.



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 111

Table 1. Overview of the parameters in chiral MHD. Units are given in CGS with the corresponding
Natural Unit in brackets.

Parameter Symbol Unit Definition

Chiral MHD parameters
Chiral chemical potential μ5 erg [eV] 6 (nL − nR) (�c)3/(kBT)2

Normalised chiral chemical potential μ cm−1 [eV] 4αem/(�c)μ5
Initial value ofμ μ0 cm−1 [eV]
Chiral velocity vμ cm s−1 [−] ημ0
Chiral Mach number Maμ – vμ/cs
Chiral nonlinearity parameter λ s2g−1cm−1 [eV−2] 3�c(8αem/(kBT))2

Non-dimensional chiral nonlinearity parameter λμ – λη2ρ

Chiral diffusivity D5 cm2s−1 [eV−1]
Chiral diffusion rate εμ erg s−1 [eV2] 〈D5∇2μ〉
Classical MHD parameters
Magnetic diffusivity η cm2s−1 [eV−1]
Kinematic viscosity ν cm2s−1 [eV−1]
Turbulent diffusivity ηT cm2s−1 [eV−1] ≈ urms/(3kf)
Kinetic energy dissipation rate εK erg s−1 [eV2] 〈2νρS2〉
Magnetic energy diffusion rate εM erg s−1 [eV2] 〈ηJ2〉
Magnetic energy diffusion rate of mean magnetic field ε̃M erg s−1 [eV2] 〈(η + ηT )J

2〉
Characteristic wavenumbers
Small-scale chiral instability kμ cm−1 [eV] μ0/2
αμ instability kα cm−1 [eV] |vμ + αμ|/(2η + 2ηT )

Saturation kλ cm−1 [eV]
√

ρλCμ/Cλ ημ0

Box size k1 cm−1 [eV] 1/L
Characteristic growth rates
Small-scale chiral instability γμ s−1 [eV] ημ2

0/4
αμ instability γα s−1 [eV] (vμ + αμ)2/(4(η + ηT ))

Characteristic field strengths
Initial value B0 G [eV2]
Transition: laminar to turbulent B1→2

rms G [eV2] ≈ (Cμρ/2)1/2μ0η

Dynamo saturation Bsat G [eV2] ≈ (ρη2CμCλ/λ)1/4μ0
Dimension less parameters
Energy ratio Υ – ρu2rms/B

2
rms

Ratio of production rates Φ – 〈U · (J × B)〉/(|vμB · J|)

Figure 1. Illustration of energy transfer from the chiral chemical potential 〈μ5〉, to magnetic energy
〈B2/2〉, further to turbulent kinetic energy, 〈ρu2/2〉 and finally to energy of the large-scale magnetic
field, B2/2. Losses via microscopic magnetic diffusion and kinematic viscosity are indicated by curled
arrows (colour online).

2.2. Analogywith the α effect inmean-fieldMHD

Readers familiar with mean-field MHD (see Moffatt 1978, Krause and Rädler 1980,
mfMHD) will have readily noticed the analogy between vμ = μη in chiral MHD and the
kinetic part of theα effect,αK, inmfMHD. For η → 0, the analogy goes further in that even
the evolution equation (6) for μ corresponds to an analogous one for the magnetic part of
the α effect, αM, proportional to the magnetic helicity, in what is known as the dynamical
quenching formalism (Kleeorin and Ruzmaikin 1982, Kleeorin et al. 1995).
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Exploiting the analogy between chiralMHDand dynamical quenching can be beneficial
in two ways. First, there is a considerable body of work on dynamical quenching that can
improve our intuition in chiral MHD (e.g. Kleeorin et al. 2000, Blackman and Branden-
burg 2002). Second, numerical approaches have been developed for dynamical quenching
that can directly be utilised in chiral MHD. The purpose of this section is to elaborate
on this analogy, which was never mentioned before. Readers unfamiliar with dynamical
quenching may skip forward to section 2.3.

In chiral MHD, dynamical quenchingmeans that the total chirality, i.e. the sum of mag-
netic helicity and fermion chirality, is conserved. In mfMHD, in the absence of magnetic
helicity fluxes, it implies that the total magnetic helicity is conserved, i.e. the sum of the
magnetic helicity of the mean-field and that of the fluctuating field, the latter of which
constitutes an additional time-dependent contribution to the α effect. The other contri-
bution to the α effect in mfMHD, αK, is proportional to the kinetic helicity, which was
here assumed to be constant in time, so we can write (see equation 18 of Blackman and
Brandenburg 2002)

∂α

∂t
= λmfMHD η

[
ηTB·(∇ × B) − αB2

]
− ΓmfMHD (α − αK), (10)

where α = αK + αM. In mfMHD, the coupling coefficient is given by λmfMHD =
2ηT k2f /(ηB

2
eq) and ΓmfMHD = 2ηk2f , where kf is the wavenumber of the energy-carrying

eddies and Beq is the equipartition field strength.
The applications of chiral MHD carry over to decaying MHD turbulence with finite

initial large-scale or small-scale magnetic helicity (Kemel et al. 2011). During the decay,
some of themagnetic helicity is transferred between the large- and small-scale fields, which
leads to a change in the α effect that in turn results in a slow-down of the decay.

2.3. Review of the three stages of themagnetic field evolution

Recent simulations by Schober et al. (2017) have demonstrated the existence of three dis-
tinct stages characterising the growth and saturation of themagnetic field in different kinds
of chiral dynamos:
Phase 1: a laminar phase of small-scale chiral dynamo instability;
Phase 2: a large-scale dynamo instability, caused by chiral magnetically produced turbu-
lence;
Phase 3: termination of growth of the large-scale magnetic field and reduction ofμ accord-
ing to the conservation law in chiral MHD.With no further energy input, dynamo satura-
tion is followed by decaying helical MHD turbulence, where the magnetic field decreases
with time as a power law like |B| ∼ t−1/3 (Biskamp and Müller 1999, Kahniashvili et
al. 2013).

In this section, the dynamics of chiralmagnetically driven turbulence is shortly reviewed
for the case of a chiral plasma in an infinite domain (see figure 2). In section 2.4, we
will discuss the potential discrepancies in this picture arising from the effect of a finite
computational domain (see figure 3).



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 113

Figure 2. Schematic overview of the evolution of a plasma in an infinite box with an initially weakmag-
netic field in the presence of a chiral chemical potential. For a detailed discussion see section 2.3. (a) The
time evolution ofμ (red solid line), u (black dotted line), and B (blue dashed line). The values ofμ0 and
Bsat are indicated as horizontal dotted lines. The transitions between individual phases of the evolution
are marked by vertical dashed-dotted lines. (b) Evolution of magnetic energy spectra with inverse trans-
fer from kμ to kλ. The blue lines correspond to a larger μ0 in comparison with the case shown by the
black lines (but for the same λ), while the red lines correspond to a smaller λ in comparison with the
case indicated by the black lines (but for the sameμ0) (colour online).

Figure 3. Same as figure 2 but including effects of a finite box (colour online).

2.3.1. Amplification ofmagnetic fields by chiral dynamos
In phase 1, the velocity field is negligible and a small-scale laminar dynamo operates. The
growth rate found from the linearised equation (3) has a maximum value of (Joyce and
Shaposhnikov 1997)

γμ = v2μ

4η
(11)

being attained at

kμ = |μ0|
2

. (12)

While the magnetic field grows with a rate γμ, turbulence is driven by the Lorentz force
with the rms velocity increasing at a rate of approximately 2γμ.
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In phase 2, the turbulent velocity has become so large that it affects the evolution of
the magnetic field. It has been shown by Brandenburg et al. (2017b) that the peak of the
magnetic energy spectrum reaches a value of

E1→2
M = Cμρμ0η

2 (13)

with Cμ ≈ 16 at the transition from phase 1 to phase 2. This moment coincides with the
beginning of the inverse transfer, when the k−2 spectrum starts to build up, i.e. when
the peak of the magnetic energy spectrum moves from kμ to smaller wavenumbers. The
corresponding transition field strength can be estimated as

B1→2
rms ≈ (

E1→2
M kμ

)1/2 ≈
(
Cμρ

2

)1/2
μ0η. (14)

At this stage, the chiral magnetically produced turbulence causes excitation of a large-
scale magnetic field by the chiral αμ effect. This chiral large-scale dynamo, studied by
Rogachevskii et al. (2017), occurs at the maximum growth rate

γα = (vμ + αμ)2

4(η + ηT )
= (vμ + αμ)2

4η (1 + ReM/3)
, (15)

where vμ = ημ and μ is the mean chiral chemical potential. Despite the contribution
from the chiral αμ effect, given by the term αμ = − 2

3vμ ln ReM, the overall growth rate
is reduced as compared to the laminar chiral dynamo. Here, ReM is the magnetic Reynolds
number defined by ReM = urms/(ηkf ) = 3ηT/η The maximum growth rate of the chiral
large-scale dynamo is attained at the wavenumber kα = |vμ + αμ|/(2η + 2ηT ).

2.3.2. Saturation of the chiral large-scale dynamo
Saturation of the chiral large-scale dynamo, phase 3, is controlled by the conservation law
following from equations (3)–(6), which implies that the total chirality

λ

2
A · B + μ̄ = μ0 = const, (16)

is a conserved quantity; see Rogachevskii et al. (2017) for more details. Here, A · B is the
spatially averaged value of the magnetic helicity. According to the conservation law (16),
the magnetic field reaches Bsat = (μ0/(λξM))1/2, where ξM is the correlation length of the
magnetic field.

The magnetic energy spectrum EM(k, t) in chiral MHD turbulence has been studied
in Brandenburg et al. (2017b). In particular, it was found that EM is proportional to k−2

between the wavenumber

kλ =
√

ρλ
Cμ

Cλ

ημ0, (17)

with Cμ ≈ 16, Cλ ≈ 1, and kμ given by equation (12). We note that the only case consid-
ered here is λμ � 1, which implies kλ � kμ. Using dimensional arguments and numer-
ical simulations, Brandenburg et al. (2017b) found that for chiral magnetically driven
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turbulence, the saturation magnetic energy spectrum EM(k, t) obeys

EM(k, t) = Cμ ρμ3
0η

2k−2 (18)

in kλ < k < μ0. Here, EM(k, t) is normalised such that the mean magnetic energy density
is 〈B2〉/2 = ∫

EM(k) dk. It was also confirmed numerically by Brandenburg et al. (2017b)
that the magnetic energy spectrum EM(k) is limited from above by Cλμ0/λ. The magnetic
field strength at dynamo saturation can be estimated as

Bsat ≈ (EM(kλ)kλ)
1/2 =

(
ρη2CμCλ

λ

)1/4

μ0. (19)

In figure 2(a), the effect of changing μ0 and λ on the final energy spectrum is illustrated.
Here, intermediate spectra are shown as thin lines, while thick lines indicate the mag-
netic energy spectrum at saturation with an inertial range where EM ∝ k−2 between kλ

and kμ. The black lines present a case with a certain μblack and λblack. If λ is decreased,
kλ also decreases, and the k−2 spectrum spans over a larger range of wavenumbers. This
is illustrated by the red lines, where μred = μblack and λred < λblack. In this case, the final
magnetic field strength is higher than in the case with μblack and λblack. The same final
field strength can, however, also be reached by increasingμ0, as Bsat ∝ μ0/λ

1/4. Schematic
spectra illustrating the latter case are shown as blue curves in figure 2, whereμblue > μblack
and λblue = λblack.

2.4. Effects of the finite numerical domain

Due to a finite simulation domain, the evolution of the magnetic field and the turbulent
velocity is slightly modified in comparison to the case discussed in section 2.3. The evolu-
tion of the chiral chemical potential, the magnetic field strength, the rms velocity, and the
time evolution of the magnetic energy spectra in finite box simulations are illustrated in
figure 3.

First of all, the chiral chemical potential, does not vanish at dynamo saturation, but
reaches a finite value, which is equal to the minimum wavenumber possible in the box,
k1. The magnetic field reaches the saturation value given by equation (19). However, the
evolution of themagnetic energy spectrum differs compared to that anticipated for an infi-
nite system. In the laminar chiral dynamo phase, we expect an instability at wavenumber
kμ, as predicted by theory; see the black curves in figure 3(b). With the production of tur-
bulence, the peak of the magnetic energy spectrum moves to larger spatial scales through
inverse transfer. As discussed above, we expect a scaling of the magnetic energy spectrum
proportional to k−2; see equation (18). Once the peak reaches the size of the box, how-
ever, we observe a steepening of the spectrum, as indicated in the schematic figure 3, if
kλ < k1. This steepening is caused by the growth of the magnetic field on the smallest
possible wavenumber, until the spectrum reaches its saturation value Cλμ0/λ. For large
values of μ0, the initial chiral dynamo instability occurs at smaller spatial scales, i.e. at
larger wavenumbers k, and thus the k−2 spectrum can extend over a larger range; see the
blue curves in figure 3(b). In this paper, we present also a run with kλ ≈ k1, run B, which
has a resolution of 12163. Large parameter scans, and cases with larger scale separation,
kλ � k1, are computationally too expensive.
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3. Chiral magnetically driven turbulence in direct numerical simulations

3.1. Numerical setup

Wesolve equations (3)–(6) in a three-dimensional periodic domain of sizeL3 = (2π)3 with
the Pencil Code.1 This code is well suited forMHD studies; it employs a third-order accu-
rate time-stepping method ofWilliamson (1980) and sixth-order explicit finite differences
in space (Brandenburg and Dobler 2002, Brandenburg 2003). The smallest wavenumber
covered in the numerical domain is k1 = 2π/L = 1 and the resolution is varied between
4803 and 12163. For comparison, we also show some simulations that have previously been
presented (Schober et al. 2017), butwe now include additional runs for PrM �= 1. The sound
speed in the simulations is set to cs = 1 and themeanfluid density toρ = 1. If not indicated
otherwise, themagnetic Prandtl number is 1, i.e. themagnetic diffusivity equals the viscos-
ity. However, we do consider cases between PrM = 0.5 and PrM = 10, where the value of η
is fixed and ν changes. No external forcing is applied to drive turbulence in these simula-
tions, i.e. the velocity field is then driven entirely by magnetic fields. All runs are initialised
with a weak seed magnetic field in the form of Gaussian noise, with constant μ, and van-
ishing velocity. The main input parameters of all simulations presented in this paper are
summarised in table 2.

3.2. Reference run for chiral magnetically driven turbulence

The generation of the magnetic field by the laminar chiral dynamo, and after that by the
chiral mean-field dynamo, can be seen in figure 4, where we present snapshots of μ (left
column), Bx (middle column), and ux (right column) for run A. As indicated on the left,
from top to bottom the time increases from t=0 to tγμ = 50. In the following, we sum-
marise the quantitative analysis of run A, but we refer to section 4 of Schober et al. (2017)
for a more detailed discussion of this simulation.

The time evolution of the key quantities for the reference run A is shown in figure 5.
As can be seen in figure 5(a), Brms (blue dashed line) increases exponentially by over four
orders of magnitude before the growth rate decreases due to the produced turbulence. Sat-
uration of the magnetic field growth occurs at tγμ ≈ 40. Both, the velocity urms (black

Table 2. Overview of the input parameters of all simulations discussed in this paper. We list the values
of the non-dimensional chiral parameters, Maμ and λμ, see equations (8) and (9), respectively, as well
as the characteristic wavenumbers, kμ and kλ, see equations (12) and (17), normalised by the minimum
wavenumber corresponding to the finite numerical domain, k1. Runs D, F, G and H have been performed
with differentmagnetic Prandtl numbers, i.e. runD05with PrM = 0.5, runD1with PrM = 1, up to runD10
with PrM = 10. Reference runs are highlighted by bold font.

Simulation Resolution Maμ λμ (μ0/λ)1/2 kμ/k1 kλ/k1 PrM

Run A 5763 2 × 10−3 2 × 10−7 1.00 10 0.036 1.0
Run B 12163 6.6 × 10−3 9 × 10−6 0.12 44 1.1 1.0
Run C 4803 1.5 × 10−3 5 × 10−6 0.12 15 0.27 1.0
Runs D05 . . . 10 4803 2 × 10−3 5 × 10−6 0.14 20 0.36 0.5 · · · 10
Run E 4803 2.5 × 10−3 5 × 10−6 0.16 25 0.45 1.0
Runs F1 . . . 10 5763 3 × 10−3 5 × 10−6 0.17 30 0.54 0.5 · · · 10
Runs G05 . . . 10 4803 4 × 10−3 2 × 10−5 0.14 20 0.72 0.5 · · · 10
Runs H05 . . . 10 4803 8 × 10−3 2 × 10−5 0.28 20 0.72 0.5 · · · 10
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Figure 4. Cross sections of the chiral chemical potential (μ, left column), as well as the x components
of the magnetic field (Bx , middle column), and the velocity field (ux , right column) in the xy plane. From
top to bottom the time increases from 0 to 50 γ −1

μ , during which the chiral MHD dynamo generates a
large-scale magnetic field and a velocity field.

dotted line) and the magnetic helicity A · B (blue dotted line) increase at a rate twice the
one of Brms. The value of μrms (orange solid line), here shown with a constant factor 2/λ,
decreases only above tγμ ≈ 30, switching off the chiral dynamo instability. In accordance
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Figure 5. (a) The time evolution of the most relevant parameters in the reference run A. This run has
been discussed in greater detail in section 4 of Schober et al. (2017), where this plot is shown in the
top panel of their figure 9. (b) Normalised energy and helicity spectra for the reference run A. The time
intervals between two spectra are equidistant and the last spectra are presented by solid lines. This plot
is equivalent to figure 10 of Schober et al. (2017) (colour online).

with the conservation law (16), the sum A · B + 2μrms/λ (purple dashed-dotted line) is
constant throughout the simulation time.

In figure 5(b), the evolution of the magnetic (blue lines) and kinetic (black lines)
energy spectra for run A are presented. It can be seen that the laminar chiral dynamo
injects energy at the wavenumber kμ, as given in equation (12). Once turbulence has been
produced, the magnetic correlation length moves to smaller wavenumbers due to mode
coupling, similarly to what has been seen previously in dynamos driven by the Bell insta-
bility (Rogachevskii et al. 2012). Eventually, the energy accumulates on k = k1; see the final
spectra in the simulation which are plotted with solid lines.

3.3. Turbulence in different scenarios

In chiral MHD, energy is transformed from the chiral chemical potential, to magnetic
energy, and later to turbulent kinetic energy; see figure 1. For a quantification of this
energy transfer, it is useful to compare the production rate of turbulent kinetic energy,
〈U · (J × B)〉, with the one of the magnetic field, |vμB · ∇ × B|. Therefore, we define the
dimensionless ratio

Φ ≡ 〈U · (J × B)〉
|vμB · ∇ × B| , (20)

where we have assumed that B · ∇ × B ≈ kMB2rms with the inverse magnetic correlation
length, k−1

M .
Furthermore, it is useful to determine the value of turbulent kinetic energy that can be

produced in chiral MHD without external forcing of turbulence. In the analysis of run A,
we have seen that the kinetic energy reaches a certain percentage of the magnetic energy.
With the onset of the large-scale dynamo phase, phase 2, the ratio

Υ ≡ ρu2rms/2
B2rms/2

(21)
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stays approximately constant and decreases as soon as the peak of the magnetic energy
spectrum reaches the box wavenumber k1. Afterwards, turbulence is not driven by the
Lorentz force anymore and the velocity field decays.

In this section, we explore how the details of this scenario are affected by the properties
of the plasma. In particular, we perform a parameter scan, varying the chiral parameters
as well as the magnetic Prandtl number.

3.3.1. Dependence on the chiral parametersMaμ and λμ

The time evolution of the ratio Υ is presented in figure 6(a) for runs with different values
of Maμ and λμ. Time is normalised here by the inverse of the laminar dynamo growth
rate (11), allowing comparison between runs with different vμ. The evolution of Υ in all
runs is similar up to t ≈ 12 γ −1

μ , except for a minor time delay of run A. This can be
explained by the effect of magnetic diffusivity which is larger than the one in run C by
a factor of two. Phase 2, when turbulence affects the evolution of the magnetic field, begins
approximately at t ≈ (12–14) γ −1

μ for the runs considered here. The onset of phase 2 is
weakly dependent on η and, in principle, also on the initial value of the magnetic field
strength, which is the same for all runs presented in this paper. During phase 2, the ratio
Υ is comparable for all three runs considered here, even thoughMaμ and λμ are different.
Once the chiral large-scale dynamo phase begins, we obtain the ratio Υ � 0.1.

Run A, the reference run discussed in the previous section, has the lowest value of λ

in our sample, leading to a small value of kλ in comparison to the maximum wavenum-
ber in the box: kλ ≈ 0.036k1. This implies that k1 is reached early, much before dynamo
saturation, and the kinetic energy decays. As long as kM > k1, a solid line style is used in
figure 6, while for late times, the time evolution is presented with dashed lines to indicate
the finite box effect. Here, kM has been determined as the peak of the energy spectra. To

Figure 6. (a) The ratio of kinetic over magnetic energy,Υ , as a function of time, normalised by γ −1
μ , for

runs A–C; see table 2. The time during which kM is inside the numerical box, i.e. kM > k1, is marked by
solid line style. For kM < k1, the lines are dashed. (b) The time averaged ratio Φ as a function of μ0/k1
(lower abscissa, black symbols) and a function of Maμ (upper abscissa, blue symbols) for all runs with
PrM = 1. For the results shown as filled dots, the average has been performed for the time interval for
which Υ is at least 50% of its maximum value. For open dots, the time average is taken for all Υ >

0.9 max(Υ ). The solid grey line shows the mean value of 〈Υ 〉t resulting from the first time averaging
condition and the dashed grey for the latter condition (colour online).
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observe a scenario in which the complete inverse cascade takes place inside the box, so that
the kinetic energy does not decay within phase 2, we have performed run B. The choice of
the parameters for this run, listed in table 2, can be justified as follows: As for all of the runs
presented in this paper, the ratio between kμ and kλ needs to be large, in order to observe
a chiral large-scale dynamo phase (phase 2). Using equations (12) and (17), we see that

kμ

kλ

=
(

Cλ

4Cμ

1
ρη2λ

)1/2
=

(
Cλ

4Cμ

1
λμ

)1/2
, (22)

which is independent of μ0. However, μ0 needs to be chosen high enough to ensure that
kλ > k1. In run B, we use μ0/k1 = 88, which implies that the laminar dynamo instabil-
ity occurs on small spatial scales and a high numerical resolution is required. Run B is
presented in figure 6(a) as a grey solid line, for which the ratio Υ remains approximately
constant for times larger than ≈ 12 γ −1

μ .
In figure 6(b), we show the time averaged ratio 〈Υ 〉t for all our runs with PrM = 1 as a

function of μ0/k1 as black symbols. The blue symbols refer to the upper x axes and indi-
cate the corresponding value of Maμ. For the time averaging procedure, we consider two
different criteria: For solid symbols the time average is performed for all values of Υ larger
than 50% of its maximum value. The open dots are obtained by using all values for which
Υ > 0.9max(Υ ), which obviously results in a larger average value. Error bars represent the
standard deviation of 〈Υ 〉t . There is no significant dependence of 〈Υ 〉t on the values of μ0
andMaμ for the parameter space explored here:When averaging over allΥ > 0.5max(Υ ),
we find amean 〈Υ 〉t ≈ 0.064, and when employing the criterionΥ > 0.9max(Υ ), we find
〈Υ 〉t ≈ 0.074.

To estimate the magnetic Reynolds number, we need to determine the amount of tur-
bulent kinetic energy that can be produced by the Lorentz force. The value of ReM is
determined by the rms velocity, the magnetic diffusivity, and the correlation length of the
magnetic field, k−1

M . In numerical simulations, both urms and kM can be limited by the size
of the box, while η is an input parameter.We have seen that 〈Υ 〉t has an approximately fixed
value in the mean-field dynamo phase for PrM = 1 and as long as kM > k1. This implies
that the value of urms is proportional toBrms and reaches amaximumat the time tbox, which
is defined as the time when the peak of the energy spectrum reaches the size of the box,
i.e. when kM = k1. The energy spectrum at this time, described by equation (18), reaches
a maximum EM(k1, tbox) = Cμρη2μ3

0/2. The magnetic field strength corresponding to
this energy spectrum can be estimated as [EM(k1, tbox)k1]1/2 = (Cμρ/2)1/2ημ

3/2
0 . Hence

we expect a scaling of the maximum velocity in our simulations ∝ ημ
3/2
0 . The magnetic

Reynolds number, ReM = urms/(ηkM)with kM = k1 at late times, is thus independent of η
and scales asμ3/2

0 . This scaling is observed in our simulations; see figure 7(b). TheReynolds
number as a function of time for runs with differentμ0/k1 is presented in figure 7(a). Here,
we show two different ratios, urms/(ηkM) and urms/(ηk1). For the first case, kM ismeasured
as a function of time using the magnetic energy spectra. At late times, once the peak of the
magnetic energy spectrum has reached the box wavenumber, kM = k1, and the dashed and
solid curves for individual runs coincide.

The ratio of the production rate of kinetic energy over the production rate of magnetic
energy, Φ , is presented in figure 8. For runs A, B, C, it can be seen how Φ increases expo-
nentially with a rate≈ 2γμ like the velocity field. In phase 2, the growth rate decreases, and
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Figure 7. (a) The magnetic Reynolds number ReM as a function of time for runs A–C. The solid lines
indicate the result using kM as the integral scale of turbulence and dashed lines show the result using
k1. At late times kM = k1 in our DNS, which are confined within a finite box. (b) The maximummagnetic
Reynolds number found in our simulations versus μ0/k1, for both cases ReM = urms/(ηk1) (black dots)
and ReM = urms/(ηkM) (blue diamonds). The solid line indicates the scaling μ

3/2
0 which is expected for

finite box simulations with k1 > kλ (colour online).

Figure 8. Same as figure 6(a), but for the ratio of the production rate of kinetic energy over the
production rate of magnetic energy,Φ (colour online).

Φ seems to converge to a value of≈ 1 at dynamo saturation, implying that the transfer rate
from the chiral chemical potential to magnetic energy and the transfer rate frommagnetic
energy to kinetic energy become comparable. Again, run A differs from runs B and C, due
to the fact that the magnetic correlation length reaches the size of the domain at tγμ ≈ 17,
which is well before dynamo saturation. In order to perform a quantitative analysis of the
dependence of Φ on the plasma parameters, it would be necessary to run the numerical
simulations for a much longer time, i.e. until dynamo saturation, and to increase the size
of the simulation domain to ensure k1 < kM. This is, however, too expensive and beyond
the scope of this paper.
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3.3.2. Dependence on themagnetic Prandtl number
We have performed a series of runs with different magnetic Prandtl numbers by chang-
ing the value of ν, in order to explore trends in the conversion of magnetic to kinetic
energy. The time series of the most relevant quantities are discussed here exemplary for
the runs of series D, where PrM varies between 0.5 and 10 while all other run parameters
are unchanged; see table 2. It should be noted that low PrM are difficult to obtain in DNS at
fixed η, as an increase of resolution is required when decreasing ν, making a quantitative
study of the low Prandtl number regime inaccessible to our current simulations.

Figure 9. Time series of the ratio of (a) energy transfer rates Φ , (b) the energy ratio Υ , (c) 〈U · (J ×
B)〉/εM, (d) 〈U · (J × B)〉/εK, (e) εK/εM, and (f ) ReM for series D; see table 2 (colour online).
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In figure 9(a),Φ is presented as a function of time. It should be noted, that the magnetic
correlation length reaches k−1

1 at a time of tγμ ≈ 20. Later times should not be discussed
due to numerical artefacts discussed before.Up to tγμ ≈ 20, we donot observe a significant
PrM-dependence ofΦ . The ratioΥ , presented in figure 10(b), on the other hand decreases
significantly with increasing PrM.

In themiddle panels (c),(d) of figure 9, we present the time evolution of additional char-
acteristics describing the transfer from kinetic to magnetic energy. We find that both, the
work done by the Lorentz force, 〈U · (J × B)〉, and the ratio of viscous over Joule dissipa-
tion, εK/εM depend on PrM. The latter dissipation ratio is expected to increase with PrM
for large-scale and small-scale dynamos in classical MHD; see Brandenburg (2014). This
trend of εK/εM with PrM is also observed in our DNS of chiral large-scale dynamos; see
also figure 10(c). However, we do observe a power-law scaling of 〈εK/εM〉t with PrM only
below PrM ≈ 2. For larger Prandtl numbers the ratio becomes constant.

The maximummagnetic Reynolds numbers, Remax
M

, obtained in series D, are presented
figure 10(b). It can be seen that a dependence of Remax

M
on PrM is caused by the decrease

Figure 10. (a) The time averaged value of Υ for different run series. Filled symbols represent the result
from an time averaging of all data points with Υ > 0.5 max(Υ ) and open symbols averaging is per-
formed for all data with Υ > 0.9 max(Υ ). Errors are of the the order of 10% for the filled symbols and
5% for the open symbols, but not presented in the figure for better visualisation. (b) Themaximummag-
netic Reynolds number in the different DNS as a function of PrM . (c) The time averaged ratio of viscous
over Joule dissipation, 〈εK/εM〉t , as a function of PrM . Again, for filled symbols, the average of εK/εM
is calculated for all values εK/εM > 0.5 max(εK/εM) and for open symbols, averaging is performed for
εK/εM > 0.9 max(εK/εM) (colour online).
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Figure 11. The slope resulting from a fit of the function 〈Υ 〉t = c1Prc2M to the data points presented in
figure 10(a) as a function of the range of maximum magnetic Reynolds numbers found in simulations
shown in figure 10(b). The horizontal bars indicate the range of Remax

M
, which decreases from small to

large PrM . Results for the fitting to all data are shown as black symbols and results for using PrM > 1 as
blue diamonds. Horizontal lines indicate the average values of the slopes. (a) 〈Υ 〉t has been obtained
using all data with Υ > 0.5 max(Υ ). (b) 〈Υ 〉t has been obtained using all data with Υ > 0.9 max(Υ )

(colour online).

of urms with increasing PrM. As discussed in the previous section, a change of ReM in DNS
with kλ < k1 can only be achieved by changing μ0.

We now check if a power-law fit, 〈Υ 〉t = c1Prc2M , is consistent with the data of the fit
parameters c1 and c2. Both averaging conditions, using all data points for which Υ >

0.5 max(Υ ) and Υ > 0.9 max(Υ ), are considered. The results for the full range of PrM
as well as for PrM > 1 can be found in the appendix in table A1. Additionally, we present
the slopes c2 as a function of the corresponding range of ReM,max in figure 11. Fit results to
the Υ > 0.5 max(Υ ) condition are shown in figure 11(a) and the case of Υ > 0.9 max(Υ )

in figure 11(b). The obtained value of c2 is presented for fitting to all available data as black
symbols and for PrM > 1 as blue ones. We do not find a clear dependence of c2 on the
Reynolds number range. When using data for the full PrM regime explored in this paper,
we find mean slopes between c2 = −0.31 and −0.35. The slope of the function 〈Υ 〉t(PrM)

becomes steeper with values between c2 = −0.41 and c2 = −0.45, when fitting only to
data with PrM > 1. The latter should be a better description for the large Prandtl number
regime, since the scaling of 〈Υ 〉t might change in the transition from PrM < 1 to PrM > 1.

4. Chiral magnetically driven turbulence in the early Universe

The findings from DNS presented above can be leveraged to estimate the turbulent veloci-
ties and theReynolds number in the earlyUniverse. Aswehave seen in the previous section,
the ratio of kinetic to magnetic energy depends on the magnetic Prandtl number. Hence,
as a first step we estimate the value of PrM in the early Universe. Afterwards we estimate
urms and the magnetic Reynolds number for chiral magnetically driven turbulence.

4.1. Magnetic Prandtl number

The magnetic Prandtl number has been defined before as the ratio of viscosity over mag-
netic diffusivity. Hence it measures the relative strength of these two transport coefficients.
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The derivation of transport coefficients in weakly coupled high temperature gauge theories
has been presented in Arnold et al. (2000) for various matter field content.

For the electric conductivity, Arnold et al. (2000) found a leading term (converted from
natural to cgs units)

σel = κσ

4π αem log
(
(4παem)−1/2

) kBT
�

(23)

with κσ = 11.9719 for the largest number of species considered. The magnetic resistivity
in the early Universe follows as

η(T) = c2

4π σel
= αem

κσ

log
(
(4παem)−1/2) �c2

kBT

≈ 7.3 × 10−4 �c2

kBT
≈ 4.3 × 10−9 T−1

100 cm
2 s−1. (24)

Here, T100 ≡ 1.2 × 1015 K, so that kBT100 = 100GeV.
For the shear dynamic viscosity, ν̃shear, Arnold et al. (2000) report

ν̃shear = κshear

αem2 log
(
αem−1

) (kBT)3

�2c3
(25)

with κshear ≈ 147.627 for the largest number of species considered. The kinematic viscosity
is determined by ν = ν̃shear/ρ with the mean density in the early Universe being

ρ = π2

30
g∗

(kBT)4

�3c5
≈ 7.6 × 1026g100T4

100 g cm
−3, (26)

where g100 ≡ g∗/100 and g∗ = 106.75 is the effective number of degrees of freedom at T ≈
100GeV in the Standard Model. Dividing equation (25) by (26) we find the kinematic
viscosity

ν = 30κshear
π2g∗αem2 log

(
αem−1

) �c2

kBT
≈ 1.6 × 104

�c2

kBT
≈ 9.4 × 10−2 T−1

100 cm
2 s−1. (27)

The ratio of equations (27) and (24) yields the magnetic Prandtl number

PrM = ν

η
≈ 2.2 × 107. (28)

We should clarify in this context that this is the microphysical magnetic Prandtl number
and not the turbulent one, which is always of the order of unity for non-stratified tur-
bulence (Kleeorin and Rogachevskii 1994, Yousef et al. 2003, Jurčišinová et al. 2011) and
independent of the physical conditions.
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4.2. Magnetic Reynolds number

Assuming that the kinetic energy reaches a fraction Υ (PrM) of the magnetic energy at
dynamo saturation, it is customary to estimate in physical units

urms ≈
(

Υ (PrM)
Bsat
4πρ

)1/2
. (29)

The mean density in the early Universe is given in equation (26) and the value of Bsat
depends on the chiral nonlinearity parameter

λ = 3�c
(
8αem

kBT

)2
≈ 1.3 × 10−17 T−2

100 cm erg−1 (30)

and the initial chiral chemical potential μ0. Since the latter is unknown, we estimate it via
the thermal energy density:

μ0 = ϑ 4αem
kBT
�c

≈ 1.5 × 1014 ϑ T100 cm−1. (31)

Due to the uncertainties in μ0 we introduce the free parameter ϑ , allowing us to explore
different initial conditions. The magnetic field produced by chiral dynamos as discussed
in this paper reaches a maximum value of

Bsat =
(
4π

μ0kλ

λ

)1/2
≈ 6.2 × 1021 ϑ T2

100 G, (32)

where we use equation (17) for the inverse magnetic correlation length, that results in

kλ ≈ 2.6 × 1011 ϑ T100 cm−1. (33)

Following equation (29), the magnetic field drives turbulence with an rms velocity of

urms = 6.1 × 107Υ (PrM)1/2ϑ cm s−1. (34)

Finally, using equations (34), (33), and (24), we find the following value for the magnetic
Reynolds number in the early Universe:

ReM ≈ urms

kλη
≈ 5.5 × 104 Υ (PrM)1/2. (35)

Note, that the magnetic Reynolds number is based on the wavenumber kλ which deter-
mines the maximum scale of turbulent motions. We also stress that the size of the inertial
range is independent of ϑ , and hence of μ0. This is because both, the forcing scale kλ and
the initial energy input scale kμ, scale linear with μ0. Combining the estimate given by
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equation (35) together with the the extrapolation of Υ (PrM) ≈ 0.08 Pr−0.4
M found in DNS,

see section 3.3.2, we find ReM = O(103) when using PrM = O(107).

5. Conclusions

In this paper, we analyse the energetics of the chiral magnetically driven turbulence. This
type of turbulence is produced by the chiral dynamo instability that originates from an
asymmetry between left- and right-handed fermions. This magnetic field instability is for-
mally similar to the classical α2 dynamo. However, while the classical α2 dynamo requires
an energy input by turbulence, the chiral dynamo creates turbulence via the Lorentz force.
By solving the set of chiral MHD equations in numerical simulations, we explore the
dependence of chiral magnetically driven turbulence on initial chiral asymmetries and the
magnetic Prandtl number.

Our main findings from DNS may be summarised as follows:

• For a large range of parameters, it has been shown that the chiral magnetic instability
generates turbulence. In this paper, we have focused on the case of small chiral nonlin-
earity parameters λμ, defined in equation (9), where turbulence becomes strong enough
to affect the evolution of the magnetic field.

• The transfer of energy from the chiral chemical potential via magnetic energy to kinetic
energy has been analysed in DNS. In particular, we found that the ratio of the pro-
duction rate of kinetic energy over the production rate of magnetic energy,Φ , increases
exponentially in time during the chiral dynamophase. At dynamo saturation,Φ appears
to approach unity, when the magnetic correlation length remains inside the numerical
domain.

• A central parameter explored in our simulations is Υ , the ratio of kinetic over magnetic
energy; see definition in equation (21). Due to the Lorentz force, the velocity field grows
at a rate that is twice the one of the magnetic field strength. As a result, Υ increases
initially exponentially. Once there is a back-reaction of the velocity field on themagnetic
field, Υ stays approximately constant, see, e.g. figure 6(a).

• For magnetic Prandtl numbers PrM = 1, the time average ofΥ , taken after its exponen-
tial growth phase and referred to here as 〈Υ 〉t , has been determined to be between 0.06
and 0.07. This value seems to be independent of the initial chiral asymmetry.

• For PrM > 1, the parameter Υ decreases. With our DNS we find a scaling of approxi-
mately Υ (PrM) = 0.1 Pr−0.4

M .
• We do not find a change of the function Υ (PrM) for different regimes of ReM, how-

ever, only a small variation of ReM has been considered and this might change when
increasing the statistics and the extending the range of ReM.

A chiral dynamo instability and hence chiral magnetically driven turbulence can only
occur in extreme astrophysical environments, because a high temperature is required
for the existence of a chiral asymmetry. At low energies chiral flipping reactions destroy
any difference in number density between left- and right-handed fermions. As an astro-
physically relevant regime, we have discussed the plasma of the early Universe. Our
findings fromDNS allow to estimate the magnetic Reynolds number in the early Universe.
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In particular, a value of ReM = O(103) can be expected for chiral magnetically driven
turbulence, if the chiral asymmetry is generated by thermal processes.

Note

1. http://pencil-code.nordita.org/.
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Appendix. Table of fit results

Table A1. Fit results for 〈Υ 〉t = c1Prc2M .

Series c1 (all PrM ) c2 (all PrM ) c1 (PrM > 1) c2 (PrM > 1)

D (using Υ > 0.5 max(Υ )) 0.06 −0.33 0.07 −0.40
D (using Υ > 0.9 max(Υ )) 0.07 −0.31 0.09 −0.44
F (using Υ > 0.5 max(Υ )) 0.07 −0.37 0.07 −0.45
F (using Υ > 0.9 max(Υ )) 0.08 −0.33 0.09 −0.42
G (usingΥ > 0.5 max(Υ )) 0.06 −0.36 0.08 −0.49
G (usingΥ > 0.9 max(Υ )) 0.07 −0.29 0.08 −0.38
H (using Υ > 0.5 max(Υ )) 0.07 −0.32 0.08 −0.45
H (using Υ > 0.9 max(Υ )) 0.07 −0.30 0.08 −0.39
Mean (using Υ > 0.5 max(Υ )) 0.07 −0.35 0.08 −0.45
Mean (using Υ > 0.9 max(Υ )) 0.07 −0.31 0.09 −0.41
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