

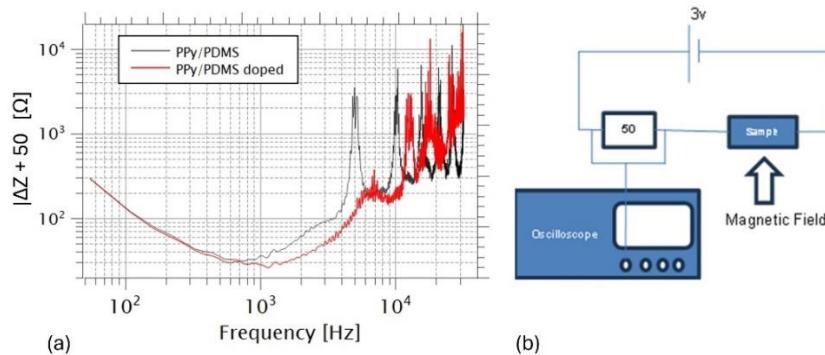


## סמינר מחלكتי – הנדסת חומרים

הנכט מזמינים בזאת לסמינר מחלكتי  
אשר יתקיים ביום ה', 27 במרץ 2025, כז' באדר תשפ"ה,  
בשעה 11:00, בניין 51 באולם 15

### Organic Magnetoresistance – a test bed for Dielectric-Spin interactions

**Paul Ben Ishai<sup>1</sup>, Amos Bardea<sup>2</sup> and Roshlin Kiruba<sup>1</sup>**


<sup>1</sup> Department of Physics, Ariel University, Ariel, Israel

<sup>2</sup> Department of Electrical engineering, Holon Institute of Technology, Holon, Israel

Email: \* [paulbi@ariel.ac.il](mailto:paulbi@ariel.ac.il)

Organic magnetoresistance (OMAR) refers to the change of resistance in an organic material by the application of a magnetic field[1]. It has recently become a ‘hot’ topic for its ability to show organic spintronics at room temperature and for use as magnetic RAM devices [2], [3]. OMAR materials typically consist of a conducting polymer laced with ferromagnetic particles and sandwiched between electrodes. We demonstrate such a composite made from Poly-pyrrole/ polydimethylsiloxane (PPy/PDMS) matrix.

To investigate this we hark back to an old and largely ignored technique; the linear response to a time domain magnetic pulse. Using a simple home- made time domain impedance spectrometer and a current pulser we demonstrate spin interaction at room temperature in the impedance spectra of the composite. The sample is in series with a passive resistor under a constant voltage of 3V (see the figure 1(b)). A pulsed magnetic field (time duration  $\sim 1$  ms and amplitude approximately 0.2 Tesla) causes an increase in the impedance and the periodic signature of a spin interaction (see figure 1 (a)). The origin of this behaviour can be traced to the polaron conduction mechanism of delocalized  $\pi$ -electrons along the PPy polymer backbone and the spin they carry. A semiclassical theory is presented for the observed behaviour.



ד"ר משה חרץ

טל. 08-6461746 | [mharats@bgu.ac.il](mailto:mharats@bgu.ac.il)

ת. 653 באר-שבע | [84105 cmsprod.bgu.ac.il/engn/mater](http://cmsprod.bgu.ac.il/engn/mater)



**Figure 1.** (a) The impedance spectra of PDMS/PPy layer when exposed to a time varying magnetic field. Periodic oscillations in the spectra point towards spin interaction with the magnetic field. The schematic of the time domain setup (b) used to make the measurements.

## References

- [1] M. Gobbi and E. Orgiu, “The rise of organic magnetoresistance: materials and challenges,” *J. Mater. Chem. C*, vol. 5, no. 23, Art. no. 23, Jun. 2017, doi: 10.1039/C6TC04403D.
- [2] R. Geng *et al.*, “Magnetically tunable organic semiconductors with superparamagnetic nanoparticles,” *Mater. Horiz.*, vol. 6, no. 9, pp. 1913–1922, Oct. 2019, doi: 10.1039/C9MH00265K.
- [3] R. Wirecka, K. Maćkosz, A. Żywczał, M. M. Marzec, S. Zapotoczny, and A. Bernasik, “Magnetoresistive Properties of Nanocomposites Based on Ferrite Nanoparticles and Polythiophene,” *Nanomaterials*, vol. 13, no. 5, Art. no. 5, Jan. 2023, doi: 10.3390/nano13050879.

ד"ר' משה חרץ

טל. 08-6461746 | [mharats@bgu.ac.il](mailto:mharats@bgu.ac.il)

ת.ג. 653 באר-שבע | [84105 cmsprod.bgu.ac.il/engn/mater](http://cmsprod.bgu.ac.il/engn/mater)