חפש

חפש

Github Invertocat Logo

אתר החוקר

המחקר שלי

Axisymmetric bifurcations of thick spherical shells under inflation and compression

Gal Debotton, R. Bustamante, A. Dorfmann

Incremental equilibrium equations and corresponding boundary conditions for an isotropic, hyperelastic and incompressible material are summarized and then specialized to a form suitable for the analysis of a spherical shell subject to an internal or an external pressure. A thick-walled spherical shell during inflation is analyzed using four different material models. Specifically, one and two terms in the Ogden energy formulation, the Gent model and an I1 formulation recently proposed by Lopez-Pamies. We investigate the existence of local pressure maxima and minima and the dependence of the corresponding stretches on the material model and on shell thickness. These results are then used to investigate axisymmetric bifurcations of the inflated shell. The analysis is extended to determine the behavior of a thick-walled spherical shell subject to an external pressure. We find that the results of the two terms Ogden formulation, the Gent and the Lopez-Pamies models are very similar, for the one term Ogden material we identify additional critical stretches, which have not been reported in the literature before.

שפת פרסום אנגלית
דפים 403-413
כרך 50
נושא מספר 2
סטטוס פרסום פורסם - 15.01.2013

Keywords

Aspherical bifurcations
Hyperelastic materials
Incremental equations
Snap-through instability

ASJC Scopus subject areas

Modeling and Simulation
General Materials Science
Condensed Matter Physics
Mechanics of Materials
Mechanical Engineering
Applied Mathematics
קבצים וקישורים אחרים
Link to publication in Scopus