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Bifurcation of Orthotropic Solids

We consider a large deformation plane-strain problem involving a compressible
orthotropic solid subjected to uniaxial compressive loading along one of the principle
directions which is aligned with the boundary of a half-space. An exact solution for
the displacement field is obtained and a condition for the smallest compressive load
corresponding to the onset of a surface instability is determined. It is shown that
when the compression occurs along the stiffest direction this condition is expressible
in terms of a cubic polynomial, and that the corresponding critical load is lower
than the well-known estimate which determines the critical load to be equal to the

inplane shear modulus.

Introduction .

Solids of orthotropic symmetry have become common in
various engineering applications, and accordingly, the problem
of predicting their stability limited compressive strength is of
practical importance. Among the first works dealing with this
subject we may cite the work of Biot (1965) and earlier refer-
ences to his work therein; he developed a theory for dealing
with prestressed solids and applied his approach to the study
of the behavior of nonlinear rubber-like materials. Hill and
Hutchinson (1975) carried out a general discussion concerning
the bifurcation phenomena and obtained estimates for the criti-
cal tensile stresses of orthotropic solids.

With the growing usage of fiber-reinforced and other compos-
ites, the concept of bifurcation and loss of stability at the micro
level was introduced. Rosen (1965) obtained, by making use
of beam theory, the well-known estimate that the compressive
strength is equal to the effective in-plane shear modulus of the
composite. This result has been rederived by different methods
in other works dealing with fiber and laminated composites.
Among these works we mention the article by Ben-chin and
Pipkin (1972) dealing with a class of inextensible fiber-rein-
forced incompressible matrices, the article by Steif (1987) dem-
onstrating that beam theory is applicable only when the fiber
diameter is very small compared with the variation of the defor-
mation, and the article by Christensen (1994) providing an
asymptotic solution for linear elastic composites in the limit of
large ratios between the longitudinal Young’s modulus and the
other elastic moduli. Methods which take into account imperfec-
tions of reinforced composites, such as initial waviness or partial
debonding of the fibers are also available, but this is outside
the scope of the present study. (See, for example, the work by
Budiansky (1983) and the comprehensive study by Kyriakides
et al. (1995) for the former, and Steif (1988) for the later.)

An extensive and rigorous study concerning the microscopic
and macroscopic instability mechanisms of nonlinear heteroge-
neous solids was carried out by Geymonat et al. (1993), gener-
alizing previous work of Triantafyllidis and Maker (1985).
These investigators obtained, within the general framework of
finite deformations, rigorous results for the complete boundary
value problem of elasticity in the long and short wave limits.
Among other topics, they also demonstrated that under appro-
priate convexity assumptions homogenization and linearization
procedures commute. Finally, a procedure for estimating the

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS .

Discussion on this paper should be addressed to the Technical Editor, Professor
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston,
Houston, TX 77204-4792, and will be accepted until four months after final
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS .

Manuscript received by the ASME Applied Mechanics Division, Mar. 21, 1995;
final revision, Sept. 5, 1995. Associate Technical Editor: S. Kyriakides.

Journatl of Applied Mechanics

compressive strength of linearly elastic fiber-reinforced com-
posites can be deduced from the work of Shield et al. (1994),
who obtained rigorous results for the critical compressive strain
of a thin layer bonded to an infinite matrix.

The present study deals with an orthotropic, linearly elastic
macroscopically homogeneous solid subjected to uniaxial com-
pression perpendicular to one of the symmetry planes. Begin-

‘ning from the equilibrium equations we determine the general

expression for the displacement field. Next, from the boundary
conditions we find an exact condition for the lowest compres-
sive stress which is compatible with a displacement field other
than the homogeneous one. We stress that while Geymonat et
al. (1993) solved an analogous problem for a class of materials
more general than the one we consider here, the advantage of the
present approach is centered on the simplicity of the resulting
expressions. Thus, we obtain a simple analytical solution for
the boundary value problem which leads to predictions for the
critical compressive strength in a straightforward manner. The
solution may also be used as a benchmark for more advanced,
numerically based models for the prediction of compressive
failures.

We specialize the general result to the practically important
situation involving compression along the stiffest direction, and
compare the resulting predictions for the critical loading with
the well-known, beam theory based estimate of Rosen (1965).
As was noticed by Christensen (1994), in the limit of highly
anisotropic materials the exact result tends towards the beam
theory estimate. However, we demonstrate that for more realis-
tic materials the sharpness of this estimate strongly depends on
some of the other elastic moduli characterizing the orthotropic
solid. We also demonstrate the ability of the results obtained
in this work to provide predictions for the critical compressive
load of slightly anisotropic solids, circumstances where the
beam theory estimate would apparently be of no practical use-
fulness.

Governing Equations for the Plane-Strain Problem

We consider a half-space, x, = 0, of an orthotropic solid
whose principle axes are aligned with the Cartesian axes. Ini-
tially, the solid is in a state of homogeneous strain correspond-
ing to compressive uniform stress p parallel to the free boundary
along the x,-direction. In terms of the second Piola-Kirchhoff
stress, which measures the tractions per unit undeformed area.
the equilibrium equations are (see, for example, Malvern
(1969))

(H

where we have neglected body forces. In the above relation, x
and u are the position and displacement vectors, respectively,
and o is a small stress increment beyond the initially applied
stress £. We assume that the product terms o+ Vu and their

V:-[(o+3):V(x+u)l=0,
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derivatives are small and ignore them in the subsequent analysis.
Consequently, for plane-strain conditions, where Z,; = —p is
the only nonvanishing component of the initial stress, the re-
maining two equilibrium equations may be expressed in the
form

day, aalz'_pau;:()’

axl axz axl

9012 00, _ d uzz =0 (2)
axl axz axl

We note that, alternatively, we could obtain these equations by
following the variational procedure outlined by Biot (1965)
(chapter 2, Section 5), with the only difference being that in-
stead of using his expressions for the strains in terms of the
displacements, we should have used the more common defini-
tion of the Lagrangian strain tensor

. e =3[Vu + (Vu)T + Vu-(Vu)7], 3)
which is the appropriate conjugate variable to the second Piola-
Kirchhoff stress in the undeformed configuration.

Following Biot (1965) (Chapter 2, Section 3), we assume a
linear relationship between the stress increment and the infini-
tesimal strain increment. Accordingly, for an orthotropic solid
in plane-strain condition we may write

ouy Ju,
=C + Cpp—,
on 1 Bt %, 12 9%,
au ‘ auz
= C + Cp—=,
[25>] 12T oy 22 E
au, auz
= C, —+—], 4
012 66 <6x2 6x,> 4)

where C\;, C)2, Caa, and Cgs are the instantaneous elastic moduli
of the solid in the vicinity of the prestressed configuration.
Substituting these relations into the equilibrium Egs. (2) we
obtain the following expressions for the equilibrium equations
in terms of the displacements, namely,

%
a2
E)u

— 4+ (Cyy + C,
6 (Cn “)ax,ax,

L4 (Cip + C66)
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Cyy — —_— C
(Cu—-p) axf
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We recall that similar relations were previously obtained by
Shield et al. (1994) for solids of isotropic symmetry and by
Christensen (1994) for the same class of orthotropic solids
considered above.

Generalizing the solution proposed by Shield et al. (1994)
for the isotropic case, we find that the following choice for the
displacement field components, namely

u, = [AH,e™> + Be®2] sin (x,),.
u, = [Ae®™ + BH,e"] cos (x,), (6)
satisfies the equilibrium Egs. (5), where

H = — a[Cy(Ciy — E) + a®CuCes + Css(2Cy> + p)]
) (Cuz + Ces)(Ces = P) ’

b[Cy(E — p) — b?C1,Ces — Ces(2C1; + Ces)]

H,= - » (D
’ (Ciz + Ces)(Cos— P)
a and b are the positive roots of the bi-quadratic
8 = 2H,z + Hy = 0, (8)

318 / Vol. 63, JUNE 1996

where

H, = Cu(E — p) — Ces(2C; + p)
z 2C»Ces ’

H, = (Cii — p)(Ces — P)
[+ B ]
CCes

and A and B are arbitrary constants. In the above relations

CuCn — C

Ca

is a Young’s modulus such that, for a linear solid in plane
strain, ¢ = p/E is the uniform compressive strain associated
with the initial loading. It can be verified that the above displace-
ments u,; and u, decay as x, tend to negative infinity, and reduce
to the appropriate expressions obtained by Shield et al. (1994)
in the isotropic limit. We note that due to the lack of a character-
istic length scale for this problem, the wavelength of the dis-
placement field is undetermined. Accordingly, the displacement
field components in Eqs. (6) may be expressed in terms of
dimensionless axes §; = x;/\, i = 1, 2, where X is an arbitrarv
wave length.

The expressions for the stress components are determined by
making use of relation (6) in the stress-displacement relations
(4). These must satisfy the boundary conditions o, = 0 and
o = 0 at the free boundary x, = 0, providing a set of two
homogeneous linear equations for the constants A and B. To
obtain a nontrivial solution for these equations the determinant
of the coefficients must vanish, and it can be shown that the
roots of the determinant must satisfy the relation

(Cu — p)(Ces — P)(HI — Ho)(¥(p))* =0, (11)

where we note that the third term is a quadratic polynomial in
p,and

Y(p) = Ca(Cs — PYE = p)* = C(Cu — p)p* (12)

is a cubic polynomial in p. Equation (11) is a condition for the
onset of a surface instability, stating that a nontrivial solution
to the problem can exists only when p = p,,, where p,, is the
smallest real positive root.

&)

E= (10)

Applications to Orthotropic Solids

We apply the results of the previous section to determine the
critical compressive loading for which a solid of orthotropic
symmetry becomes unstable. From a practical point of view,
the interesting configuration is the one that involves compres-
sion along the stiff direction, e.g., along the fibers or the layers
of fiber-reinforced or laminated composites, respectively. In this
section, we restrict ourselves to this common loading situation.

For convenience, we express the elastic properties of the solid
in terms of the engineering constants, E; the Young’s moduli
along the x; axes, v; the Poisson ratios measuring the lateral
contraction along the x; axis due to uniaxial tension along the
x;-axis, and G,, the shear modulus in the (x;, x,)-plane. In
terms of these engineering constants, the four independent com-
ponents of the plane-strain compliance matrix S are

1 E
E Vi E VisVn ’
(1.’)
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and
1

==
G12

and where the moduli Cy;, C\3, Cx;, and Ces are the appropriate
components of S7°.

The predictions for the critical loading p., can be easily ob-
tained from the solutions of the four polynomials composing
relation (11). However, due to our assumption that the com-
pression occurs along the stiff direction, we have that G; =
Css < C,; and we can rule out the root p = Cy;. Furthermore,
it can be shown that if

Ses

£ E-Gs (14)
EZ Ez - G12

where E; = 2Gy, (1 + vy3), the roots of the quadratic term in
(11) are complex, and since this inequality is satisfied for many
orthotropic solids with E; > E,, we may exclude the quadratic
term as well. Thus, practically, the only possible roots of interest
are the smallest root of the cubic polynomial Y (p) and the root
p = G,;. However, we also note that if G, < C,; the first and
the second terms of Y are positive as long as p < Gyp. This
suggests that at least one real root of Y must lie in the interval
p < Gy, and since Y (Gy) < 0 and Y(0) > O this root must
also be positive. We conclude then, that p,, is the smallest root
of the cubic polynomial Y (p), and it is always lower than the
well-known estimate pr = G, which was first proposed by
Rosen (1965).

Estimates for the critical loading normalized by the in-plane
shear modulus plotted versus the ratio of the longitudinal to
transverse Young’s moduli are shown in Fig. 1, for the choice
of the elastic constants E; = E,, vj; = vy3 = 0.3 and vy; = 0.4.
Results for two different values of the ratio between the in-
plane shear modulus and the transverse Young’s modulus (0.5
and 0.8) are shown. The continuous curves correspond to the
exact results which were obtained from the solution of ¥ = 0
and the long dashed curve to the estimate pr = G;. We note
that in this figure, and the subsequent ones, a circle at the point
where a curve stops marks that the limit of the validity of
inequality (14) has been reached. We observe that, as expected,
in the limit E, > E, the exact results approach the beam theory
based estimate pz. A less obvious observation is that when
the ratio G,,/E, is small enough (which is the case for many
reinforced composites ), Rosen’s estimate provides an excellent
approximation even for relatively low values of E,/E,. This is
not the case for larger values of the ratio between the shear
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Fig. 1 Estimates for the critical compressive load normalized by the
in-plane shear modulus versus the ratio between the longitudinal and
transverse Young’s moduli, for two different values of the ratio between
the in-plane shear and the transverse Young’s moduli and E; = E;, vy
= py3 = 0.3, and vy = 0.4. The continuous curves correspond to the exact
estimate, the long dashed curve to the beam theory based estimate, and
the short dashed curves to the first-order approximation (15). The circle
at the point where the curve stops marks the limit of the validity of
inequality (14).
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Fig. 2 Estimates for the critical compressive load normalized by the in-
plane shear modulus versus the ratio between the in-plane shear and
transverse Young's moduli, for two different values of the ratio between
the longitudinal and the transverse Young's moduii and E; = E,, vy, =
»3 = 0.3, and v,y = 0.4, The continuous curves correspond to the exact
estimate, the long dashed curve to the beam theory based estimate, and
the short dashed curves ta the first-order approximation (15). The circles
at the points where the curves stop mark the limit of the validity of
inequality (14).

modulus and the transverse Young modulus. Thus, for moderate
values of E, and G,,/E, approaching unity, the relative error
between the exact and the approximate predictions for the criti-
cal loading is approximately ten percent.

The short dashed curves correspond to the first-order approxi-
mation for the smallest root of ¥

reof1-(1-24)(2)(2)] 0

in the limit when E, is larger than the other elastic moduli.
Clearly, p, provides an excellent estimate for p., throughout the
entire range of possible ratios between the longitudinal and
transverse Young’s moduli. We note that the zero-order term
in (15) is precisely the estimate pg from beam theory, as well
as the asymptotic result obtained by Christensen (1994) from
relation (5) by an order of magnitude analysis. However, we
stress that in spite of the fact that the solution proposed by
Christensen (1994) for (5) delivers the zero-order approxima-
tion for the critical load, the associated displacement field does
not decay as x, tends to negative infinity (as would happened
for any finite E|). In accordance with our earlier observations
concerning Fig. 1, we note that the ratio G,/ E; appears already
in the first order term and dominates the sharpness of the beam
theory approximation.
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Fig. 3 Estimates for the critical compressive load normalized by the in-
plane shear modulus versus the inplane and out-of-plane Poisson’s ra-
tios, where E, = 15E,, G,; = E,/2 and E; = E,. The continuous curve
corresponds to the in-plane Poisson’s ratio with v = vy and vz = 0.4,
and the long dashed curve to the out-of-plane ratio vy wWith 11z = vy =
0.3. The short dashed curves are the corresponding first-order approxi-
mations (15).
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Fig. 4 Estimates for the critical compressive load of a slightly aniso-
tropic solid normatized by the shear modulus versus the Poisson’s ratio.
The continuous curve corresponds to the exact estimate, the long
dashed curve to the beam theory based estimate, and the short dashed
curve to the first-order approximation (15).

Figure 2 shows values for the critical compressive load as
functions of the ratio between the inplane shear and the trans-
verse Young's moduli for the same choice of the elastic con-
stants as in Fig. 1. The continuous curves correspond to the
exact result and the long and short dashed curves to the zero
and first-order approximations, respectively. Results for two
different ratios of the longitudinal Young’'s modulus to the
transverse Young’s modulus are presented ({5) and (15)). We
observe that, regardless of the value of E,, in the limit of small
in-plane shear modulus the critical compressive load is precisely
Gi;. We also observe the proximity of the first-order approxima-
tion p, to the exact result, implying that this simple estimate
captures the principal features of the solution.

The dependence of the critical load on the in-plane and out-
of-plane Poisson’s ratios (v, and v, respectively) is shown
in Fig. 3 for the choice of the elastic constants E, = 15E,, Gy,
= E,/2 and E, = E,. The continuous curve depicts the depen-
dence on the in-plane Poisson’s ratio with vy3 = vy; and vy; =
0.4, and the long dashed curve the dependence on the out-of-
plane ratio v, with vy, = v,3 = 0.3. We note that the inplane
Poisson’s ratio has only negligible influence on the critical load,
while the influence of the out-of-plane ratio is much more no-
ticeable. Once again, we observe that the first-order approxima-
tion p, is in near perfect agreement with the exact solution
(note that the dependence on v,; appears implicitly through the
dependence on E).

An interesting limit is, of course, the isotropic limit. In this
case relation (12) reduces to the form

Y(p)=(1 -v)p®-8(1 - v)up?

+ 8(2 — v)uPp — 847, (16)

where u and v are the shear modulus and the Poisson’s ratio of
the isotropic solid, respectively. We emphasize that for isotropic
solids equality holds in (14), and thus, the solution provided
by (16) should be viewed as a limiting case for slightly aniso-
tropic solids for which E, = E, = 2u(1 + v). We note that the
strains associated with p,, in this limit are large (more than 20
percent) and it is unlikely that solids would undergo such strains
while still in the linear regime. Results for the compressive
strength normalized by the shear modulus of isotropic solids
are shown in Fig. 4 as functions of the Poisson’s ratio. We
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observe that, in a manner similar to that noted for orthotropic
solids, for fixed p the compressive strength is lower for solids
with smaller Poisson’s ratios. We also observe that the relative
error between pr (long dashed curve) and the exact result is
more than ten percent, while the next order approximation p,
(short dashed curve) provides reasonable estimates even in this
limit.

Concluding Remarks

A rigorous solution for a finite deformation plane-strain prob-
lem involving uniaxial compression along one of the principle
axes of a linearly elastic orthotropic solid was determined.
Based on this solution, an explicit condition for the smallest
compressive stress which is compatible with a nonhomogeneous
state of deformation was found. Special attention was given to
the practically common situation of compression along the stif-
fest principle direction, and it was shown that in this case the
stability condition can be expressed in terms of a cubic polyno-
mial. It was further shown that the well-known beam theory
estimate, which is commonly cited in applications for reinforced
materials, overestimates the critical compressive strength.

Numerical predictions of the critical compressive loading of
certain orthotropic solids were computed, demonstrating the
domain of applicability of the beam theory estimate and high-
lighting the relative contribution of the various elastic coeffi-
cients. In particular, the high sensitivity of the critical loading to
the ratio between the in-plane shear modulus and the transverse
Young's modulus was detected. An explicit, higher order ap-
proximation for the compressive strength was determined, ex-
hibiting excellent agreement with the exact result. Finally, it is
stressed that the simple solution that was presented in this work
can be incorporated into more sophisticated models that take
into account initial imperfections of reinforced solids.
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