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Abstract
The relaxation to the dissociation equilibrium of a weak acid undergoing a
transient pKa change in the presence of a strong mineral acid has been the
subject of considerable interest both experimentally and theoretically. Here we
compare this process with the analogue event taking place in a buffer solution of
a weak carboxylic acid. The comparison has been performed in identical pH and
ionic strength conditions and at a sufficiently short timescale where the buffer
can only affect the weak acid relaxation by proton scavenging. Although the
two relaxation processes have been found to differ in their temporal behaviour,
they have both resulted in identical equilibrium amplitudes of the photoacid.
This observation reassures the well-known chemical wisdom that pKa values
measured in buffer solutions do not depend on the specific chemical reactivity
of the buffer. We analyse the essentially many-body relaxation problem in
terms of a re-normalized geminate recombination reaction which persists over
longer times than the exponential relaxation to equilibrium of homogenously
distributed populations of the reactants.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Chemical kinetics in solution is governed by both chemical reactivity and diffusion (Eigen
1967). This makes chemical kinetics in solution much more complex than what the
conventional rate approach to chemical kinetics implies (Weller 1961, Förster and Völker 1975,
Eigen 1967).
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In the past 15 years experiments and theory have vastly expanded on the realization that
the overall progress of reactions in solutions is fundamentally non-exponential. This non-
exponential temporal behaviour is the result of the non-stationary concentration gradients of
the reactants when the reaction proceeds (Zeldovich and Ovchinikov 1977, Kang and Redner
1984a, 1984b, 1985, Redner and Kang 1984, Voituriez et al 2005, Burlatsky and Oshanin
1991, Burlatskii et al 1989, Oshanin 1990, Burlatsky et al 1991, Oshanin and Burlatsky 1989,
Naumann et al 1997, Naumann 1994, 1993, 1991, Pines and Fleming 1994, Agmon et al 1988,
Pines and Huppert 1986a, 1986b, Huppert et al 1990, Pines et al 1998a, 2001, Pines and Pines
2001, Huppert et al 1992, Solntsev et al 2001b, 2001a, Szabo 1991, Agmon and Szabo 1990,
Sung et al 1997, Yang et al 1997, Sung et al 1998, Sung and Lee 2000, 1999, Pines and
Huppert 1989, Gopich and Szabo 2002, Gopich et al 2001, Edelshtein and Agmon 1995, Kim
et al 1999, Popov and Agmon 2002, 2001a, 2001b, Pines et al 1988, 1991, Gopich and Agmon
2000, Agmon and Gopich 2000). A pure exponential decay of the concentration profiles is
expected when the chemical reaction occurs without diffusion, in the so-called static limit, and
in cases when stationary concentration gradients have been established after the initiation of
the reaction. Recently, we have observed the static limit in the bimolecular proton-transfer
reaction in hydrogen-bonding complexes of photoacids and carboxylic bases. In this case, the
inner sphere of the reaction was partially made of tightly or loosely bound hydrogen-bonded
complexes, where the photoacid and carboxylic bases are connected with few or even no water
molecules in between, which react first upon photoexcitation (Mohammed et al 2005, Rini
et al 2003). This method of preparing tightly or loosely bound hydrogen-bonded complexes as
precursors for proton-transfer has the advantage of directly monitoring the on-contact reaction
rates between acid and bases, reactions which proceed along hydrogen-bond links. Modern-day
interest in non-stationary kinetics also stems from the realization that the dissociation reaction
of any bound state, which dissociates reversibly, making it part of an equilibrating system, is
inherently non-exponential (Pines and Huppert 1986a, 1986b, 1989, Pines et al 1988, 1991)
(see equation (1)):

AB
kf↔
kr

A + B. (1)

In a reversible dissociation reaction, one is usually interested in calculating the overall
dissociation rate of AB to infinite separation of the products, A and B. This is because the
standard thermodynamic state of A and B is infinite dilution, which means mutual separation
of the reactants approaching infinite distance. When keeping the same standard state for both
the kinetics and the thermodynamics of a reaction, one may use the general relation between
the overall kf and kr reaction rate constants and the equilibrium constant of the reaction:

Keq = kf

kr
. (2)

In general, the conventional rate approach to chemical kinetics deals with averaged
reaction probabilities between two or more chemical states and not with the actual dynamics of
the reactions, which are generally time-dependent if the reactions are diffusion assisted.

Another way to approach this problem is by realizing that the dissociation reaction of
a reactive pair to infinite separation is inherently a multi-stage process (Pines and Huppert
1986a, 1986b, 1989, Pines et al 1988, 1991). Upon dissociation, a reactive pair will have,
by definition, a non-vanishing probability of recombining upon a diffusional encounter. The
fraction of the bound state which thus reforms will re-dissociate and the cycle of dissociation–
recombination will continue until the pair ultimately escapes from each other. The standard
reactant state following a dissociation reaction is usually defined as the state of the reactants
having a vanishing back-recombination probability, and the probability of the reactants to

2



J. Phys.: Condens. Matter 19 (2007) 065134 D Pines et al

actually reach this state is defined as ‘the ultimate escape probability’ of the reactants. For an
infinite open space without additional traps, this is the state where the reactants have reached
infinite separation. It follows that, during a dissociation reaction, the relative probabilities of a
reactive system of being either in the bound (product) state or in the separated (reactant) state
should, among other factors, depend on the properties of the diffusive space. The asymptotic
solution for the time behaviour of the geminate case when the reactive system initially consists
of isolated bound pairs was found by several theoretical methods (Tachiya 1980, Pines and
Huppert 1986a, 1986b, Agmon et al 1988, Pines et al 1988, Huppert et al 1990) and is given
by equation (3) for the spherical symmetric 3d case:

Pgem
t = Keq/(4π Dt)3/2 (3)

where D is the effective diffusion coefficient separating the reactants away from the bound
origin of AB.

A generalization of the geminate dissociation/recombination case is the so-called ‘target
problem’, which involves relaxation to chemical equilibrium when one of the products is static
and the other is diffusive and in large excess over the static one, as shown in equation (3):

AB
kf↔
kr

A + B

[AB]0 = 1, [A]0 = 0, [B]t = [B]0 ≡ c � [AB]t , [A]t .
(4)

The asymptotic (long-time) relaxation to equilibrium of the bound AB state has been derived
analytically in 3d by several theories of various approximate nature and sophistication (Sung
and Lee 2000, 1999, Agmon and Szabo 1990, Szabo 1991, Naumann et al 1997, Naumann
1994, 1993, 1991, Sung et al 1997, Yang et al 1997, Sung et al 1998, Gopich and Szabo 2002,
Gopich et al 2001, Gopich and Doktorov 1995, Gopich and Agmon 2000, Agmon and Gopich
2000, Edelshtein and Agmon 1995, Kim et al 1999, Popov and Agmon 2002, 2001a, 2001b):

P target
t = Keq(4π Dt)−3/2/(1 + cKeq)

3. (5)

The similarity between the geminate case, equation (3), and the target case, equation (5),
is apparent, the two equations only differing by their pre-factor. The general adequacy
of equation (5) was verified experimentally using high-sensitivity single-photon counting
measurements of photoacid dissociation in strong acid solutions of various concentrations
(Pines and Pines 2001, Solntsev et al 2001a, 2001b).

There is very little reason to doubt that the equations (2) and (5) can be applied as long as
one accepts the general validity of the diffusion equation and realizes the various underlying
assumptions leading to equations (2)–(5). These assumptions are: an infinitely open diffusive
space which is assumed to have spherical symmetry; time-independent diffusion coefficients;
total lack of competing reactions; time-and space-independent chemical reactivity; and time-
independent interaction potentials which are usually assumed to be Columbic with Debye–
Hückel screening.

In this study we consider the target problem as a renormalized geminate-pair problem.
In this approach the long-time relaxation to equilibrium in the target problem stems from
the power-law decay of the geminate-pair distribution, which persists over longer times than
the homogeneous recombination reaction of the reactants until they ultimately reach their
equilibrium concentrations. In other words, due to the slow (power-law) decay of the initial
geminate-pair distribution, it takes longer for the concentration gradient of A around B to
equilibrate than the time it takes for the concentrations of A and B to equilibrate. We will
not attempt to prove this suggestion analytically. Instead, we argue that this idea is very
useful in predicting the behaviour of complex reactive systems which are easily accessed
experimentally but may prove to be exceedingly difficult to analyse analytically using exact
many-body approaches.
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1.1. Theoretical justification for treating the target problem as a relaxation kinetics problem

Below we closely follow the paper of Gopich and Szabo (2002), which contains a general
derivation of equation (5) using a relaxation kinetics approach.

The formalism is based on an approximate set of reaction–diffusion equations for the
pair distribution functions which incorporate the influence of the chemical reaction by using
effective rate constants that are determined self-consistently. The derivation is exact both at
short and long times.

Considering reaction equation (4), AB molecules can dissociate with an effective rate
constant kr to form an unbound A–B contact pair. The particles diffuse with diffusion constants
DA, DB and DAB. The equilibrium constant for the reaction is Keq = kf

kr
= [AB]eq

[A]eq[B]eq
, where

[A]eq, [B]eq, and [AB]eq are equilibrium concentrations. For the pseudo-first order limit ([A]t ,
[AB]t � [B]t , so that [B]t = [B]0 = c). Following the rate equation description of ordinary
chemical kinetics, one has:

d[A]t

dt
= −d[AB]t

dt
= −kf[A]t [B]0 + kr[AB]t . (6)

Let Rt be the relaxation function defined as the normalized deviation from equilibrium:

Rt ≡ [A]t − Aeq

[A]0 − Aeq
= [AB]t − [AB]eq

[AB]0 − [AB]eq
. (7)

To incorporate the influence of the diffusion on the kinetics, the rate equations should be
modified by:

d[A]t

dt
= −d[AB]t

dt
= −kfρAB(r, t) + kr[AB]t (8)

where ρAB(r, t) is the distribution function of A–B pairs separated by distance r . Introducing
the deviation of the pair distribution function from its chemical kinetics value, pAB(r, t) =
ρAB(r, t) − [A(t)][B], the above equation becomes:

d[A]t

dt
= −d[AB]t

dt
= −kf[A]t [B] + kr[AB]t − kf pAB(r, t). (9)

An A particle from an A–B pair can react with some other B particle to generate an AB–B pair.
The latter may dissappear due to dissociation of AB, producing an A–B pair. Thus pAB(r, t)
and pABB(r, t) satisfy the coupled reaction–diffusion equations:

∂

dt
pAB(r, t) = DAB∇2 pAB − kf[B]pAB + kr pABB,

∂

dt
pABB(r, t) = DCB∇2 pABB + kf[B]pAB − kr pABABB. (10)

The solution of the coupled reaction–diffusion equations at long time was given by Gopich and
Szabo as:

Rtarget
t = Keq(4π Dt)−3/2/(1 + cKeq)

2 (11)

which, using the definition of Rt given in equation (7), results when solving for P target with
equation (5).

The analysis of Gopich and Szabo has compared very favourly with the simulations in 3d
of Popov and Agmon (2001a, 2001b).
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Figure 1. Comparison between the rise of the HPTS photobase measured by following the
absorption change in the 1503 cm−1 band of the HPTS photobase (upper curves) and the rise of
acetic acid population as evidenced by the absorption change in the carbonyl stretching band of
acetic acid at 1740 cm−1 (lower curves). Data shown for 0.5 M (a) and 0.25 M (b) solutions of
acetate base in D2O after femtosecond laser excitation of the photoacid at 395 nm. Notice the
increased time delay between the dissociation and scavenging reactions with the decrease in the
acetate base concentration.

1.2. Photoacid dissociation in presence of proton bases

Direct proton transfer between a photoacid and a suitable base may be either unidirectional
or reversible, depending on the relative pKa-values of the acid–base pair. This reaction
is only important at relatively high base concentrations. Recently, the acid–base reaction
(equation (12)):

ROH + B− → RO− + HB, [B−] � [ROH] (12)

has been studied extensively (Pines et al 1997, Genosar et al 2000, Cohen et al 2001).
Pines and Nibbering used time-resolved mid-IR spectroscopy to study this reaction between
8-hydroxy-1,3,6-trisulfonate-pyrene (HPTS) (a photoacid similar in reactivity and structure to
2-naphthol,6,8 disulphonate (2N68S)) and carboxylic bases (Rini et al 2003, 2004, Mohammed
et al 2005). At above 1 M base concentrations, the static part of the reaction consists
mainly of proton transfer within hydrogen-bonding complexes of the type ROH · · · B or
ROH · · · H2O · · · B. The non-static part of the reaction followed the time dependence predicted
by the Collins–Kimball–Szabo (CKS) model (Collins and Kimball 1949, Szabo 1989, Eads
et al 1990, Shannon and Eads 1995) for irreversible (diffusion assisted) recombination kinetics.
The non-static part of the reaction was the dominant part of the reaction below 1 M of base.
At lower than 0.5 M base concentrations, direct proton transfer between the acid and base has
diminished and the proton transfer reaction mainly consists of the photoacid dissociating to
the solvent followed by the proton diffusing until being picked up (scavenged) by the base.
Figure 1 shows the dissociation of the photoacid and the ensuing proton scavenging reaction in
the presence of 0.5 and 0.25 M of acetate base in D2O.

Figure 1 shows that, even with moderately high base concentrations, the dissociation of
the photoacid is overwhelmingly to the solvent (D2O) so there is a considerable time delay
between proton dissociation to the solvent and the protonation of the acetate base by picking-
up the proton from the solvent (proton scavenging).

We have found the proton pick-up by the base to be well approximated by the time-
independent diffusion-limited rate constant of the reaction, kD′ :

kD′ = 4π D′aeff N, (13)
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where D′ is the relative diffusion coefficient between the base and the solvated proton, N is
Avogadro’s number, and the effective reaction radius aeff is defined as:

a−1
eff =

∫ ∞

0
eU/(a)/kB T r−2 dr (14)

with a being the contact separation length between the reactants at their ‘closest’ approach.
We approximate the electrostatic potential U(r) by the Debye–Hückel (DH) ionic

screening law:

U(r)/kBT = RD

r

e−κDH(r−a)

1 + aκDH
(15)

with,

RD = |z1z2|e2/εkBT, (16)

and,

κ2
DH = 8πe2 I/εkBT (17)

where kB is Boltzmann’s constant, a is the contact radius, ε is the dielectric permittivity of the
solution, e is the elementary charge, κ−1

DH is the screening length, I is the ionic strength, which
in our case is practically equal to the acetate concentration, and z1 = +1, z2 = −1 are the
charge numbers of the proton and the acetate, respectively.

The following reaction parameters have been used for HPTS in D2O: D′ = (5.8 and 6.4)×
10−9 m2 s−1, a = 5.5 Å, RD = −7.1 Å, and aeff = (6.5 and 6.8) Å for acetate concentrations
of 0.5 and 0.25 M, respectively. From equation (13), kD′ is (2.9 and 3.3) × 1010 s−1 for 0.5 and
0.25 M of acetate, respectively.

2. Experimental details

2.1. Solution preparation

Aqueous solutions of 2-naphthol 6,8 sulfonate (2N68S) acidified by HClO4 have been prepared,
as has been described before for solutions of HPTS (Pines and Pines 2001). We used 2N68S
because of its longer lifetime of the excited state compared to HPTS. Buffer solutions of
chloroacetic acid were prepared by adding the pure acid to the aqueous solutions of 2N68S
at a neutral pH (6.5–7.5) until the desired pH was reached. Since at low pH practically all the
protons have been introduced to the solution by the auto-ionization of the chloroacetic acid,
we have assumed the concentration of the chloroacetate base to be equal to that of the proton.
Both HClO4 and chloroacetic acid solutions were measured at pH = 2.000 ± 0.003. We
assume equal activities of the proton in the HClO4 and chloroacetic acid solutions at this pH
and acid concentrations. The concentrations of the protons have thus been practically identical
(10.0 mM) in both the chloroacetic acid buffer and the strong mineral acid solutions, enabling
direct comparison between the two solutions.

2.2. Experimental setups

Time-resolved IR measurements with 150 fs time resolution were carried out at the Max Born
Institute in Berlin, as described previously (Rini et al 2003). The single-photon counting
measurements were carried out at the Ben-Gurion University of the Negev, Israel, with a set-up
similar to that described elsewhere (Pines et al 1998a). The time resolution was about 30 ps per
channel at the 50 ns scale of the apparatus. Readings at the peak chanel were about 300 000,
taken at a recording rate of 5 kHz and a laser excitation rate of 0.5 MHz.
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Figure 2. Semi-logarithmic plot of normalized fluorescence decay curves of 2N68S in water
acidified by HClO4. Data are shown after correcting for the finite fluorescence lifetime of the
RO− state by multiplying it by the factor exp(t/τ ), τ = 12.5 ns.
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Figure 3. Semi-logarithmic plot of normalized fluorescence decays of 2N68S in water acidified by
HClO4 at pH 3.72 (a) and 2.52 (b). Data are shown after lifetime correction (full (black) dots). The
solid (red) line is the simulated decay curve of the photoacid with pure geminate back-recombination
reaction between the anion of the photoacid and H+ using the SSDP software package (Krissinel
and Agmon 1996) after the addition of the normalized equilibrium population of the photoacid
(ROH)eq as measured at very long times (t > 40 ns).

3. Results

Figures 2 and 3 show the time evolution of the photoacid population following laser excitation
at 353 nm and in the presence of increasing concentrations of HClO4. The measured data was
corrected for the excited-state lifetime (decay) of the conjugated photoacid (12.45 ns). At 5 ns
full scale, the photoacid dissociation is clearly trimodal. An initial rapid photoacid dissociation
independent of pH is followed by a gradual slowing down in the decay of the photoacid
population as it approaches the equilibrium population. This phase of the photoacid decay
appears to be pH dependent. For higher pH, the onset of the slower dissociation mode appears
earlier, ultimately leading to the final stage of the reaction. This stage is a very slow approach
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Figure 4. Decay and long-time plateau observed in dissociation of 2N68S after lifetime correction.
Upper curve (dots): dissociation profile in the presence of 10−2 M HClO4. Lower curve (squares):
same conditions as in the upper case, however now in the presence of chloroacetic acid buffer
created by the self-dissociation of the carboxylic acid, pH = 2.00, having 10−2 M of chloroacetate
anion in addition to 10−2 M of protons. Inset: the difference between the two decay curves is shown
on expanded scales ((olive) squares). The solid (red) line is the calculated difference curve; see text
for details.

(long-time approach) to the equilibrium concentrations of the photoacid, as determined by its
pK ∗

a and the pH of the solution.
The final approach to equilibrium is clearly demonstrated in figure 3. Figure 3 shows

the measured dissociation curves of 2N68S on a longer timescale for two typical pH values:
pH = 3.7 and 2.5. For both cases, the system approaches the equilbrium concentration only
after 10 ns, even though the amplitude of the equilibrium concentration is about 15 times
larger for the higher pH-value. This suggests that the long-time relaxation to equilibrium of
the photoacid population in this pH range is largely pH-independent. Our data thus show both
the short-and long-time kinetics of the proton dissociation to be insensitive to pH, while for
intermediate times the observed kinetics are clearly observed to be pH-dependent.

Figure 4 compares between the photoacid dissociation profile in two solutions having
practically identical pH (pH = 2.00) but having different solution compositions. At
intermediate reaction times the apparent proton release from the photoacid in the presence
of HClO4 is clearly slower than in the presence of chloroacetic acid buffer, although the two
decay curves ultimately approach practically identical equilibrium concentrations. The two
decay curves become practically indistinguishable after about 10 ns.

The inset in figure 4 shows the difference between the two decay curves of figure 4 on
expanded time and intensity scales. The difference in intensity between the two decay curves
has a maximum and exhibits the following behaviour as a function of time: zero at time zero
(the onset of the dissociation reaction), growing rapidly to a maximum value at about 0.5 ns, and
then slowly decaying to zero at very long times when the two reactions relax to apparently an
identical equilibrium amplitude. The decay curve of the bound photoacid state in the presence
of the chloroacetate buffer lies below the decay curve of the photoacid in the HClO4 solution.
This apparent faster decay rate of the photoacid in the buffer solution results from the additional
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bimolecular scavenging reaction between the chloroacetate anion and the dissociated proton,
as discussed below.

4. Discussion

When a geminate pair of reactants is reversibly created in a solution that already
contains an excess of one of the reactant members, the ultimate outcome of the
reversible dissociation/recombination reaction is the establishment of a chemical equilibrium
characterized by the finite equilibrium concentrations of the reactants. This is unlike the
situation with isolated reactive pairs interacting reversibly in infinite open space. There,
the ultimate fate of the reaction is the complete disappearance of the bound state. Here
we argue that the first case, where the dissociation reaction ultimately results in the bound
state equilibrating with the reactant state, may be approximated as a geminate-pair problem
renormalized to account for the reactive pairs also taking part in the competing homogenous
reaction, ultimately leading to the establishment of equilibrium populations. We do not try
to generally prove this model, but rather argue that this is a reasonable qualitative as well as
quantitative description of our experimental findings.

As was shown by Gopich and Szabo (2002), the decay of the reactive populations to their
equilibrium values may be derived in this case using relaxation kinetics. Conventional (rate
approach) descriptions of relaxation kinetics obviously fail to describe the real nature of the
relaxation kinetics in question, which is not exponential but a power-law over time. Keeping
this in mind, we start by writing the process in conventional relaxation-kinetic terms but do
not attempt to solve the rate equations, as they obviously lead to unphysical behaviour. We
rather use the kinetic model to develop a framework for elucidating the physical origins for the
observed power-law relaxation to equilibrium.

For the reaction AB
kf↔
kr

A + B relaxing to equilibrium, one usually writes the conventional

relaxation equation:

[AB]eq + xAB
kf↔
kr

([A]eq + xA) + ([B]eq + xB). (18)

In our case, xAB = −xA = −xB = xt and [B]eq = c � [A]eq, [AB]eq. After cancelling the two
opposing equilibrium reactions, one is left with the rate equation for the relaxation kinetics,
leading to the equilibrium concentrations:

−dxt

dt
= (kr + kfc)xt − kfx

2
t . (19)

The final stage in the development is the linearization of the differential equation (assuming a
small x) which results in the exponential decay of x over time:

xt/x0 = Rtarget
t = exp((−kr + kfc)t) = exp((−khom)t). (20)

The procedure assumes time-independent rate constants and homogeneous deviation from
equilibrium concentrations. In reality, relaxations that are governed by diffusion are usually
time dependent. One can rewrite equation (19) as:

−dxt

dt
= khomxt − kgem

t (21)

where both the forward and backward processes are time dependent, so there is no simple
analytic solution for the rate equation. In particular, kgem

t contains the probability of the
recombination of essentially geminate pairs in the presence of a competing homogeneous
reaction. It has already been shown for the purely geminate recombination case that, at
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relatively long times, the concentration of the bound state is proportional to the probability
of the geminate-pair back-recombination reaction and that the time evolution of the bound AB
state population follows that of the geminate recombination reaction. We assume a similar
situation for the target problem, i.e. a relaxation function at long times which depends on the
survival probability of the geminate recombination reaction. In this case, the probability of
the geminate recombination reaction depends on the square of the survival probability of the
geminate pair (reaction order of 2), as demonstrated by Pines et al in the case of the geminate
quenching reaction of 1-naphtholate anin by the proton (Pines et al 2001). The fraction of the
surviving geminate pairs at long times (we defined it as �, which in this case may be identified
with the ultimate survival probability of the geminate pair) when equilibrium concentrations
are almost fully established is just equal to 1 −[AB]eq = [A]eq. Realizing that [A]eq is equal to
1/(1 + Keqc), one arrives at equation (22):

Rtarget
t ≈ Pgem�2 = Pgem

t (1 − [AB]eq)
2 = Pgem

t /(1 + Keqc)2. (22)

The final form of P target
t = Rtarget

t x0 is given by substituting x0 for its actual value,

x0 = [AB]0 − [AB]t = [A]eq = 1/(1 + Keqc) (23)

thus arriving at a pre-factor which depends on the third power of [A]eq and, by doing so,
recovering the analytic result, equation (5):

P target
t = Rtarget

t x0 ≈ Pgem
t (1 − [AB]eq)

3 ≈ Pgem
t /(1 + Keqc)3. (24)

Based on the above reasoning, we have concluded that the long-time relaxation to
equilibrium of the target problem is just a renormalized geminate recombination problem.
Furthermore, the initial time progress of the dissociation reaction should also closely follow
that of the geminate pair. We argue that both the early-time and the long-time behaviour of the
target problem are largely determined by dynamics resembling that of a geminate pair, while the
additional homogeneous reaction with the bulk protons (and the back-dissociation of the thus-
formed photoacid) is mainly affecting the intermediate-time decay of the photoacid dissociation
reaction. We have thus arrived at the main conclusion of this paper, namely that pair dynamics
may reasonably describe the full time evolution of the photoacid dissociation reaction when it
is re-normalized for the presence of the equilibrium concentrations of the photoacid/photobase
system. To test this hypothesis, we have analysed our experimental data of the dissociation of
the photoacid in the presence of an excess of a strong mineral acid by assuming that the full
dissociation curve is represented reasonably by the function:

[AB]t ≈ f (t) = Pgem
t (1 − [AB]eq)

3 + [AB]eq = Pgem
t /(1 + Keqc)3 + [AB]eq (25)

where [AB]t is the decay over time of the photoacid population, [AB]eq was taken as the
observed equilibrium concentration of the photoacid measured between 40 and 50 ns following
the initial dissociation, and Pgem

t is the numerically calculated dissociation curve of the
photoacid in the pure geminate-recombination case using the SSDP software package (Krissinel
and Agmon 1996). Clearly, f (t) represents a trade-off between the exact forms of the reaction
at short and long times and will increasingly deviate from the actual decay at intermediate times
as c increases. f (t) becomes exact when c and [AB]eq → 0.

To test f (t) against experimentally measured data, we have carried out the experiment
at a low HClO4 concentration of pH = 3.72; figure 3(a). At such a small homogeneous
concentration c, f (t) fits the full decay curve of HPTS extremely well. This implies only a
minute change at this pH from a pure geminate-pair dynamics. The accuracy of the fit remains
almost as good at pH = 2.5; figure 3(b). Below this pH, the fit of our experimental data using
f (t) starts to deviate noticeably at intermediate times, but remains excellent at long times (not
shown).

10
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We have also carried out the experiment with chloroacetic acid instead of perchloric
acid. The weak chloroacetic acid (pKa = 2.9) self-dissociates and creates a buffer solution
with a pH determined by the concentration of the acid and its dissociation constant. At pH
2.00 the concentrations of both the proton and the chloroacetate base (cscav) are 10−2 M
and that of the chloroacetic acid is about 70 mM. In these conditions, only the reaction of
the chloroacetate base with the proton is important, because all other possible reactions of
the photoacid/photobase system with the buffer are at least two orders of magnitude slower:
the direct proton transfer between the photoacid and the base is not favoured because of
the Coulomb repulsion between the doubly negatively charged photoacid and the negatively
charged chloroacetate base (such a reaction would have resulted with a faster initial dissociating
rate of the photoacid in buffer solutions than the observed dissociation rate in bulk water, an
effect we have not observed even in the presence of 0.25 M of the base; see figure 1 for the
analogous reaction of HPTS with acetate base). The reaction between the chloroacetic acid and
the photobase is also not favoured, because the chloroacetic acid is a much weaker acid than
the photoacid (pKa = 2.9 compared to pKa 0.8 of 2N68S).

The scavenging reaction of the proton by the chloroacetate base is diffusion assisted.
The scavenging reaction effectively diminishes the concentration of the geminate protons and
hence diminishes the probability of the geminate recombination reaction. Similar effects of
proton scavenging on the geminate recombination reaction were observed for HPTS (Pines and
Huppert 1989, Goldberg et al 1992) and 1-naphthol in the presence of acetate base. Pines
and Fleming (1994) and Pines et al (2001, 1998b) have shown that homogeneous scavenging
reactions act to reduce the effective lifetime of the geminate pair in an analogous way to the
effect of the photoacid having a shorter lifetime in the excited state. Thus, the pure geminate
recombination problem in the presence of homogeneously distributed proton scavengers may
be treated as a pair problem, with the geminate pair having a finite lifetime that is dependent
on the concentration of the scavenger and the homogeneous reaction rate of the scavenging
reaction; see also Redner and Kang (1984).

The situation is more complex when the geminate recombination reaction is carried out
in the presence of a low-pH buffer when both the bulk H+ and the scavenger concentrations
are in excess over the initial (bound) H+B state. In this case, we are not aware of any analytic
solution or a computational simulation of the problem. As seen in figure 4, the photoacid
relaxation to equilibrium is faster in the presence of the chloroacetate buffer than in the presence
of HClO4, both solutions having an identical H+ concentration. This behaviour is the expected
behaviour, because the additional proton scavenging reaction with the buffer offers the relaxing
chemical system an additional route for relaxation while ultimately relaxing to an identical
equilibrium concentration determined by the solution pH. In the inset of figure 4 we have
plotted the difference in the fluorescence intensity between the two dissociation reactions
shown in figure 4. To fit the time evolution in the fluorescence intensity difference, each
of the reactions were numerically fitted by the SSDP software (Krissinel and Agmon 1996),
simulating for two ‘pure’ geminate recombination reactions, the only difference between the
two geminate reactions being the reaction in chloroacetic buffer solution having a shorter
(effective) lifetime:

Pgem
buffer(t) = Pgem

t exp(−t/τscav). (26)

So the difference in the dissociation kinetics of the photoacid, H+B, in the presence of
HClO4 Pgem

HClO4
(t) and in the presence of the chloroacetic (buffer) Pgem

buffer(t) when both solutions
are at identical pH may be approximated by:

Pgem
HClO4

(t) − Pgem
buffer(t) = Pgem

t (1 − exp(−t/τscav)). (27)

11
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The difference function (equation (27)) vanishes at t = 0 and at t = ∞, where Pgem

is zero and has finite positive values everywhere in between the two time limits exhibiting
only one maximum point. We have calculated the difference between the two simulated
dissociation curves, and convoluted the result with the instrument function. We have plotted the
outcome and compared it with the difference in the dissociation curves found experimentally
(inset of figure 4). We have found, within our signal-to-noise limitation, a good fit between
the measured and simulated difference curves from about 0.3 ns onward after searching for
an optimal τscav. The additional decay route for the geminate-pair τscav which best fits the
experimental data was found to be 1.5 ns, which matches very well with the calculated lifetime
of the scavenging reaction of the proton by the chloroacetate base, assuming diffusion limited
kinetics; equation (13). Solving equation (13) for the reaction parameters between the proton
and chloroacetate, we have:

kscav = kD′cscav = 6.3 × 1010 M−1 s−1 × 10−2 M = 6.3 × 10−8 s−1

with D′ = 10 × 10−9 m2 s−1, RD = −7.1 Å and an effective reaction radius aeff = 8.4 Å for
reaction between chloroacetate and the proton both present at a concentration of 10−2 M.

5. Summary

We have argued that the long-time behaviour of the so-called target problem in chemical
kinetics may be viewed as a renormalized geminate recombination problem. Based on
this view, we have analysed the proton dissociation reaction of an excited-state acid in the
presence of an excess of a strong mineral acid as essentially undergoing a geminate back-
recombination reaction, the amplitude of which is reduced by the competing homogenous
reaction. The analysis of the experimental data have resulted in good fits up to a solution
pH of about 2.00. Below this pH at higher homogeneous H+ concentrations we expect our
fitting procedure to deteriorate. We have further explored the idea of the target problem being
adequately approximated by a renormalized geminate recombination problem by carrying out
the reaction in a buffer solution of a moderately weak acid, chloroacetic acid. We have shown
experimentally that identical equilibrium concentrations are reached following the dissociation
of the photoacid in solutions already containing either strong or weak acids. We have thus
reconfirmed the well-known chemical principle that the equilibrium constant of an acid or a
base is independent (apart from ionic strength effects) of the buffer solution used to measure
it. We have proceeded to analyse the dissociation reaction of the photoacid in the buffer
solution by assuming that it may be treated approximately as a scavenging problem of the
isolated geminate pairs formed by the optically induced photoacid dissociation. We have used
a numerical solution of the scavenging problem of the isolated geminate pair and, using these
procedures, achieved a satisfying fit between calculated and measured reaction curves. This
result points to the possibility of reducing an essentially complex many-body problem to a pair
problem subject to additional constraints.

Clearly, this approach awaits further confirmation, as well as validation by analytic
procedures and exact (many-body) numerical calculations.
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