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Abstract

ABSTRACT

This work focuses on studying the dynamic response of rock masses to seismic and

thermal loading, accompanied by the development of an enhanced procedure to simulate
realistic rock mass structures numerically.
The numerical Discontinuous Deformation Analysis (DDA) method for computing large
deformations in rock masses is used in this research. The recently developed three
dimensional version of the method (3D-DDA) is verified and validated using analytical
solutions and shaking table experiments for the dynamic response of a three dimensional
wedge-shaped block loaded by seismic vibrations. The well established two-dimensional code
(2D-DDA) is utilized to model seismically-induced block displacement for a case study in
Masada Mountain.

Preliminary attempts to model complex geological structures using the numerical DDA
method revealed a shortcoming in the ability of the existing DDA line generation and block
cutting algorithms to simulate common fracture patterns in sedimentary rock masses which
comprise the bulk of the exposed outcrops in Israel. To overcome this limitation, a pre-
processor is developed in this research based on an existing code (FRACMAN) which allows
to assign different statistical distributions to structural parameters and to impose realistic
geological constraints on numerical Discrete Fracture Networks (DFN). The DFN model is
then imported as vector-based numerical data to the DDA block cutting algorithm in order to
obtain a numerical mesh of finite blocks.

An original analytical solution is proposed for considering short-period dynamic
problems in rock slope stability, such as a 3D block that is loaded by seismic vibrations.
Analytical and 3D-DDA numerical solutions for dynamic sliding of a tetrahedral wedge-
shaped block are compared with results of shaking table experiments performed on a concrete
model, the interface friction of which is determined by direct shear tests in the lab. Results of
constant and variable velocity direct shear tests reveal that the tested concrete interface
exhibits a velocity weakening behavior. This is confirmed by shaking table experiments
where friction degradation upon multiple cycles of shaking culminated in block run-out. The
measured shaking table results are fitted with the proposed 3D analytical solution to obtain a
remarkable linear logarithmic relationship between friction coefficient and sliding velocity
which remains valid for five orders of magnitude of sliding velocity. It is concluded that
velocity-dependent friction along rock discontinuities should be integrated into dynamic rock

slope analysis, either analytical or numerical, to obtain more realistic results when strong



Abstract

seismic ground motions of relatively long duration are considered.

In addition to the short-period dynamic loading, new evidence for long-period thermal
response of rock masses is indicated from electronically monitored rock blocks from the
natural rock slopes of the Masada Mountain. A "ratchet” model for thermally-induced
wedging failure mechanism is presented to explain how cyclic thermal oscillations may
induce an extremely low rate of uni-directional block translation. Physical and mechanical lab
tests provide the assumed depth of penetration of the heating front during seasonal cycles of
exposure as well as the thermal expansion coefficient of the rock mass. These, along with the
shear stiffness of the sliding interface, allow quantifying the expected thermally induced
displacement rate of blocks in Masada through the proposed wedging-ratcheting failure
mechanism.

A distinct block in the East slope of the mountain exhibiting a tension crack opening of
200 mm was monitored for displacement and temperature during a single seasonal cycle in
1998. The mapped geometry of the block in the East face is simulated under cycles of
earthquake vibrations utilizing the 2D-DDA, based on the assumed seismicity of the region,
the known topographic site effect, and the laboratory measured frictional resistance of the
sliding interface.

It is found that for a time window of 5000 years, the observed 200 mm displacement of
the East slope block is more likely to have been thermally, rather than seismically, controlled.
This result implies that in climatic regions where the temperature amplitude over a seasonal
cycle is sufficiently high, thermally induced displacements play an important role in rock
slope erosion, where a wedging — ratcheting failure mechanism is possible.

The contribution of this study is that it improves the ability to analyze rock masses
deformation according to dynamic environmental loading. The enhanced approach developed
in this research allows create numerically complex rock structures and utilize them for
dynamic rock masses simulations. The newly developed analytical solution for dynamic
sliding in 3D enables to study the velocity dependency of interface friction degradation. This
contribution is very important for understanding block run-out during rock slope failures and
for improvement of numerical methods used in this scope. Finally, the thermally induced
"ratchet” model demonstrates in new light the influences of temperature fluctuations on rock
slope stability. Yet, it is recommended that the feasibility of the "ratchet” mechanism should
be studied more deeply in future researches using laboratory experiments and by

implementing coupled thermo-mechanical solutions.
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Chapter 1 - Introduction

CHAPTER 1 - INTRODUCTION

1.1 Overview

Rock masses are fractured by nature; therefore dynamic failure typically occurs by
deformation along pre-existing discontinuities. Consequently, dynamic analysis of rock
structures requires knowledge about the mechanical and geometrical properties of bedding
planes, faults, and any other type of fracture. The most important geometrical variables are
orientation (dip and dip-direction), the trace length, and spacing between two adjacent
discontinuities. These are determined in the field from boreholes, excavations, or natural
outcrops using traditional scan-line or window surveys, or novel methods such as digital
image processing. Mechanical properties of the discontinuities are determined both by field
surveys and lab experiments.

Once rock mass characterization is obtained, mathematical approaches are employed to
analyze static and dynamic problems of removable blocks that are formed by intersection of
pre-existing fractures and excavated free surfaces in the rock mass and half-space
combinations that have the potential of sliding as rigid bodies towards a certain direction are
determined. Naturally, without the application of external forces, removable rock blocks
remain static in the rock mass due to shear resistance along discontinuity interfaces.

Various environmentally controlled mechanisms have been considered in an attempt to
explain slope failures in rock masses along pre-existing discontinuities: high-magnitude
earthquakes, pore pressure buildup in rock joints, freezing and thawing of water in joints, and
more recently, thermally induced stresses due to climatic fluctuations. These driving
mechanisms have been suggested as triggers for landslides and sizeable rock collapses.

This research focuses on the development of an enhanced procedure to simulate
numerically realistic rock mass structures based on geological field mapping, and on the
dynamic response of removable blocks to both short-term seismic loading and long-term

thermal fluctuation.



Chapter 1 - Introduction

1.2 Research objectives

The research presented in this dissertation focuses on the dynamic behavior of rock
masses, with emphasis on rock slope stability. The objectives of this research are:
1) To develop an approach to simulate realistic, complex geological fracture patterns.
2) To verify the three-dimensional Discontinuous Deformation Analysis (3D-DDA) code
using a newly developed analytical solution and results from shaking table experiments.
3) To suggest a new model for thermally induced block displacements in discontinuous rock

slopes based on “ratcheting” mechanism.

1.3 Thesis outline

The contents of the dissertation are arranged in the following order: Chapter 2 is a brief
overview of the analytical, numerical and experimental methods used in the context of slope
stability analysis. Chapter 3 presents a new approach, which combines two numerical
methods: the discrete fracture network (DFN) and the discrete element discontinuous
deformation analysis (DDA), and allows simulating rock mass deformation in complex
geological structure patterns. The results are discussed in this chapter in terms of underground
opening stability and surface settlement, and have been published as a scientific paper in the
International Journal of Rock Mechanics and Mining Sciences (Bakun-Mazor et al., 2009),

In chapter 4, the role of interface friction is studied by slow direct shear tests and rapid
shaking table experiments in the context of short-period dynamic slope stability analysis. A
new analytical solution for dynamic sliding in three-dimensions (3D) is proposed and used for
both verification of 3D-DDA code and evaluation of friction degradation from shaking table
results. This chapter has been published as a scientific paper in the International Journal for
Numerical and Analytical Methods in Geomechanics (Bakun-Mazor et al., 2012).

Chapter 5 presents a new model for thermally induced block displacements in
discontinuous rock slopes, using results of field monitoring campaigns from the East and
West rock slopes of the Masada Mountain. The applicability and limitation of the proposed
failure mechanism are considered and the comparison between climatic and seismic driving
mechanisms is discussed. Chapter 5 has been submitted recently to the International Journal
of Rock Mechanics and Mining Sciences as a scientific paper. Finally, chapter 6 summarizes

the key findings of this research.
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CHAPTER 2 - RESEARCH METHODS
2.1  Analytical methods

2.1.1 Block theory

Rock masses are inherently three-dimensional, therefore stability analysis in rock slopes
calls for a truly three dimensional (3D) approach. A 3D limit equilibrium analysis for rock
slopes has been formulated using stereographical projection coupled with vector algebra
(Londe et al., 1969; Goodman, 1976; Hoek and Bray, 1981; Goodman and Shi, 1985). In their
book on Block Theory Goodman and Shi (1985) address mathematically the removability of a
block bounded by an arbitrary number of surfaces and show how to determine the applicable
failure mode. Once the failure mode is established, whether single or double face sliding,
static equilibrium is formulated to evaluate the factor of safety against sliding.

Utilizing the original static limit equilibrium formulation presented by Goodman and
Shi (1985), a new analytical solution for dynamic block sliding in 3D is developed in this

thesis (see chapter 4).

2.1.2 Newmark type analysis

Considering seismically-induced dynamic deformation in rock slopes, a solution for
rigid block sliding on a single plane was suggested both by Newmark (1965) as well as
Goodman and Seed (1966). This procedure, largely known as "Newmark type analysis",
assumes that permanent deformation initiates when earthquake-induced inertial forces acting
on a potential sliding block exceed the yield resistance of a slip surface (Wartman et al.,
2003). The cumulative displacement of the block is calculated by integrating the acceleration
time history twice, while the yield acceleration is used as a reference datum (see Figure 2-1).
The original Newmark analysis is based on the assumptions that the block is subjected to one
component of horizontal input motion (neglecting the other two components of shaking) and
that the shear resistance of the interface does not change with ongoing cycles of motion. It
should be pointed out, however, that already in the pioneering paper by Goodman and Seed
(1966), a procedure to account for friction degradation as a function of number of cycles was
proposed and demonstrated (Figure 2-1). Although Yan (1991) modified the original
Newmark procedure to account for vertical accelerations, an analytical approach that takes
into full account all three dimensional components of vibrations simultaneously has not been

proposed to date.
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Figure 2-1. Illustration for the concept of the “Newmark's type analysis”: The displacement in
the lower figure results from the double integration of the acceleration function in the upper
figure between t1 and t2 - beyond the yield acceleration (ky in this figure) (Goodman and
Seed, 1966).

2.1.3 Rate and state

The time dependency of frictional resistance is very important in slope stability analysis
as rock avalanches formed by large scale failures of bedrock may be triggered when frictional
resistance is diminished with cycles of motion and sliding velocity. Besides changes in pore
pressure due to climate effects (Hermanns et al., 2004) or thermo-poro-mechanical effects
(Vardoulakis, 2000; Veveakis et al., 2007; Goren and Aharonov, 2009), friction angle
degradation during slip may be explained by rock fragmentation (Davies and McSaveney,
2009; Taboada and Estrada, 2009), subtle anisotropy in grain arrangements on the interface
(Friedmann et al., 2003), or rate and state effects (Dieterich, 1979; Ruina, 1983). Friction
degradation during slip requires a modification of the Newmark analysis (Matasovic et al.,
1998), by incorporating a shear strength degradation criterion as a function of either

displacement (Goodman and Seed, 1966) or velocity (Sornette et al., 2004; Mandez et al.,
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2009). For rate dependency, Dieterich (1979) and Ruina (1983) proposed the 'rate and state'
friction laws where the friction coefficient is a function of both slip rate and a state variable:

= +Aln[\\//—j+Bln(%j 2.1)

0 c
where o is a reference friction coefficient under a constant reference slip rate Vo, V is the
sliding velocity, A and B are dimensionless empirical fitting parameters which respectively
characterize the sliding and time dependence of friction, D, is a characteristic slip distance
essential to reach steady-state sliding, and @ is a state variable. The most commonly used state
evolution law is known as ‘Dieterich law’:

do 1- Ve

“-p 2.2)

Figure 2-2 shows schematically the observed frictional response to a sudden imposed
change in sliding velocity. The parameter A, known as the direct velocity effect, is related to
the change in rate, and the parameter B is related to the change in state. As illustrated in
Figure 2-2 the friction coefficient at steady state is:

\Y
U=, +(A-B) In[V—OJ (2.3)

Thus, steady state friction exhibits velocity weakening if B is greater than A, and

velocity strengthening otherwise. The rate and state friction laws have been used to address

various geophysical problems, as comprehensively reviewed by Scholz (1998).

<
L
V
<

Friction coefficient

Vv,
(A-B) In[v

1

Displacement

Figure 2-2. The concept of "rate-and-state” (velocity weakening): Illustration for the
experimentally observed frictional response to sudden increase in sliding velocity.
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2.2  Experimental methods

2.2.1 Shaking table

In order to study the dynamic sliding response of a single block subjected to horizontal
input motion, the single-degree-of-freedom, hydraulically-driven, shaking table of the
Earthquake Simulation Laboratory at U. C. Berkeley is used in this research. The centerpiece
of the shaking table system is a 38 inch wide by 48 inch long horizontal plate driven by a
222.4 kN (50 kip) force, 15.24 cm (6 in.), closed-loop servo-controlled hydraulic actuator
manufactured by MTS (Series 244). A Hewlett Packard model 33120A arbitrary function
generator produced the table command signal. The function generator is capable of producing
constant-amplitude repetitive signals such as sinusoidal, triangular, or square functions.

Measurement instrumentation consisting of accelerometers and displacement
transducers are attached to the shaking table and to the experimental system, as described in
chapter 4. The accelerometers are DC-response type (Model 141 manufactured by Setra),
have a nominal range of +/- 2 g, exhibit a flat response between 0 to 200 Hz and nominal
natural frequency of 300 Hz. Prior to testing, the accelerometers are calibrated in the field of
gravity. The accelerometers, 30 gr in weight, are screwed to both the shaking table plate and
the experimental system. Linear variable displacement transducers (LVDT) measure the
position of both shaking table and sliding block. A DL750 ScopeCorder manufactured by
Yokogawa is used as both oscilloscope and data recorder in acquisition rate of 100 Hz.

A general view of the shaking table setup is shown in Figure 2-3, while a detailed

explanation of the test settings is given in chapter 4.

Lifted experimental

AN, “ system (see chapter 4)

servo controlled !

hydraulic actuator - %, |

1D horizontal Piston — -« 2’

&
1
7

Figure 2-3. Front (A) and side (B) views of the shaking table setting set up at the Earthquake
Simulation Laboratory, U. C. Berkeley.
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2.2.2 Direct Shear

In this research, both peak and residual friction angles are determined experimentally
using the direct shear apparatus at Ben-Gurion University rock mechanics laboratory. The
direct shear apparatus, manufactured by TerraTek, is a servo controlled test system built of
two load frames, normal and shear, combined to act simultaneously (Figure 2-4A). The
normal and shear load cell capacities are 1000 kN and 300 kN, respectively. The tested
samples are cemented into the upper and lower 180x180x140 mm? shear boxes (Figure 2-4B),
using Portland 350 cement.

Shear and dilatational displacements are monitored by six LVDTSs, with a maximum
range of 50 mm and 0.25% linearity full scale: the vertical (dilatational) displacements are
monitored by four LVDTs, mounted on four corners of the shear box; The horizontal (shear)
displacements are monitored by two LVDTs, mounted on two opposite sides of the tested
interface. Utilizing a computer control interface, output signals from all channels can be used
as servo control variables at an acquisition rate of 50 Hz. The average value of the two shear
displacement transducers output is used to control the sliding velocity, and the output from

the normal piston load cell is utilized to control the normal stress during sliding.

Normal Cylinder

A _ﬂ_’ B
Upper Shear Box

r. Shear System
[ ]
--------------------- i \
- ik . . (20cm  G—A—y
I u L ==
1 / Lower Shear Box \
Concrete Samples Roller Bearing Shear Cylinder

Figure 2-4. Direct shear testing setup at the Ben-Gurion University rock mechanics
laboratory: A) Layout of the servo-controlled direct-shear load frame, B) Details of the shear
box assembly.
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2.3 Numerical methods

Over the last three decades, different numerical methods have been developed for
modeling continuous and discrete systems. The computational process of the continuous
approach is obtained by discretization of the continuum, and by sub-division of the problem
domain into a large number of standard-shaped elements, with a finite number of degrees of
freedom. The most common and popular numerical method is the Finite Element Method
(FEM) (e.g. Cravero and labichino, 2004) which may have a simple problem geometry (by
adopting only a very few, limited dominating discontinuities), but cannot address the effects
of fracture population on the material behavior and properties. The Distinct Element Method
(DEM) (Cundall, 1988; Hart et al., 1988) approach, on the other hand, treats the material
domain concerned as an assemblage of individual blocks (or particles for granular materials)
interfaced by discontinuities. In this research which focuses on analysis of discontinuous rock
masses, the Discontinuous Deformation Analysis (DDA) approach is extensively used. The
basic concepts of DDA method are provided below. The DDA method is used here for both
short term dynamic response of sliding blocks to seismic loading and long period

accumulated response to thermally-induced cyclic loading.

2.3.1 Basic concepts of DDA

The DDA is a special type of DEM proposed by Shi (1988) to provide a useful tool for
investigating the kinematics of blocky rock masses. Similar to the DEM approach, DDA
models the discontinuous media as a system of individual deformable blocks that move
independently without interpenetration. However, the formulation of the blocks is very
similar to the definition of a finite element mesh, but where all the elements are bounded by
pre-existing discontinuities and the unknowns of the equations are the displacements and
deformations of the blocks. The blocks, or elements, are not restricted to standard shapes as in
FEM, but can be of any convex or concave shape. Although originating from the DEM
family, DDA closely parallels the FEM and is basically a generalization of it (Shi, 1988).

In this research both two-dimensional (2D) and three-dimensional (3D) DDA versions
are used. While in 2D version there are six degrees of freedom per block (two translations,
one rotation, two normal strains, and one shear strain) the 3D contains twelve degrees of
freedom (three translations, three rotations, three normal strains, and three shear strains).
Since equilibrium is required for each degree of freedom of each block, there are six and
twelve equilibrium equations per block, in the 2D and 3D versions, respectively. The
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description of DDA formulation is presented here for the 3D version.

Basic formulation for 3D-DDA
Assuming linear elasticity and homogeneous deformation, the displacement (u, v, w) of
any point (x, y, z) of the i block can be related in three dimensions to twelve displacement
variables:

[D] =(u0 VoW b, 1806, 8 ¥y 7y yZX)T (2.4)
where (Uo, Vo, Wo) are the rigid body translation of a specific point (Xo ,Yo , Zo), 1, '2 and rs are
the rotation angles (in radians) of the block around z-axis, x-axis and y-axis, respectively, and
the coefficients &, €y, €, Yxy, Yyz» Yzx are the normal and shear strains in the block. By adopting
a first order displacement approximation, the displacement of any point (X, y, z) in the block

can be represented by:

(y_yo) (Z_Zu)
) 100 ~(y-y,) 0 (z-2,) (x-%) 0 L T (2.5)
(vj—[n][oi]—o 10 (%) —Gmz) 0 0 ey o PSR EER o p)
v 001 0 (Y=V,) -(x=%,) 0 0 (z-z) o YY) =x)

2 2

Assuming that n blocks are defined in a block assembly, the system of simultaneous

equilibrium equations can be written in the matrix form as:

Kll Klz K13 o Kln D1 Fl
K21 Kzz Kzs KZn Dz Fz
K31 Ksz K33 e K3n D3 = Fs (2.6)
Knl Kn2 Kn3 Knn Dn I:n

Where each coefficient Kjj, is defined by the contacts between blocks i and j, and where i = j it
depends on the material properties of block i alone. Since each block has twelve degrees of
freedom, each element Kj; in the coefficient matrix is a 12 X 12 submatrix. The system in
Equation (2.6) can also be expressed in the compact form as KD = F where K is a 12n X 12n
stiffness matrix, and D and F are 12n X 1 deformation and force matrices, respectively.

The total number of unknown deformations is the sum of the degrees of freedom of all
the blocks. The total potential energy 77 is the summation over all potential energy sources;
stresses and forces. The simultaneous equations are derived by minimizing the total potential

energy /7 of the block system:



Chapter 2 — Research methods

2
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and the subscripts i and j represent the i-th block and the j-th block, respectively. The solution
for the system in Equation (2.7) is constrained by a system of inequalities associated with
block kinematics. Block system kinematics in DDA avoids penetration and tension between
blocks. These two constraints are applied using a "penalty” method, in which stiff springs are
attached to block contacts. Since tension or penetration at the contacts will result in extension
or contraction of the springs, a process that requires energy, the minimum energy solution is
one with no tension or penetration.

When the blocks are in contact, Coulomb's friction law applies to the contact interface,
and the simultaneous equilibrium equations are formulated and solved for each loading or
time increment. When the blocks are separated, the virtual spring is removed. DDA considers
both statics and dynamics using a time-step marching scheme and an implicit algorithm
formulation. The static analysis assumes the velocity as zero at the beginning of each time
step, while the dynamic analysis inherits the velocity of the previous time step. The
integration of a polynomial function over a general polygon area is performed in DDA using

the analytical Simplex solution.

Previous works on DDA

Due to its rigorous scheme of block kinematics and equilibrium conditions achieved
by minimizing the total potential energy, DDA has attracted the attention of research and
geotechnical engineering worldwide. With many people contributing to its development and
application, the original 2D-DDA is well developed in terms of both theory and computer
coding (e.g. MacLaughlin et al., 2001; Sitar et al., 2005). However, 2D DDA is applicable
only to 2D problems, usually plane strain or plane stress.

In contrast to the case of the original 2D version, only a limited number of attempts to

10
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check the validity and accuracy of 3D-DDA have recently been published (e.g. Yeung et al.,
2003; Jiang and Yeung, 2004; Liu et al., 2004; Moosavi et al., 2005; Wang et al., 2006;
Grayeli and Hatami, 2008; Keneti et al., 2008) perhaps due to the difficulty in developing a
complete contact theory that governs the interaction of many 3D blocks (Yeung et al., 2007).
Considering 3D validations, Shi (2001) reports very high accuracy for two examples of block
sliding modeled with 3D-DDA, subjected to gravitational load only. Moosavi et al. (2005)
compare 3D-DDA results for dynamic block displacement with an analytical solution
proposed originally by Kamai and Hatzor (2008). Yeung et al. (2003) studied the tetrahedral
wedge problem using physical models and field case histories and reported good agreement
with 3D-DDA with respect to the obtained failure mode and the block displacement history,
although no quantitative comparison between 3D-DDA and lab test results was reported.

2.3.2 Discrete Fracture Network

The Discrete Fracture Network (DFN) (e.g. Dershowitz and Einstein, 1988) method is a
special discrete model that considers fluid flow and transport processes in fractured rock
masses through a system of connected fractures. The technique was created in the early 1980s
for both 2D and 3D problems, and has been continuously developed since, with many
applications in civil, environmental and reservoir engineering and other fields of geosciences
(Jing, 2003). In this research the commercial FRACMAN code (Dershowitz et al., 2000) is
used as a preprocessor in developing a new hybrid geoDFN-DDA approach, which allows to

assign different statistical distributions to structural parameters, as described in chapter 3.

11
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CHAPTER 3 - AHYBRID GEODFN-DDA PREPROCESSOR FOR
SIMULATING DEFORMATION IN COMPLEX ROCK STRUCTURES

3.1 Introduction

Sedimentary rock masses exhibit a geological structure known as "mechanical layering"
(Gross, 1993) where vertical to sub-vertical joints are bounded by bedding plane boundaries
(Figure 3-1A), and a ratio between bed thickness and joint spacing is typically defined (Narr
and Suppe, 1991; e.g.Gross, 1993; Bai and Gross, 1999). This chapter demonstrates the use of
discrete fracture models which incorporate the “mechanical layering” concept to improve
stability analysis for underground openings. This potentially represents a significant advance
over earlier rock engineering approaches which relied on simplified, statistically based,
fracture patterns. These simplified models have typically been parameterized in terms of for
example joint persistence (Einstein et al., 1983) joint trace length (Mauldon and Mauldon,
1997) and bridge (Shi and Goodman, 1989b; Kemeny, 2005) (Figure 3-1B).

This chapter presents an approach which combines the “mechanical layering” fracture
spatial model (Dershowitz et al., 2000) for sedimentary rock (referred to below as a geologic
discrete fracture network or geoDFN) with the discrete element DDA method (Shi, 1993).
The DDA approach is applicable for rock masses in which the significant fractures effecting
stability must be modeled explicitly. This includes rock masses with more fractures than can
be analyzed using the clamped beam models (Obert and Duvall, 1967) and the VVoussoir beam
analogue (Evans, 1941; Beer and Meek, 1982; Sofianos, 1996; Diederichs and Kaiser, 1999),
and rock masses where the number of fractures is insufficient to particle flow code (Cundall
and Strack, 1979) or plastic continuum approximations (e.g. Klerck et al., 2004). It is assumed
that application of discrete element methods, either DEM (Cundall, 1988; Hart et al., 1988) or
DDA (Shi, 1993) is essential for correct stability analysis in such rock masses, provided that
the rock mass structure is modeled correctly.

To demonstrate the sensitivity of numerical modeling results to geological structure, the
influence of joint and bridge length on rock mass stability is explored by incorporating
geoDFN models into the block cutting algorithm of DDA and studying the resulting rock
mass deformations. It is concluded that adding such enhanced capabilities to the existing
block cutting code of DDA is important for accurate prediction of both roof deflections and

surface settlements due to underground mining in fractured rock masses.

12
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3.2 A hybrid approach for modeling rock mass deformation

Truthful numerical simulation of structural patterns in discontinuous rock masses is an
important prerequisite for accurate stability assessment of underground openings. As the
discussion is limited here to two dimensions, line, rather than plane generation schemes are
explored, via the existing FRACMAN software (Dershowitz et al., 2000) and DDA code (Shi,
1993). The statistical trace line generation code in the DDA environment (DL) is based on an
important paper by Shi and Goodman (1989b) where joint traces are characterized and
simulated using mean joint length (L), bridge (b), and spacing (s) (Figure 3-1B). Line
generation in DL is based on a simple Poisson process described by normal distributions for
each of the three simulated parameters with user specified degree of randomness (DR), a
parameter which controls the degree of deviation from the mean which is allowed during the
simulations (see Shi and Goodman, 1989b for details). After line generation is complete all
line data are provided to the DDA block cutting code (DC). The block cutting process results
in a DDA mesh consisting of closed and discrete blocks with known area, center of mass, and
edge coordinates (see Figure 3-1C), all of which are used for the forward modeling DDA code
(DF), to obtain rock mass deformation.

The key to successful application of this approach is the generation of a realistic
fracture pattern. In sedimentary rocks, it is commonly observed that the fracture pattern is
well described by Gross’s concept of “Mechanical Layering” (Gross, 1993). This can not be
achieved with the standard DL code which is based on a simple Poisson spatial process. In
mechanically layered rock masses joint trace lengths are constrained by bedding plane
boundaries. The fracture pattern in fractured rock masses with “Mechanical Layering” is
described by the Fracture Spacing Index (FSI), defined as the ratio between the mechanical
layer thickness and median joint spacing (e.g. Narr and Suppe, 1991).

A hybrid geoDFN-DDA approach is presented here to address exactly such cases. The
hybrid approach begins by generating a three dimensional, mechanically layered fracture
pattern using FRACMAN which allows the simulation of realistic fracture patterns including
spatial correlations and geological processes such as mechanical layering. For the purposes of
the two-dimensional DDA analysis, a 2-D trace plane is cut through the three dimensional
discrete fracture network model (DFN) to provide a 2D trace model which can be simulated
with the DL code. The DDA block cutting algorithm (DC) is then applied to generate a mesh
of finite blocks. Once the DDA mesh is constructed forward modeling of deformation can be
performed with the DF code. A flow chart showing the essentials of this procedure is shown

13
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in Figure 3-2.

Consider for example a mechanically layered rock mass consisting of one set of
horizontal layers (beds) and one set of vertical joints as presented schematically in Figure 3-1
but with specified statistical distributions. The layer thickness in this example are described
by log normal distribution with the following parameters: log[mean(m)] = O,
log[deviation(m)] = - 0.2 and minimum layer thickness of 0.7m. A minimum layer thickness
is imposed to eliminate generation of unrealistically slim blocks due to the application of a
constant fracture spacing index, which in the presented example is set at FSI = 1.3 for all
layers, a common value for sedimentary rocks (Ruf et al., 1998). A three dimensional
visualization of the mechanically layered rock mass obtained in FRACMAN environment is
shown in Figure 3-3A. The computed 2D block mesh for a selected cross section obtained
with the DDA DC code is shown in Figure 3-3B. This hybrid FRACMAN - DDA procedure
brings together the power of two different geo-engineering tools, one for diverse statistical

simulations of geological fracture patterns and the other for robust mechanical deformation

analysis.
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Figure 3-1. A) Schematic diagram illustrating "mechanical layering” in sedimentary rocks
(MLT- Mechanical Layer Thickness), B) Definition of terms used in synthetic generation of
joint trace maps, mesh generated in DDA line generation code DL, and C) Output of DDA
block cutting code (DC).
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Figure 3-2. Flow chart diagram showing implementation of the hybrid geoDFN-DDA pre
processor.
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Figure 3-3. A) FRACMAN simulation of mechanically layered rock mass (for structural
parameters see text); B) DDA mesh using line coordinate input from FRACMAN.
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3.3  Structural analysis of simulated rock masses

To compare between the hybrid geoDFN-DDA and the standard DDA joint trace
simulation approaches, structural characteristics are discussed in meshes obtained with the
hybrid procedure, where mechanical layering is imposed on the simulation (mesh denoted
FMML from now on), and in meshes obtained with the standard DL and DC codes, where
mean joint length, bridge, and spacing can be varied within some bounds defined by the
degree of randomness. In particular, it is studied how variations in joint length and bridge
affect block size distribution in meshes obtained in the two different approaches. In both
approaches the same identical layer thickness distribution, obtained using FMML, is used,
with an imposed minimum layer thickness of 0.7m. Since an FSI value of 1.3 is imposed in
the generation of the FMML mesh, the joint spacing value for the minimum thickness layer in
the FMML mesh is set at 0.54m. This joint spacing value is used as the mean joint spacing
value for the entire rock mass and a degree of randomness of DR = 0.5 is applied for L, b, and
s in all DL simulations. The complete matrix for DDA simulations in this study is provided in
Table 3-1 and the outline of the mesh is shown in Figure 3-4 with measurement point location
for future reference.

Preliminary analysis of the computed block systems enables to obtain some important
structural rock mass characteristics such as number of blocks, block width, and block area
distributions, utilizing the powerful integration scheme implemented in the DC block cutting
code. This analysis is performed before forward modeling is conducted and relates primarily
to structural characterization of the rock mass. Any important geometric characteristic of the
simulated rock mass can be studied quantitatively by the meshes generated, and its effect on
the mechanical response can be inferred after forward modeling is complete.

Consider for example the block width and block area distributions obtained from DL
simulations in comparison to FMML (Figure 3-5). In both FMML and DL simulations the
block size distributions obtained are similar. The total number of blocks however, while fixed
in the FMML mesh, clearly increases with increasing mean joint length and decreases with
increasing mean bridge length. Namely, with increasing mean trace length and decreasing
mean bridge length the number of blocks cut by the DC code out of the DL trace maps
increases. This observation is intuitive when it is considered that the probability for line
intersections in a randomly selected unit area in the rock mass should increase with increasing
trace length and with decreasing bridge length. The 2D line intersection probability, a
prerequisite for block cutting in the DC code as well as for block formation in the real rock
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mass, is discussed elsewhere (Hatzor and Feintuch, 2005). Since layer thickness distribution
is fixed in all meshes, with increasing bridge length individual blocks cut by the DC code are
expected to be wider, since less blocks will be cut in each layer. This effect is shown
graphically in Figure 3-6 using results of all DL simulations. This result has significant effect
on rock mass deformation as will be discussed in the following section. Figure 3-5 and Figure
3-6 which describe quantitatively structural characteristics of the rock mass, can be used to
obtain some constraints on the expected rock mass geomechanical response, and can enhance
engineering judgment concerning the "quality” of the rock mass, a parameter which otherwise
must be based on empirical classification methods such as the GSI (Hoek and Brown, 1997),
Q (Barton et al., 1974), and RMR (Bieniawski, 1989).
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Figure 3-4. Outline of the mesh used for forward DDA simulations (units are meters).
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Figure 3-5. Block Width (left) and block size (right) distributions obtained from preliminary
analysis.
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Figure 3-6. Obtained average block width as a function of joint bridge / joint length ratio.
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3.4 Mechanical response of simulated rock mass structures

To compare between the deformation of a mechanically layered rock mass and a rock
mass simulated by mean joint spacing (s), length (L), and bridge (b) values, the forward
modeling code in the DDA environment is employed once for the mesh obtained using the
hybrid procedure (FMML), and then for models 1- 15 obtained using DL code (see Table
3-1). The assumed geometrical and mechanical parameters for DDA forward modeling are
listed in Table 3-2.

The response of a mechanically layered rock mass to an underground opening with a
rectangular geometry is shown in Figure 3-7. The immediate roof which includes
measurement point 1 (Figure 3-4) collapses and the opening attains a new equilibrium. Note
that the height of the loosened zone is approximately 0.5B, where B is the opening width,
which is the probable maximum loosened zone as predicted by Terzaghi (1946) for
unsupported horizontally stratified rock mass. Note also that above the loosened zone (around
measurement point 2) several individual VVoussoir beams are developed and attain a new state
of equilibrium following some preliminary vertical deflection. The vertical displacement and
axial stress developed in the five measurement points are plotted in Figure 3-8 C and D,
respectively. The stabilization of the roof segment containing measurement points 2,3,4, and 5
is indicated by the arrest of the downward vertical deflection (Figure 3-7C) and by the
development of stable arching stresses in the beams (Figure 3-7D).

The deformation pattern of the roof for rock structures obtained using standard line
generation is shown in Figure 3-8 for mean joint trace length of 5m and 10m (graphical
simulation outputs for L = 15m are omitted for brevity). Note that the deformed meshes
presented in Figure 3-8 are confined to the zone of interest above the immediate roof, as
delineated in Figure 3-4 and Figure 3-7A. The vertical displacement data obtained for the
rock mass above the immediate roof (measurement points 3, 4, 5 - Figure 3-4) are sown in
Figure 3-9 in terms of the bridge over length (b/L) ratio, where the FMML results are plotted

as well for reference.

19



Chapter 3 — A hybrid geoDFN-DDA preprocessor for simulating deformation in complex rock structures

0 T q q \ \
-0.02 { 1 2 3 4 5
hs m.p.; ’é‘ -0.04 - -—m.p.1l
e mpa £0%] s
> -1500 —m.p.4 %' -0.08 + ~mp.4
2000 1 ~mp.5 -0.1 A ~mp5,
-0.12 ~
-2500 - -0.14 -
C time (sec) D Time (sec)

Figure 3-7. Mechanical Layering model (FMML) response. A) Whole deformed model, B)
Zoome-in on the loosened zone (see location in Figure 3-4 and Figure 3-7A) , C) Accumulated
vertical displacement for 5 sec, and D) Horizontal compressive stress vs. time.

Table 3-1. Matirx of DDA simulations. Legend: L = mean joint length, b = mean rock bridge, s = mean joint
spacing, and DR = degree of randomness(Shi and Goodman, 1989a).

Model L (m) b (m) s (m) DR
1 1
2 2
3 5 3 0.54 0.5
4 4
5 5
6 2
7 4
8 10 6 0.54 0.5
9 8
10 10
11 3
12 6
13 15 9 0.54 0.5
14 12
15 15
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Table 3-2. Input parameters for DDA simulations.

Mechanical Properties

Elastic Modulus, GPa 15.3
Poisson's Ratio 0.21
Density, kg/m® 2300
Numerical Control Parameters

Dynamic control parameter 0.99
Number of time steps 10000
Time interval, sec 0.0005
Assumed max. disp. Ratio, m 0.0005
Penalty stiffness, GN/m 0.1
Friction angle, degrees 30

L=5B=5 L=10,B=10

Figure 3-8. Deformation pattern of the roof for different B/L ratios and joints length (see
Figure 3-4 for perspective location).
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3.5 Discussion

3.5.1 The influence of bridge length on the stability of the immediate roof

With increasing bridge length the intersection probability of two joints belonging to two
different sets in a randomly selected unit area in the rock mass naturally decreases (Hatzor
and Feintuch, 2005). Therefore, with increasing bridge length fewer blocks are expected in
the rock mass, as discussed above. In the layered rock mass configuration modeled here this
also implies wider blocks in each layer. Previous studies indicate that jointed layer stability
increases with increasing block width (Passaris et al., 1993; Ran et al., 1994) up to an optimal
width beyond which vertical shear along the abutments will dominate over stable arching — as
the dead weight of the overlying continuous beams becomes too high (Hatzor and Benary,
1998). The average block width with respect to beam span in the simulations performed in
this research is well within the range for which Hatzor and Benary (1998) found increasing
stability with increasing block length (Figure 3-10). This effect is shown here for the two
simulated joint trace lengths in the graphical outputs of the deformed meshes in the immediate
roof zone (Figure 3-8) but this is particularly evident for the L=10m set of plots. It can be
appreciated by visual inspection of the graphical outputs that with increasing bridge length
individual layers behave more rigidly, as they consist of a smaller number of blocks, and
consequently of wider individual blocks. This effect is important for the stability of the
immediate roof area (measurement points 1 and 2) where failure of entire roof slabs is

permissible kinematically.

3.5.2 The influence of joint length on rock mass deformations

In Figure 3-9 the vertical deformations in the rock mass away from the immediate roof
zone and all the way up to the surface (measurement points 3, 4, 5) are plotted as a function of
mean joint trace length as well as b/L ratio. Inspection of Figure 3-9 reveals that the influence
of the b/L ratio on rock mass deformation above the immediate roof zone is not significant as
can be appreciated from the flat curves in this plot. The parameter which seems to be the most
significant for rock mass deformation above the immediate roof zone seems to be the
simulated mean joint trace length. With increasing length of through going joints (Gross and
Eyal, 2007), more vertical shear deformation is possible in the rock mass in comparison to
mechanically layered rock masses where the vertical extent of cross joints is bounded by

bedding plane boundaries. This study clearly indicated that mechanically layered rock masses
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exhibit less vertical deformation, and consequently less surface settlements, then a rock mass

with long through-going joints, even when the total number of blocks in the rock mass is

equal.
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Figure 3-9. Final vertical displacement (after 5 sec) above immediate roof as a function of
joint bridge / joint length. FMML results shown for reference.
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Figure 3-10. Friction angle required for stability vs. ratio between block width and beam
(opening) span (after Hatzor and Benary, 1998). Dashed ellipse shows the relevant block
widths / opening ratio for the simulations performed in this study.
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CHAPTER 4 - DYNAMIC SLIDING OF A TETRAHEDRAL WEDGE

4.1 Introduction

A new analytical solution for dynamic block sliding in three dimensions is developed in
this chapter based on the original static limit equilibrium formulation presented by Goodman
and Shi (1985) for both single face and double faces sliding (Figure 4-1). The chapter begins
with dynamic single plane sliding problems where the block is free to slide in any direction
along the sliding plane (see Figure 4-l1a), and proceeds with the dynamic sliding of a
tetrahedral wedge where the sliding direction is controlled by the orientation of the two
boundary planes (see Figure 4-1Db). In the case of single plane sliding the results are compared
with classical Newmark's solution. In the case of a tetrahedral wedge both the analytical and
numerical results are compared with dynamic shaking table experiments performed on a
physical model of a tetrahedral wedge.

Application of any analytical solution, sophisticated or accurate as it may be, is only
valid for a single, rigid block for which the failure mode must be assumed in advance. In
order to study the dynamic behavior of a rock slope consisting of multiple and interacting
rigid blocks however, a discrete numerical approach such as the numerical discontinuous
deformation analysis (DDA) method (Shi and Goodman, 1989a; Shi, 1993) is required.
However, an accurate performance of the numerical method does require rigorous validation
studies using comparisons to analytical solutions and/or physical models of simplified
problem geometries. In this chapter the 3D-DDA version (Shi, 2001) is validated using the
results obtained from shaking table experiments.

In the current formulation of both 2D as well as 3D DDA codes a constant friction angle
value is assumed for the sliding interface regardless of the intensity or duration of shaking. In
the course of shaking table experiments friction degradation of the sliding interface is clearly
observed during dynamic shaking, leading to block "run out" after a certain number of cycles
of motion. To obtain a quantitative measure of the amount of dynamic frictional degradation
the shaking table results are used in conjunction with the new analytical solution so that the
velocity dependency of the sliding interface could be determined.

As the time dependency of friction resistance is important here, the classic Coulomb-
Mohr friction criterion has been modified to incorporate "rate-and-state™ effects using a
double-direct-shear apparatus (Marone et al., 1992) or more recently a conventional (single)

direct shear system for rock interfaces (Biran et al., 2010). In this chapter, the single direct
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shear apparatus is used to determine the dynamic friction law for the studied interfaces.
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Figure 4-1. Schematic illustration of single (a) and double (b) face sliding in 3D.

4.2  Analytical solution for dynamic sliding of wedge

4.2.1 Limit Equilibrium Equations

The static limit equilibrium equations formulated for each time step are discussed in this
section for both single and double face sliding. Naturally, the expected failure mode must be
known in advance to formulate the equilibrium equations. In the cases discussed here the
resultant forces are applied to the centroid of the sliding block, slightly in contrast to the
physical reality where the input motion is applied to the foundation upon which the block
rests. Algorithms for MATLAB functions for both single and double face sliding are given in
appendix 1.

Single Face Sliding
A typical three dimensional model of a block on an incline is illustrated in Figure 4-1a.
The dip and dip direction angles are, & = 20 and p = 90°, respectively. Although it is a simple
2D problem, the model is plotted as if it were 3D to demonstrate the advantages of the new
solution. For this purpose, a Cartesian coordinate system (x,y,z) is defined where X is
horizontal and points to east, Y is horizontal and points to north, and Z is vertical and points
upward. The normal vector of the inclined plane is: A =[n,,ny,n,], Where:
n, =sin(a)sin(p)
n, =sin(er) cos() (4.1)
n, =cos(a)

The force equations presented below refer to a block with a unit mass. Hence, these
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equations can be discussed in terms of accelerations. The resultant force vector that acts on
the system at each time-step is r =[r,, r,,r,]. The driving force vector that acts on the block
(m), namely the projection of the resultant force vector on the sliding plane, at each time step
is:

m=(Axr)xn (4.2)
The normal force vector that acts on the block at each time step is:

p=(A-NA (4.3)
At the beginning of a time step, if the velocity of the block is zero then the resisting force

vector due to the interface friction angle gis:

h{%m@mm,tm@mqm (4.4)
—-m , else
where m is a unit vector in direction m.
If, at the beginning of a time step the velocity of the block is not zero, then:
f =—tan(g)|pN (4.5)

where V is the direction of the velocity vector.

In an unpublished report, Shi (1999) refers only to the case of a block subjected to
gravitational load, where the block velocity and the driving force have always the same sign.
The same is true for the original equations published in the block theory text by Goodman and
Shi (1985). However, in the case of dynamic loading the driving force can momentarily be

opposite to the block velocity.

Double Face Sliding

Double face sliding, or as often referred to as the wedge analysis, is a classic problem in
rock mechanics that has been studied by many authors (e.g. Londe et al., 1969; Goodman,
1976; Hoek and Bray, 1981; Hatzor and Goodman, 1997). A typical model of a three

dimensional wedge is shown in Figure 4-1b. The normal to plane 1 is , =[n,,n,,n,] and the

normal to plane 2 is , =[n n,,]- Consider a block sliding simultaneously on two boundary

x2'ny2’

planes along their line of intersection I,, where:
I, = A, A, (4.6)
The resultant force in each time step is as beforer =[r,, r,, r,], and the driving force in each time

step is:
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m=(r- |A12) |A12 (4.7)
The normal force acting on plane 1 in each time step is p=[p,, p,, p,], and the normal force

acting on plane 2 in each time step isq =[q,,q,,d,], where:

A

P=((Fxf)- 1) (4.8)

q=((Fxf)- I, (4.9)
As in the case of single face sliding, the direction of the resisting force ( f ) depends upon the
direction of the velocity of the block. Therefore, as before, in each time step:

—(tan(¢1)\ﬁ\+tan(¢2)\cﬂ)n‘1 V =0 and (tan(¢1)\b\+tan(¢2)\q\)<\m\
fol-m . V=0 and (tan(g)|p|+ tan(g,)a])=|m] (4.10)
vV

=0
~ (tan(g,)| p| + tan(g,)[alJ #0

4.2.2 Dynamic equations of motion
The sliding force, namely the block acceleration during each time step, is s=[s, s, s,] and is
calculated as the force balance between the driving and the frictional resisting forces:
S=m+f (4.11)
The block velocity and displacement vectors are v =|v,,v,,v,JandD=[D,, D,, D,], respectively.
Att =0, the velocity and displacement are zero. The average acceleration for time step i is:

1,
S; :E(si—l"_si) (412)

The velocity for time step i is therefore:

V, =V, +SAt (4.13)

It follows that the displacement for time step i is:

By~ D, +V, A+ S AL (4.14)

Due to the discrete nature of the suggested algorithm, sensitivity analyses were
performed to discover the maximum value of the time increment for the trapezoidal
integration method without compromising accuracy. It is found that the results are sensitive to
the time interval size as long as the friction angle is greater than the slope inclination, and the

time increment can not be larger than 0.001 sec to obtain accurate results.
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4.3 Comparison to classical Newmark's approach

The validity of the new developed 3D analytical formulation presented above is tested
using the classical 2D Newmark's solution for the dynamics of a block on an inclined plane.
The typical Newmark's solution requires condition statements and is solved using a numerical
time step algorithm as discussed for example by Kamai and Hatzor (2008). The Newmark's
procedure is related here to as the 'exact solution’, in order to distinguish between the existing
approach and the analytical solution proposed here. Figure 4-2A shows a comparison between
Newmark, analytical, and 3D-DDA solutions for a plane with dip and dip direction of « = 20°
and B = 90° respectively, and friction angle of ¢= 30°. A sinusoidal input motion in the
horizontal X axis is used for dynamic loading, so the resultant input acceleration vector is r =
[r« 1y r;] = [0.5sin(10t) O -1]g. The accumulated displacements are calculated up to 10 cycles
(tr = 2m sec). The input horizontal acceleration is plotted as a shaded line and the acceleration
values are shown on the right hand-side axis. The theoretical mechanical properties as well as
the numerical parameters for the 3D DDA simulations are listed in Table 4-1. For both the
Newmark's and analytical solutions the numerical integration is calculated using a time
increment of At = 0.001 sec. For the 3D approaches (the new analytical solution and 3D-
DDA), the calculated displacement vector is normalized to one dimension along the sliding
direction.
An excellent agreement is obtained between the new analytical and Newmark's solutions
throughout the first two cycles of motion. There is a small discrepancy at the end of the
second cycle which depends on the numerical procedures and will decrease whenever the time
increment decreases. The relative error of the new analytical solution and 3D-DDA method
with respect to the existing Newmark's solution is shown in the lower panel of Figure 4-2A,

where the relative error is defined as:

E ‘DNewmark - Dcomparedsolutiorl .100% (4.15)
rel |D

Newmark|

The relative errors for both the analytical solution and 3D DDA are found to be less the 3% in

the final position.
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4.4 Comparison between 3D analytical and numerical approaches

The agreement between the 3D analytical and 2D Newmark's solutions has been
established in the previous section; therefore the analytical solution will be used next as a
reference for numerical dynamic simulations with 3D-DDA. Figure 4-2B presents a
comparison between the analytical and 3D DDA solutions for the case of a block on an
inclined plane (see Figure 4-1a) subjected to two components of a dynamic, horizontal, input
loading function. The resultant input acceleration vector is T = [ry ry r;] = [0.5sin(10t)
0.5sin(5t) —1]g, and the friction angle is again ¢ (1= 30°. The two components of the input
horizontal acceleration are plotted as shaded lines and the acceleration values are shown on
the right- hand side axis. Note that the relative error presented in the lower panel is now with

respect to the 3D analytical solution, defined as:

_ Danalytic - D3D DDA‘
rel —

-100% (4.16)

analytic
The relative error in the final position in this simulation is approximately 8%.

The comparisons thus far were between analytical and numerical solutions, both of
which incorporate significant assumptions regarding material behavior and boundary

conditions. In the next section physical model test results will be used to study the

applicability of both the numerical and analytical approaches employed above.

Table 4-1. Numerical parameters for 3D-DDA forward modeling simulation.

Block on an incline model Tetrahedral Wedge
Mechanical Properties:
Elastic Modulus, MPa 20 200000
Poisson's Ratio 0.25 0.25
Density, kg/m® 1000 1700
Friction angle, Degrees 30 30+ 36
Numerical Parameters:
Dynamic control parameter 1 1
Number of time steps 628 8000
Time interval, Sec 0.01 0.005
Assumed max. disp. Ratio, m 0.01 0.01
Penalty stiffness, MN/m 10 10000 + 20000
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Figure 4-2. Dynamic block displacement for single face sliding: A) Comparison between 2D
Newmark solution, the new 3D analytical solution, and 3D-DDA for horizontal input
acceleration parallel to the X axis. Relative error with respect to Newmark solution is plotted
in the lower panel, B) Comparison between the new 3D analytical solution and 3D-DDA for
2D horizontal input acceleration parallel to X and Y axes simultaneously. The relative error is
calculated with respect to the new 3D analytical solution.
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4.5 Experimental determination of interface friction

Both numerical and analytical solutions require a definition of the peak and residual
friction angles of the interface along which dynamic sliding takes place. Peak and residual
friction angles for the tested interface were determined experimentally using direct shear tests
performed at Ben-Gurion University rock mechanics laboratory. Special cubic concrete
samples were cast specifically for that purpose using B30 Portland cement with water/cement
ratio of 0.3 in PVC moulds. First the peak friction angle for very low normal stress was
determined using simple tilt tests by slowly increasing the inclination of the base block and
measuring the inclination when sliding initiated. Next direct shear tests were performed on the
same cubic concrete blocks utilizing the hydraulic, closed-loop, servo-controlled system at the
Ben-Gurion University rock mechanics laboratory (Figure 2-4) where both axial and shear
pistons could be operated using either load or displacement outputs as the control variable.
Two types of direct shear tests were performed: 1) Velocity stepping under a constant normal
stress of 5 MPa and variable slip rates of 10, 0.5, 1, and 3 pum/sec, to explore velocity-
dependency of the concrete interface, and 2) Five-segment direct shear tests under constant
normal stress values of 1, 2, 3, 4, and 5 MPa and constant displacement rates of 0.002, 0.020,
and 0.100 mm/sec, to determine steady state friction coefficient as a function of sliding

velocity.

4.6 Dynamic shaking table experiments

A 13 cm width by 20 cm long concrete block was attached to the horizontally driven
shaking table of the Earthquake Simulation Laboratory at U. C. Berkeley (Figure 2-3). The
base block was set at an inclination of 28° below horizontal to the North such that the
inclinations of the two boundary planes were 51.4/065.8 and 51.4/295.2, arranged
symmetrically about the shaking axis (Figure 4-3). The concrete blocks for the dynamic
shaking table experiments were made using the same preparation procedures described above
with a static interface friction angle of 36°. A well fitted tetrahedral concrete block was placed
on the wedge-shaped slab such that under gravitational pull only the block remained
stationary. Note that after few shaking experiments, the concrete interface was rubbed and
consequently the static interface friction angle was decreased.

Two 1-D linear accelerometers were fixed to the table and to the fixed block. Two
displacement transducers measured the relative displacement of the sliding block and shaking

table (see Figure 4-3). A third linear accelerometer was attached to the upper sliding block in
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order to measure the natural frequency of the experimental construction. A discrete Fast
Fourier Transform (FFT) performed on the free vibration signal due to a hammer blow in
parallel to the shaking table axis yielded a natural frequency for the experimental set up in the
range of 70 - 90 Hz.

Sinusoidal input motions with frequencies ranging between 2 to 5 Hz and amplitudes of
0.20 - 0.28 g were induced by the function generator. The sinusoidal input motions were
ramped up linearly for 5 seconds, followed by full amplitude for several tens of seconds, to
the time that the block completed 10 cm of sliding, the largest traveling distance allowed by

the system configuration.

Sliding Block
Fixed Block

_— Accelerometer

Accelerometer

LVDT

Figure 4-3. Layout of the tetrahedral wedge assembly mounted on the UCB shaking table
facility.

4.7 Results

4.7.1. Determination of friction angle from tilt and direct shear experiments

The average friction angle obtained from 20 tilt-tests for the concrete interface was 36°,
with standard deviation of 3°. Another 20 tilt-tests after gentle polishing of the concrete
interface yielded average friction angle of 32° with standard deviation of 2°.

A representative result of a direct shear velocity stepping test is presented in Figure 4-4
where the response of the interface to changes in the imposed sliding velocity is shown.

Induced velocity decrease from 10 to 0.5 pum/sec results in immediate reduction in friction
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coefficient followed by steady state sliding at a higher friction coefficient, whereas induced
velocity increases from 0.5 to 1 um/sec and from 1 to 3 um/sec both result in immediate
increase in friction coefficient followed by steady state sliding at a lower friction coefficient,
suggesting that the tested interface exhibits a "velocity weakening" behavior. The immediate
response to the change in the induced sliding velocity before steady state sliding is attained
(open circles in Figure 4-4) is known as the direct velocity effect and is proportional to the A
parameter of the rate and state friction law as explained in section 2.1.3 (see also Scholz,
1998).

Towards the end of each constant velocity sliding segment frictional resistance seems to
apparently increase (see Figure 4-4). There are no observations of the actual interface
condition during each sliding segment, but visual inspections of the tested interface at the end
of each complete test reveal that the interface was damaged during the entire testing. The
slight increase in shear strength detected at the end of each steady state sliding segment is
therefore attributed to the apparent increase in the contact area due to interface fragmentation.

The induced velocity ratio between two segments (V,/V;) allows to evaluate the rate
and state A and B coefficients (Dieterich, 1979; Ruina, 1983). Assuming steady-state sliding
is reached in each segment, the values of A = 0.027 and B ~ 0.035 are obtained for the tested
concrete interface.

To determine classical Coulomb-Mohr failure envelopes for different sliding rates, the
normal stress was changed while steady state sliding was maintained, as shown for example
in Figure 4-5A for sliding velocity of 0.020 mm/sec. The resulting Coulomb-Mohr failure
envelopes for three different values of sliding velocity are plotted in Figure 4-5B, where
highly linear trends are indicated. It is found that the Coulomb - Mohr friction coefficient
clearly exhibits velocity dependence, decreasing in the tested interface from p = 0.6547
(corresponding to ¢ = 33°) to u = 0.6220 (corresponding to ¢ = 32°) as sliding velocity
increases from 0.002 to 0.100 mm/sec, suggesting again a "velocity weakening" interface as

inferred from the series of velocity stepping tests discussed above.
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Figure 4-4. Representative result of a velocity stepping tests performed with the direct shear
system shown in Figure 2-4.
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Figure 4-5. Direct shear test results for determination of the effect of imposed sliding velocity
on Coulomb-Mohr friction: A) Representative example of a complete stress-displacement
history for a typical five-segment test (v = 0.020 mm/sec), B) Coulomb-Mohr envelopes for
the tested concrete interface obtained with three values of shear rate.

4.7.2. Comparison between dynamic shaking table experiments and 3D-DDA results

Comparison between 3D-DDA and shaking table experiments for the dynamic sliding
of a tetrahedral wedge is shown in Figure 4-6. The input motion is sinusoidal at a frequency
of 2Hz and amplitude of 0.21 g corresponding to shaking table amplitude of 13 mm. Two
different input motion modes are modeled: 1) "loading mode" - application of the dynamic
force at the centre of mass of the (upper) sliding block, 2) "displacement mode™ - application
of the dynamic displacement into the (lower) foundation block. To allow meaningful analysis

in "displacement mode™ high input frequencies were filtered out using a low pass Butterworth
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filter of 2.5 Hz. To preserve similarity between the original loading functions used in DDA
simulations, the same filtering procedure was performed also for analysis in "loading mode".

Both DDA simulations are carried out using a constant value of friction angle on both
planes, namely ¢ = ¢, = ¢. To determine the appropriate input friction angle for 3D-DDA
simulations, the displacement data for the wedge was used in the following manner. Consider
Figure 4-7A where actual block displacement initiates at a time t; = 8.8 sec after the beginning
of the experiment. The corresponding level of input acceleration of 0.14 g at t; is used to
recover the limiting value of friction angle for the two boundary planes of the wedge by
inversion, using a pseudo-static limit equilibrium analysis for a tetrahedral wedge. The
limiting friction angle value thus obtained is ¢ = 30°. This limiting value of the friction angle
is confirmed by the new 3D analytical solution discussed above for the given wedge geometry
and level of induced shaking.

It is found that in both input motion modes the computed displacement results are
highly sensitive to the choice of the numerical penalty stiffness parameter, while the defined
friction angle play only a secondary role (see Figure 4-6). In "loading mode" accurate results
are obtained when the numerical penalty stiffness value is increased up a maximum value of
40 GN/m (Figure 4-7), beyond which the numerical solution does not converge. The upper
limit penalty value for the "displacement mode" is found to be 20 GN/m, beyond which the
numerical solution again does not converge. Otherwise no significant differences are found
between the two different modes of input motion. A small discrepancy is detected between
the measured and computed block response at the beginning of the simulation in both loading
modes (Figure 4-7). This behavior is attributed to the high sensitivity of the numerical code to
the choice of the numerical penalty stiffness value. The numerical control parameters for 3D-
DDA simulations are listed in Table 4-1. Note that the model dimensions are in mm and in
contrast to a previous study (Tsesarsky et al., 2005) no kinetic damping is applied here,

3D-DDA in its current stage of development assumes a constant friction angle value for
the sliding interfaces. The shaking table test results, however, suggest that the dynamic
displacement of the physical block departs from classical Newark's type displacement and
actually exhibits "run out™ behavior (see Figure 4-8) that can only be explained by means of
frictional degradation as a function of the number of cycles of motion. In the next section the
new analytical solution is employed to determine quantitatively, by back analysis, the rate and

amount of friction degradation during dynamic slip.
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Figure 4-6. 3D-DDA validation using shaking table experiment results for the dynamic
sliding of a wedge, for two different numerical penalty stiffness values (k = 10 and 20 GN/m)
and two different input motion (“loading” and “displacement”) modes.
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4.7.3. Dynamic friction degradation

Two representative tests exhibiting “run-out” behavior are shown in Figure 4-8. The
obtained time dependent sliding function can be approximated by three linear segments. To
reproduce the physical test results analytically three different values of friction angle are
therefore introduced into the new analytical solution to best fit the experimental data,
recalling that the friction angles for the two boundary planes of the wedge are assumed equal.
The “best fit” friction angles thus obtained for each sliding segment along with maximum
shaking table acceleration are listed in Table 4-2 for eight different experiments. Inspection of
the results shown in Table 4-2 reveals the striking similarity between back calculated friction
angle values obtained in all tests. The consistency in the back analyzed friction angle values is
demonstrated in Figure 4-9 where results from two representative sets of experiments are
plotted.

The number of loading cycles required for onset of friction degradation is found to be
between 30 and 50 in the current experimental set up, with input acceleration amplitudes of
0.21 - 0.22 g and input frequency of 2 Hz. As would be expected, the number of loading
cycles required for onset of friction degradation is reduced with increasing acceleration
amplitude.

The average sliding velocity for the best fit friction coefficients obtained for all tests is
plotted in Figure 4-10. Clearly the tested interface exhibits velocity weakening behavior that
can explain the observed “run out” of the wedge as shown in Figure 4-8. Interestingly, the
friction coefficients obtained from slow direct shear tests plot on the same linear trend

obtained from back analysis of shaking table experiments (Figure 4-10).

Table 4-2. List of back calculated tests.

Test ¢, degrees @, degrees ¢, degrees Max. Shaking Table Acceleration, g
Cu 29.5 29 27 0.206
Ccv 29.5 29 27 0.206
Cw 29.4 28.7 26 0.208
CYy 29.3 28.8 27 0.205
Ccz1 29.9 29.4 27 0.219
Cz2 29.9 29.4 27.2 0.217
Cz3 29.6 29.3 27.1 0.218
Cz4 29.8 29.5 28.5 0.217
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4.8  Discussion

This study presents the first attempt known to the author to perform fully dynamic
analysis with 3D-DDA and to check the accuracy of the method using both analytical
solutions and physical test results. One of the strengths of the DDA method is that the mode
of failure of the block system is a result of the analysis and not an assumption, especially
regarding 3D analysis. The numerical results obtained with 3D-DDA are found to be in good
agreement with both methods of validation, with the numerical results being slightly on the
conservative side when compared to results of shaking table experiments. It is found that
dynamic application of 3D-DDA is highly sensitive to the numerical penalty (contact spring
stiffness); this sensitivity may lead to observed sliding initiation in 3D-DDA that precede the
actual arrival time of the theoretical yield acceleration. On the other hand, it is found that the
friction angle in 3D-DDA play only a secondary role when computing dynamic sliding, as
obtained from comparison between Figure 4-6A and B.

Two methods of dynamic input are studied, referred to here as "loading” and
"displacement” modes, both of which provide similar results within the accuracy resolution
sought in this study. The "loading mode™ is found to be less sensitive to the numerical penalty
and consequently results obtained with this input method are smoother. As in 2D-DDA, the
most accurate results with 3D-DDA are obtained with a highest value of numerical penalty,
beyond which the numerical solution does not converge. The optimum value of this numerical
control parameter is case specific and depends, to a great extent, on the elastic modulus and
mass of the modeled block (see Table 4-1).

In the 3D-DDA codes used in this research a constant value of frictions angle is
assumed for a given interface, whereas physical test results suggest that frictional degradation
does occur with increasing numbers of shaking cycles culminating, ultimately, in wedge "run
out” (see Figure 4-8). The actual amount of friction loss is determined here by best-fitting the
shaking table results with the new 3D analytical solution.

With a low amplitude sinusoidal input it is found that several tens of seconds of cyclic
motion are required to induce run out. The number of cycles required for block run out is
found to be inversely proportional to the amplitude of shaking. Few tens of cycles of motion
at a frequency range of 2-5 Hz may represent a relatively large earthquake in moment
magnitude (M) range of 7 - 8. Kanamori and Brodsky (2004) show that the source duration

of such an earthquake may reach up to 100 sec.
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Velocity stepping and classic direct shear tests indicate that the tested concrete
interface exhibits velocity weakening. Velocity weakening is also inferred from the results of
the dynamic shaking table experiments where friction degradation culminated in block run out.
Interestingly, friction degradation leading to block run out is obtained here under dry
conditions, in contrast to recent studies on the run out of large landslides (Vardoulakis, 2000;
Veveakis et al., 2007; Goren and Aharonov, 2009). Note that there are three fundamental
differences between the direct shear and shaking table tests: 1) in direct shear tests the
velocity of the sliding block is induced by the hydraulic servo-control command whereas in
shaking table tests the velocity of the block is in response to the induced displacement of the
underlying table, 2) in direct shear tests friction values are obtained from "steady state™
sliding whereas steady state conditions are never obtained in the shaking table experiments
and friction values are inferred by inversion. While for the case of shaking table tests it cannot
be determined if friction degradation is a result or a cause of the sliding velocity of the tested
wedge, it is clear that interface friction and sliding velocity are interrelated, and 3) the normal
stresses in the direct shear test are in the order of 10° Pa, where in the shaken block the
normal stresses are three orders of magnitude lower. However, since the concrete interface is
very smooth, it is assumed that the friction angles obtained by the direct shear tests represent
dynamic response of the tested concrete interface under slow velocities.

The friction coefficients obtained from slow direct shear tests and rapid shaking table
experiments are plotted in Figure 4-10 on a semi logarithmic scale, with velocity spanning 5
orders of magnitude. The results are quite striking. First, the slow rate direct shear tests as
well as the fast rate shaking table experiments each plot on a linear trend, and second, both
sets of tests can be fitted on the same linear trend with a very good linear regression
coefficient of R? = 0.95, confirming in essence the rate and state law of seismology
(Dieterich, 1979; Ruina, 1983) but with different testing methodology (the rate and state law
was originally formulated from analysis of velocity stepping tests; see section 2.1.3). The (A
- B) term of the Dieterich-Ruina "rate and state" variable friction law can be recovered from
results of the direct shear tests where steady - state sliding was clearly reached (see Figure 4-
10). The obtained A - B value thus obtained (-0.0079) is one order of magnitude lower than a
single value obtained from the entire suite of test data (-0.0174). Therefore, extrapolation
from slow rate direct shear test data to fast rates proves in accurate, and from engineering
stands point - un-conservative.

The classical static or pseudo-static analyses, as well as Newmark's solution, do not take

into account friction degradation along rock discontinuities, and therefore cannot predict run-
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out phenomena in rock slopes in response to ground vibrations emanating from strong
earthquakes of long duration. It is concluded that velocity-dependent friction across rock
discontinuities should be integrated into dynamic rock slope analysis, either analytical or
numerical, to obtain more realistic results when strong ground motions of long duration are

considered.
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CHAPTER 5: ATHERMALLY INDUCED “RATCHET” MODEL FOR
ROCK SLOPE STABILITY

51 Introduction

Considering daily and seasonal temperature influences, many researchers have detected
extremely slow, creep-like, slope displacements due to cyclic temperature changes in long-
term monitoring surveys (Hatzor, 2003; Watson et al., 2004; Gunzburger et al., 2005; Gischig
et al., 2011a; Gischig et al., 2011b; Mufundirwa et al., 2011). Incidentally, the motivation for
some of these monitoring surveys was the preservation of cultural heritage sites around the
world, for example in Slovakia (Vicko et al., 2009), Japan (Greif et al., 2006), and Israel
(Hatzor et al., 2002).

Gunzburger et al. (2005), in their investigation of the Rochers de Valabres slope in the
Southern Alps of France, using a high-precision geodetic monitoring system and numerical
modeling, found that daily surface temperature oscillations played an important preparatory
role in rock fall events. They showed that daily temperature fluctuations may be responsible
for generating irreversible displacements on some fractures. Nevertheless, they concluded that
the monitoring of preparatory factors was not sufficient to predict eminent slope collapse.
Mufundirwa et al. (2011) monitored natural rock slope deformation due to thermal stresses
across fractures in a chert rock mass. By a new method to minimize displacement
proportional to temperature, they recovered the recognized displacement that has been related
to reversible thermo-elastic response of the rock mass and the sensor and concluded that
thermal fatigue predominantly caused permanent fracture deformations. Gischig et al. (2011a;
2011b) demonstrated how thermo-mechanical effects can drive rock slope deformation at
greater depths below the annual thermally active layer. They found that deformation and
progressive rock slope failure can be driven solely by thermo-mechanical forcing.

Various researchers have suggested that daily and seasonal temperature fluctuations
may generate thermally induced stresses sufficiently high to propagate pre-existing cracks in
the rock mass (e.g. Vargas Jr et al., 2009). Furthermore, although the seasonal temperature
front penetrates only a few meters into the rock mass, it may still have significant mechanical
consequences in terms of displacements or stress changes far from the rock surface, especially
for rock slopes with critically stressed discontinuities (Gunzburger et al., 2005; Gischig et al.,
2011a; Gischig et al., 2011b).
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Watson et al. (2004) utilized data obtained from an extensive instrumentation
monitoring program at the Checkerboard Creek in British Columbia, Canada. Their
monitoring record indicates a persistent annual displacement cycle that matches the thermal
cycle, as recorded near the bedrock surface. Their numerical analysis indicates that the
permanent displacement occurs along steeply dipping discontinuities which often intersect in
the rock mass to form wedges.

In this chapter a thermally induced wedging mechanism is suggested to explain how
cyclic thermal oscillations induce intermittent expansion and contraction of the tension crack,
causing seasonal translation of rock blocks. A new evidence for thermally induced block
displacements is presented using both thermal and displacement data from a monitored rock
block in the West face of Masada Mountain, Israel, along with re-visited and re-analyzed
monitoring data from the East face of Masada. A removable block at the Eastern slope of the
mountain, referred to as Block 1, is used as a case study, where an accumulated displacement
of 200 mm took place during the geological history. The theoretical possibility of obtaining
thermally induced block displacements in Masada rock slopes is explored, given the measured
seasonal temperature amplitude and the mechanical and physical properties of the rock mass.
Then, the seismic loading in Masada rock slopes is addressed, based on the assumed
seismicity of the region and the measured topographic site effect in the mountain. The two
loading mechanisms, thermal vs. seismic, that drive rock slope deformation are discussed and

their relative significance in rock slope deterioration are compared.

5.1.1 Geological setting of Masada

Masada Mountain, a world heritage site, is an uplifted, lozenge -shaped horst within the
band of normal faults that comprise the western margins of the Dead Sea rift (DSR) valley
(see Figure 5-1A). The rock mass consists of bedded dolomites and limestones, inclined 5° up
to 20° to the East (J1), and is intensely fractured by two orthogonal, sub-vertical, and very
persistent joint sets, striking roughly parallel and normal to the long axis of the mountain,
namely J2 set strikes NNE and J3 strikes ESE. In a regional study in the western margins of
the Dead Sea pull-apart, Sagy et al. (2003) suggest that these two dominating regional joint
set patterns were developed during a single tectonic phase. The mean joint spacing at Masada
varies from few decimeters the West face up to 5-10 m in the East face of the mountain
(Hatzor, 2003).
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Figure 5-1. Location maps. A) the Masada Mountain in the Western margins of the Dead Sea
rift valley. B) location of the monitoring stations (EMS = East Masada Station; WMS = West
Masada Station), C) monitored blocks in the “Snake Path” cliff (EMS), D) collapsed block at
WMS.

5.1.2 Climatic setting and observed weather induced collapse in Masada

Climatically, Masada Mountain is located in the Eastern part of the Judean Desert, an
arid zone with mean annual rainfall values of 35 mm/year, and average seasonal minimal and
maximal temperatures of 12.7 °C and 39.7 °C, respectively, as reported by the Israeli
Meteorological Service (2011) for the period of 1983 - 2000. Within the framework of the
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MASAL research project (Meteorological Observation and Assimilation of the Atmosphere
on Long term, Dead Sea, Israel) (Corsmeier, 2006; Schmitz, 2009) a fully equipped
meteorological station, located 300 meters from the West slope of Masada, has been
recording the amount of precipitation, temperature, and wind velocity since 2006.

During the night of February 10, 2009, a heavy rain storm struck the West face of
Masada Mountain. Consequently, a sizeable rock fall was triggered, the debris of which
damaged the ancient path leading to the water cisterns that were excavated by the Romans
some 2000 years ago for water storage in the Western cliffs of the mountain. The February
10, 2009, slope failure (Figure 5-1D) was the motivation for installing a monitoring system in
the West slope of the mountain in July 2009, for investigation of the dynamic response of

rock blocks to thermal fluctuations.

5.2  West and East monitoring stations in Masada

5.2.1 West Masada Station (WMS)

In order to measure with high precision the rock block response to daily and seasonal
environmental oscillations, a monitoring system was installed in June 2009 on a single block
separated from the West cliff of Masada by two intersecting joint sets (Figure 5-2). The
monitoring system, manufactured by SIM STRUMENTI SNC (2009), consisting of four joint
meters, temperature, and relative humidity transducers, has been collecting output data at an
acquisition rate of 12 samples per day (24 Hr) since July, 2009. The layout of the joint meters
as installed in the Masada West Station (WMS) is presented in Figure 5-2. The joint meters
(model DS810) are 50-mm-range Potentiometers with 0.1% linearity full scale and
measurement accuracy of +/- 0.02 mm. The thermal expansion coefficient of the joint meter is
1.5 X 10° °C™* and its calibrated operating range is -30 ° to +100 °C. The static end of each
joint meter, containing the sensor, was anchored to the massive rock body while the free end
was attached to the removable block. The joint meters (WJM 1-4) were installed
perpendicular to the joint trace as follows: WJM 1 was installed on an open joint belonging to
joint set J2, WJM 2 and WJM 3 were installed across a joint belonging to joint set J3. In order
to account for thermal effects on the monitoring system a dummy joint meter (WJM 4) was
installed directly on the intact, continuous rock face. Details for joints openings and joint
meters configuration are given in Table 5-1.

An air temperature is measured with a temperature sensor (model WE710) with

precision of 0.25 °C and a range of -25 °C to 105 °C. A relative humidity is measured with a
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Humidity meter (model WE720) under an operating temperature range of -20 °C to +80 °C.
The measurement devices were connected to two separate data acquisition systems (Model
ML-4CH).

=Joint Meter

Fault plane

WiM23 7 NWIM4 gt

Figure 5-2. The environmental monitoring system at WMS, A) Face view of monitored block
(WJIM = West Joint Meter), and B) plan view schematically illustrating the rock mass
structure and joint meter position. For joint and joint meter data see Table 5-1.

Table 5-1. Joint Meters (JM) configuration in the Masada West slope monitoring station (WMS)

M Distance between bolts (cm) Joint opening JM orientation
(cm) (dip/dip direction)
1 26.4 10-12 2/250
2 25.2 3-12 33/340
3 25.0 1 3/180
4 24.8 - 0/000
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5.2.2 East Masada Station (EMS)

In a previous rock slope stability study Hatzor (2003) monitored time dependent
displacements of rock blocks (referred to as "Block 1" and "Block3" in that study) embedded
in the “Snake Path” cliff at the East face of Masada Mountain, using sensitive joint meters.
Block 1 is a prismatic block resting on a gently (19 °) Easterly-dipping bedding plane (J1),
separated from the cliff by two sub-vertical, orthogonal tension cracks (J2 and J3) (see Figure
5-3A). The block height is 15 m and its width is about 7 m. Four joint meters (EJM 1-4) were
mounted across the two tension cracks that separate Block 1 from the "Snake Path” cliff,
along with temperature transducer (T1) that was mounted inside an open tension crack at the
back of the block (see Figure 5-3A). Block 3, located at the south part of the cliff (see Figure
5-1C), separated from the rock mass by a single tension crack, also rests on an Easterly
dipped bedding plane. Two joint meters (EJM 10 and 11) were installed across the tension
crack (J3) at the back of the block. Another temperature transducer (T2) was installed within
an open fracture nearby the block (Figure 5-3B).

Time — dependent displacements of Block 1 and Block 3 and the air temperature near
the blocks were recorded from January 14 to June 30, 1998. Cable bolt support was then
installed in Block 1 to anchor the block to the cliff, in connection with a slope reinforcement
campaign that was conducted at the East slope at that time, while Block 3 remained un-
reinforced to this day. The East slope monitoring system of Hatzor (2003) is referred to here

~ s EJM 1

e EJM2
Block 1
EIM4 oo g EJM 3

,

Block 3_ e EIM 10

T2

Figure 5-3. Monitoring system layout at EMS (after Hatzor, 2003) where EJM stands for East
Joint Meter: Block 1 (A), Block 3 (B).
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5.3  Temperature and displacement monitoring results

The outputs of WMS instruments are plotted in Figure 5-4 for a period of 25 months
(July 2009- August 2011). The joint meters were wired such that joint opening returns
positive output. The raw data recorded at two hours intervals is shown in Figure 5-4A (gray
lines), smoothed by daily moving average (solid lines). As clearly indicated in Figure 5-4A
the “dummy” joint meter installed on intact bed-rock (WJM 4) shows a nearly static response
while the rock joints (WJM 1-3) exhibit relatively large fluctuations over time. To study the
relationship between air temperature and joint displacement, moving averages with a 30 days
time window has been performed on the original raw data obtained from WJM 1-4. The
results are plotted in Figure 5-4B as a function of time, and an inverse relationship between
cooling and joint closure is clearly indicated. Note that the output of dummy transducer
(WJIM4) exhibits a certain amount of drift, believed to be an artifact as the transducer is
mounted on solid rock.

Results obtained from Blocks 1 and 3 at EMS are shown in Figure 5-5 for a period of
5.5 months between January 14 and June 30, 1998. Since the data acquisition rate in EMS
was not constant, Figure 5-5 represents the joint meter displacement (in mm) and air
temperature as a function of time, using daily average data. The joint meters output was
zeroed such that the beginning of the monitoring period was set at the origin for each joint
meter output. Accumulated joint closure related to increasing air temperature was recorded at
all joint meters during the monitoring period at the East slope. Although a full annual period
was not recorded in EMS during the monitoring survey at 1998, it is clearly evident that inter-
seasonal fluctuations in air temperature directly affect joint opening and closing, as inferred
from the joint meters output.

In contrast to the short monitoring period in East slope, the recent monitoring data from
the West slope provide information about long-term joint displacement and air temperature
and the relationship between them. The annual amplitude of both air temperature and joint
displacement can be inferred from the results. The annual amplitude recorded by WIM 2 is
0.14 mm while the annual air temperature amplitude is 9.1 °C.

Monitoring data presented in Figure 5-4 and Figure 5-5 from WMS and EMS suggest
that joint opening and closure are strongly correlated with air cooling and heating. This
correlation implies that contraction and expansion of the rock on both sides of the crack
manifests in joint opening or closure, as clearly indicated by joint meter outputs. The

relationship between joint opening and air temperature for one annual cycle in WMS is
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plotted in Figure 5-6 using monthly averaging of the raw data. The annual cycle for WIM 1
begins on May, 2010 and ends on May 2011; the annual cycle for WIM 2, 3, and 4 is from
August 2009 to August 2010. To demonstrate the time dependent path of the monitored joint
displacement, the beginning and end of the annual cycle are denoted in the figure.
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Figure 5-4. WMS output from July 2009 to August 2011 (Joint opening is positive). A)
original data sampled every 2 hours (gray lines) smoothed by daily moving average (solid),
B) temperature and joint displacement vs. time using monthly moving average.

51



Chapter 5 — A thermally induced "ratchet" model for rock slope stability

A. Block 1
= ey, 40
c 04 ] o
= ] 136 ©
o ] e
32 S
g -0.4 ] g
L% 128 3
o ] =
2 24
A 08 ; 2
= 120 .=
5 EIM 3 1 <
S .12 716
r (@)
E 07 EJM 10 :36 L).
5 ] e
I 132 3
g -0.4 ] ©
s | o &
2 08/ =
= i 120 =
.g I ] <
= 1.2 16

15-Apr-98 -
5-May-98 -
25-May-98 |
14-Jun-98 -

14-Feb-98
6-Mar-98 -
26-Mar-98 -

25-Jan-98

Figure 5-5. EMS output data from January 14 to June 30, 1998 (Joint opening is positive, T =
temperature transducer).

An inverse relationship between joint opening and air temperature is obtained with a
relatively high linear correlation for WJM 2 and 3 (Figure 5-6), implying that the dominant
factor affecting joint displacement is thermo-elastic, the majority of which is recovered by
the end of an annual loading cycle (Figure 5-6A). To address the drift of WJM 4, and
assuming that all joint meters have a similar drift, the output of WJM 4 is subtracted from the
output of WIM 1, 2, and 3 and the results are shown in Figure 5-6B. The subtraction of WJM
4 data suggests that at the end of an annual cycle the monitored joints do not exhibit any

permanent deformation.
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Figure 5-6. Joint opening vs. air temperature smoothed by monthly averaging for one annual
cycle (Joint opening is positive): A) smoothed data with no correction where accumulated
annual displacement is denoted, and B) WJIM 1,2,3 corrected for apparent temperature effect
as obtained from dummy transducer WJM 4. WJM 1 from May 2010 to May 2011, WJM
2,3,4 from August 2009 to August 2010. Best fit linear curves are shown as dashed gray lines.
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54  Thermally induced block displacement

In this section the possibility of obtaining thermally induced block displacements in
Masada rock slopes is explored, given the measured seasonal temperature amplitude and the
mechanical and physical properties of the rock mass.

A conceptual model of thermally induced block sliding is schematically illustrated in
Figure 5-7 following original ideas presented by Watson et al. (2004). With seasonal cooling
the sliding block contracts, as a response the tension crack opens, and the wedge block
penetrates into the newly formed opening in the tension crack. In summer, when the
temperature rises, the sliding block expands and the wedge block is locked in place,
prompting compressive stress generation in the block system and pushing the sliding block
down slope. In the next cooling season shrinking of the sliding block enables further
penetration of the wedge into the tension crack, and consequently further down slope block
displacement commences in the summer by shear sliding along the sliding surface.

Gunzburger et al. (2005) argue that thermo-mechanical creep may take place without
necessarily having a wedge in the tension crack, for instance when the sliding bock is located
in a critical state from a mechanical stand point, namely very close to its limiting equilibrium.
In the wedging mechanism, however, the block can slide downward even if it rests on gently
dipping sliding surfaces, as will be shown later. Moreover, the wedging fragments are
required in cases where the rock underlying the sliding plane also undergoes thermally
induced expansion and contraction at the same rate and amount as the sliding block. In such a
case, only a continuous supply of rock fragments into the opening tension crack will enable
compressive stresses to develop and will prevent closure of the tension crack, thus allowing
progressive down plane displacement. A similar wedging process has been suggested for
fluvial erosion of river bedrock by plucking of loosened blocks (Whipple et al., 2000).

A recent photograph of Block 1 in EMS is shown in Figure 5-8, where the old EJM 1
and 2 that were installed in 1998 are still visible today. Inspection of the photograph reveals
that the block has clearly separated from the cliff over the historic time by accumulated
displacement of about 200 mm, and that sizeable rock fragments fill the aperture of the
tension crack. It is suggested here that these rock fragments can play the role of the wedge
block in a thermally induced wedging mechanism. In order to test the applicability of a
thermally induced wedging mechanism for the observed displacement of Block 1 in Masada,

an analytical approach suggested by Pasten (2012) is utilized in the next section.
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Figure 5-7 . Cartoon showing the principle elements of the thermally - induced wedging
mechanism.
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Figure 5-8. Wedge blocks in the tension crack of Block 1 at EMS. Block 1 is used for
comparison between thermally and dynamically induced sliding mechanisms (see text).
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5.4.1 Theoretical considerations

Consider the exact geometry of Block 1 as shown in Figure 5-9. The tension crack of
length Lw is filled with rock fragments that represent the wedge block shown in the
conceptual model in Figure 5-7 and the actual rock fragments captured in the photograph in

Figure 5-8. The length and height of the sliding block are Lg and H, respectively.

/_/“ Sd \V
Fixed rock

mass | Block 1

H=15.0m

Fixed rock mass

Figure 5-9. Exact geometry of Block 1 in the East slope of Masada with rock fragments
representing the wedge block in the tension crack. Sq is the skin depth, L, is the wedge length
and Lg is the block length.

It is assumed here that the rock block is a homogeneous slab experiencing a change of
temperature in its center from an initial temperature T, to a new boundary temperature T;. The
homogenization time t* required for the block center temperature to reach 99% of the new
boundary temperature T can be estimated as t* = 2:L%/Dr, where L is the slab length and D is
the rock thermal diffusivity of the rock, which is proportional to the rock thermal conductivity
(4), and inversely proportional to its mass density (o) and specific heat capacity (Cp) (Carslaw
and Jaeger, 1959). Following Pasten (2012), the depth of penetration of the heating front
during an annual cycle, referred to here as the "thermal skin depth” (Sq), may be estimated as:
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Sd ~ E ﬂ“ texp (51)
2p-C,

where tey, IS the exposure time for the given period of interest, assuming it is shorter than the
homogenization time (texp < 2:L%/Dr ). If texy > 2:L%/Dr then Sy = L/2 . For a single seasonal
cycle texp = 180 days is assumed.

Given the physical properties of the Masada rock mass (see next section), the estimated
thermal skin depth for Block 1 is wider than the wedge length Ly but smaller than the block
length Lg, as shown schematically in Figure 5-9.

Pasten (2012) suggest three displacement components that are involved in the thermal
expansion process: the thermal expansion (4r), the elastic compression of the rock material
(05), and the elastic shear response along the sliding interface (). The unconstrained seasonal
thermal expansion (o7) of both sides of the tension crack as well as the wedge fragments
inside the tension crack may be expressed by:

Op =a-AT, - (L, +28-S,) (5.2)
where « is the thermal expansion coefficient of the intact rock, AT, is the seasonal
temperature change from peak to peak, and g is a coefficient accounting for non-uniform
diffusive temperature distribution inside the sliding block and the rock mass (0 < £ < 1). Note
that gis introduced when the skin depth Sq is smaller than the half-length of the rock element.
During a thermal expansion period, uniform compressive stresses develop in the domain
leading to an elastic force within the block. Considering Figure 5-9, the maximum force
parallel to the sliding surface (Fnax) that the frictional resistance of the sliding plane can

sustain is:
Frox = s (H —% L, tanz)(tangcosn —sinn) (5.3)

where vy is the unit weight of the rock (= pg), ¢ is the friction angle of the sliding plane, and
n is the inclination of the sliding plane. The elastic displacement &, that is developed in the
wedge and the block due to Fpax is:

F... Cosn L
o, =——>— +—= 5.4
o= L+ ) (5.4)

where E is the modulus of elasticity of the rock material. Only the half-length of the sliding
block is considered in the initial element length undergoing contraction since the right
boundary of the block (see Figure 5-9) is a free surface that does not provide any reaction for

Fmax-
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Finally, assuming that the toe of the block (the lower right corner of Block 1 in Figure
5-9) is static during the expansion period, the limiting elastic displacement of the interface

parallel to the sliding direction & due to Fpgy is:

1 F
o =— " cos 55
=L n (5.5)

where k; is the shear stiffness of the sliding interface. During seasonal thermal heating the
permanent plastic displacement &, along the sliding surface may be obtained by:
5 :{a} -6,-6, if (6, -6,-6,)>0
p

5.6
0 else (5.6)

5.4.2 Physical and mechanical properties of the rock mass in Masada

Experimental determination of thermal conductivity

In order to determine the thermal conductivity of Masada dolomite a non-steady-state
probe (NSSP) is used in adherence to ASTM D 5334-00 and D 5930-97 standards. A 2.5 mm
diameter hole is drilled at the center of cylindrical dolomite samples with a diameter of 68
mm, a height of 48 mm, and a density of 2600 kg/m®. A 1.2 mm diameter thermo-resistance
needle is used as both heating wire representing a perfect line source with heat resistance of R
= 83.94 Q/m and as a temperature sensor at the source (see Figure 5-10A). After a short
transient period the temperature difference between the source and the measurement point for
a constant heating of the needle can be expressed as:

AT = Aln(t)+B (5.7)
where A and B are best-fit parameters that depend upon the heater power Q and the thermal
properties of the heated medium. Results of four different tests performed using the NSSP are
presented in Figure 5-10B on a semi-logarithmic scale. The thermal conductivity A can be

calculated from the linear slope A after the transient period as follows:

_1Q
 Adrx 8)

The average value obtained from four different tests is 4 = 1.71 +0.26 W/(m-K), a
typical value for limestones and dolomites (e.g. Rohsenow et al., 1998). Using a rock mass
density of 2600 kg/m® and assuming a typical heat capacity for dolomites of C, =810
JI(kg-K) (e.g. Rohsenow et al., 1998), the estimated thermal skin depth for a seasonal

exposure time (Equation 5.1) is Sg = 2.5 m.
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Figure 5-10. The NSSP thermal conductivity experiment in the lab: A) Experimental setting,
B) obtained experimental results

Estimating the thermal expansion coefficient from field measurements

Consider the monitored thermal response of the rock mass at WMS over a single
seasonal cycle; note that no permanent displacement of the monitored joints is observed (see
Figure 5-6B). It is believed that this is because the monitored joints in WMS are clean and
tight, i.e. because a ratchet mechanism is not possible. These results can therefore be used to
compute the thermal expansion coefficient () of the Masada rock mass, assuming that the air
temperature and the rock temperature across the skin depth are equal during the exposure
time. The monitored block length in WMS (Lg = 1.6 m) is smaller than the estimated skin
depth for a seasonal exposure time (Sq = 2.5 m). Therefore, the joint meter output represents
the contraction and expansion of the rock material on both sides of the joint across the
thermally affected zone of length L, , which is assumed to be equal to half of the block length
and the equivalent skin depth into the rock mass (see Figure 5-11A), namely L, =0.5Lg +
Sq. The thermal expansion coefficient « can be evaluated assuming a linear thermo-elastic
response of L, as follows:

de dL 1 dL 1
gode_d 1 d 1 (5.9)
dT L, dT 05L,+pB-S, dT

where dL = 0.14 mm is the annual joint displacement measured by WJM 2 during an annual
temperature amplitude of dT =9 °C (Figure 5-4). The wedge length in L, in Equation 5.9 is
ignored because the monitored joint in WMS is extremely tight (see Figure 5-2A). The
influence of the coefficient £ on the computed thermal expansion coefficient is shown in

Figure 5-11B. Typical « values for dolomites are 6 X 10 to 8 X 10° 1/°C (e.g. Franklin and
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Dusseault, 1988). A range of values for B[] between 0.45 - 0.7 is therefore assumed in further

analysis.
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Figure 5-11. A) Definition of length parameters used in Equation 5.9, B) thermal expansion
coefficient a as a function of the assumed non-uniform diffusive temperature distribution b .
Taking b = 0.45 and 0.7 yields a =8 X 10° and 6 X 10°® 1/C °, respectively.

An experimental determination of shear stiffness and strength

Consider Figure 5-12 where results of direct shear tests performed on a bedding plane
surface from Masada are presented. In this plot, shear stress vs. shear displacement is shown
for seven cycles of loading, unloading, and reloading under increasing normal stress from
0.17 to 1.38 MPa, with the normal stress kept constant during each shear sliding segment
using closed-loop servo control. In each cycle the sample is sheared forward for a distance of
0.5 mm at a displacement rate of 0.025 mm/sec. Inspection of Figure 5-12 reveals that a shear
displacement of at least 0.09 mm would be required to reach steady state sliding for this
particular interface for a sample length of 10 cm. Consequently the shear stiffness for the
tested interface k; is estimated to be 1.0 GPa/m for normal stress of 0.17 MPa. A Mohr -
Coulomb failure envelope obtained from reduced data presented in Figure 5-12 yield a peak

friction angle of 41° for the tested bedding plane surface of Masada dolomite.

5.4.3 Thermally induced sliding of Block 1 in EMS

To check the theoretical possibility of obtaining thermally induced sliding in Masada,
the measured geometry of Block 1 in EMS (see Figure 5-9) is used. The physical properties of

the rock mass obtained experimentally both in the laboratory and in the field (see Table 5-2)
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are used as input parameters for the analytical approach summarized in Equations 5.1 — 5.6
above. The permanent annual thermal plastic displacement thus obtained is plotted in Figure
5-13 as a function of wedge length, for non-uniform diffusive distribution coefficients g =
0.45 and 0.7. The calculated annual displacement rate for Block 1 varied from 0.181 to 0.210
mm/year and from 0.238 to 0.260 mm/year for f = 0.45 and 0.7, respectively, when

increasing the opening of the tension crack from 0 to 200 mm.
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Figure 5-12. Results of direct shear tests performed on a natural bedding plane sample from
Masada (after Hatzor et al., 2004).
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Figure 5-13. Thermally induced plastic displacement for a single annual cycle as a function of
the wedge length (assuming £ = 0.45 and 0.7), as obtained using the analytical model of
Pasten (2012).
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55  Seismically induced block displacement

A thermally-induced wedging mechanism that can explain one-directional block
displacement in jointed rock masses has been discussed above. This mechanism operates
under constant gravitational loading and is driven by cyclic thermal changes. The position of
Masada, near a major fault — the Dead Sea rift, calls for a consideration of the possibility of
block displacements due to seismic vibrations. Block 1 in the East slope of Masada (EMS) is
chosen as a case study for testing two different driving mechanisms: thermal vs. seismic,
because the geometry of this finite and removable block, the amount of opening of the tension
crack, and relevant physical and mechanical parameters for this block are known. Moreover,
there is a reasonably well constrained input seismic motion that could be used for dynamic
seismic analysis for this block (e.g. Zaslavsky and Shapira, 2000), and the recurrence time of
strong earthquakes is available (e.g. Begin, 2005; Hamiel et al., 2009).

Masada Mountain is situated along the Dead Sea transform (see Figure 5-1A) with
moderate seismic activity and an expected maximum earthquake moment magnitude (M,,) of
7.5 (Begin, 2005; Shapira et al., 2007). According to the Israeli building code 413 a Peak
Ground Acceleration (PGA) level of 0.22 g has an exceedance probability of 10% at least
once within a period of 50 years in Masada area, corresponding to a return period of 475
years. The estimated return period for the Dead Sea region is about 300 years and 4000 years
for earthquakes greater than My, > 6.0 and M,, > 7.0, respectively (Begin, 2005; Shapira et al.,
2007). Since instrumental records of strong earthquakes (Mw > 6.0) in the Masada region are
not available, a strong event that took place elsewhere in the same tectonic setting (Nuweiba

earthquake) is used as an input in the analysis.

5.5.1 Seismic input motion for dynamic analysis of block sliding

The M, = 7.2 Nuweiba earthquake occurred on November 22, 1995, in the Gulf of Eilat
(Agaba) with an epicenter near the village of Nuweiba, Egypt (Figure 5-1A). The main shock
was recorded at a seismological station in the city of Eilat, located 70 km north of the
epicenter. The recording station was positioned in a school basement built on a soil cover of
50 meter thickness composed of Pleistocene alluvial fan deposits. The recorded acceleration
time history therefore represents the site response of the soil layer in Eilat, rather than hard
bedrock. A one-dimensional multi layer model for the soil was utilized by Zaslavsky and
Shapira (2000) to obtain the rock response by de-convolution, the transfer function based on
material and physical parameters determined using both seismic refraction survey data and

down-hole velocity measurements in the city of Eilat.
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The de-convolution response spectrum thus obtained for the city of Eilat represents a
“characteristic” rock response at a distance of 70 km from the epicenter of a My, = 7.2
earthquake in the Dead Sea rift system. To scale this record to the foothills of Masada, the
well-established attenuation relationships between PGA, moment magnitude, and epicenter
distance suggested by Boore et al. (1997) is used here. Note that this attenuation relationships
is also used for seismic risk assessment in the Israeli building code 413 (Shapira et al., 2007).
The Nuweiba earthquake record as measured in Eilat, de-convoluted for rock response, and
scaled for PGA = 0.275 g, is shown in Figure 5-14A, representing a “characteristic” My, = 6.0
Dead Sea rift earthquake recorded at a distance of 1 km from the epicenter.

Although the Masada site is situated directly on rock, a significant topographic effect
was recorded at the site during a geophysical survey in September 1998 (Zaslavsky et al.,
2002) and it must be considered in the development of a realistic input motion for dynamic
analysis of a block situated at the top of the mountain. The empirical response function for
Masada (after Zaslavsky et al., 2002) is plotted in Figure 5-14B where three characteristic
modes are found at f = 1.3, 3.8, and 6.5 Hz, with frequencies higher than 10 Hz filtered out.
This empirical response function for Masada top is applied to the scaled rock response record
of Nuweiba to obtain the expected rock response at the top of the mountain. Note that during
the scaling procedure according to the attenuation relationship, the frequency content of the
signal remains constant. The frequency content is changed after the convolution procedure
according to the site response of the mountain, as discussed above. An example of an output
using this procedure for a M,, = 6.0 event is shown in Figure 5-14C. As can be appreciated
from the specific examples shown in Figure 5-14A and Figure 5-14C, the expected PGA of
0.275 g at the valley floor (Figure 5-14A) is amplified by this procedure to 0.465 g at the
mountain top (Figure 5-14C). A flowchart summarizing this scaling procedure is shown in
Figure 5-14D.

By utilizing the attenuation relationship of Boore et al. (1997) the expected PGA as a
function of earthquake epicenter distance from Masada for moment magnitudes 6.0 and 7.5
Dead Sea rift earthquakes is shown in Figure 5-15 (dashed lines), representing PGA on
bedrock at the foothills of Masada. For each curve, the amplified site response at the
mountain top (solid lines) is obtained by convolution with the empirical response function for
the topographic site effect at Masada as explained above. The PGA values of four amplified
earthquakes with epicenter at a distance of 1 km from Masada are also shown in Figure 5-15

(symbols) for M,, levels of: 6.0, 6.5, 7.0, 7.5. The acceleration time series for these four
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amplified earthquake records are used as input for numerical analysis of seismic block

response using the numerical, discrete-element, Discontinuous Deformation Analysis (DDA)

method.
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Figure 5-14. The input procedure for seismic loading simulations with DDA. A) The Nuweiba
earthquake as recorded in Eilat on a fill layer de-convoluted for bedrock response (Zaslavsky
and Shapira, 2000) and scaled to PGA = 0.275g, corresponding to a Mw = 6.0 earthquake at a
distance of 1 km from Masada (see Figure 5-15), B) an empirical site response function for
Masada (after Zaslavsky et al., 2002), C) convoluted time series of the modified Nuweiba
record (Figure 5-14A) to include the empirical site response function for Masada
(Figure 5-14B), and D) flowchart summarizing the input procedure.
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Figure 5-15. Assumed attenuation curves (after Boore et al., 1997) for Dead Sea Rift
earthquakes (dashed lines) with amplification due to topographic site effect at Masada (solid
lines and symbols). Shaded region delineates conditions at which seismically-induced sliding
of Block 1 at Masada is not possible.

5.5.2 Numerical procedure using DDA

Results obtained with DDA are sensitive to the choice of both the numerical contact
spring stiffness (k) and the time step size (At). Therefore, sensitivity analysis has been done to
select the most appropriate couple of these numerical control parameters. In this case the
geometry of Block 1 resting on an inclined plane with no wedge in the tension crack is used.
The block subjected to synthetic sinusoidal input loading consisting of constant amplitude and
frequency, a problem for which an exact analytical solution exists (Newmark, 1965). 2D-
DDA code verification for this problem is shown by Kamai and Hatzor (2008). Previous code
verifications for dynamic cases indicate that the optimal contact spring stiffness in DDA is
frequency-dependent. To obtain the optimal k value for this case the two dominant
frequencies of the mountain f; = 1.3 and f, = 3.8 Hz as obtained from the topographic site
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response survey (see Figure 5-14B) are used. Eighteen simulations of sinusoidal input
functions are performed for each of the dominant frequencies of Masada mountain (f; and f,)
with k =1, 5, 10, 100, 500, 1000 GN/m, At = 0.01, 0.005, 0.002 sec, and an arbitrary constant
value of 0.5 g for input amplitude.

For each input frequency the optimal numerical parameters are searched based on the
lowest relative error between the analytical and numerical solutions at the final position of the

block, where the relative error (R.) for the displacement solutions (D) is defined as:

_

analytical — Dnumerical

\D

R

e

-100% (5.10)

analytical

The results of the sensitivity analysis are shown in Figure 5-16. The optimal contact
spring stiffness values thus obtained are 10 and 500 GN/m for f; and f, respectively, and the
optimal time step size is 0.005 sec for both input frequencies. Using the optimal numerical
control parameters a comparison between numerical DDA and analytical results are shown in
Figure 5-17. To find the optimal contact spring stiffness when the two dominant frequencies
are used as input, each set of relative error values obtained from the numerical computation at
each input frequency is multiplied and the lower multiplied value is searched. The obtained
optimal contact spring stiffness for the two dominant frequencies of Masada is 500 GN/m.
For a list of mechanical and numerical parameters used in the fully dynamic seismic analysis
see Table 5-2.
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Figure 5-16. Sensitivity analysis results: The relative numerical error between the analytical
and numerical solutions as a function of contact spring stiffness and varied time step size.
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Figure 5-17. DDA results vs. analytical (Newmark’s) solution for the dynamic displacement
of Block 1 when subjected to a sinusoidal input function with 0.5g amplitude and the two
dominant frequencies for Masada (see Figure 5-14B): 1.3 Hz (A) and 3.8 Hz (B). (k is the
numerical contact spring stiffness used in DDA).
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Table 5-2. Mechanical and thermal properties for Block 1 in EMS used for analytical and numerical solutions

Symbol Analytical model Numerical DDA model
Thermal loading Seismic loading

Mechanical Properties:
Elastic Modulus, GPa E 40 40
Poisson's Ratio v 0.2
Mass density, kg/m® P 2600 2600
Friction angles, Degrees ¢ 41 41
Joint stiffness, GPa/m K; 1 -
Thermal Properties and Loading:
Thermal expansion coefficient, C™* a 6-8X10° -
Annual temperature amplitude, °C AT 9 -
Thermal conductivity, W/(m-K) y) 17 -
Specific heat capacity, J/(kg-K) Cp 810° -
Numerical Parameters:
Dynamic control parameter - 1
Number of time steps - 12000
Time interval, Sec At - 0.005
Assumed max. disp. Ratio, m - 0.005
Contact stiffness, GN/m k - 500"

& After Rohsenow et al., 1998.

®  See text is section 5.5.2 for sensitivity analysis procedure.
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5.5.3 Results of seismic analysis for Block 1

The horizontal yield acceleration (ayieiq) for an inclined bedding plane dipping 19° with
peak friction angle of 41° as in the case of Block 1 is readily obtained using pseudo-static
analysis (see Goodman and Seed, 1966) at ajielw = 0.404 g. The ayieq Value thus obtained
constrains the epicenter location of the maximum expected earthquake (M,, = 7.5) at the Dead
Sea rift capable of triggering sliding of Block 1, to a distance of up to 20 km from Masada
(see Figure 5-15).

DDA results for seismic analysis of Block 1 subjected to amplified Nuweiba records
corresponding to My, = 6.0, 6.5, 7.0, 7.5 Dead Sea rift earthquakes at an epicenter distance of
1 km from Masada are shown in Figure 5-18. For moderate earthquakes (M, < 6.5) the block
displacement per single event is expected to be lower than 42 mm, whereas for strong
earthquakes (My, > 7.0) the block is expected to slide more than 447 mm along the inclined
bedding plane in a single event. The mapped opening of the tension crack in the field is only
200 mm (see Figure 5-18), a value which constrains feasible earthquake scenarios, as

discussed below.
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Figure 5-18. DDA results for dynamic displacement of Block 1 when subjected to amplified
Nuweiba records corresponding to earthquakes with moment magnitude between 6.0 to 7.5
and epicenter distance of 1 km from Masada. Mapped joint opening in the field is plotted
(dashed) for reference.
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5.6 Discussion

5.6.1 Thermo elastic behaviour of the Masada rock mass

This chapter examines the theoretical possibility for thermally induced rock block
displacement due to a natural wedging mechanism, where the key elements are the intact rock
mass, the tension crack, the wedge fragments, the sliding block, and the sliding surface (see
Figure 5-7). Although the geometry of the model discussed in this chapter is well defined, it is
argued that the presented mechanism may lead to permanent sliding block displacements
wherever wedging blocks are formed in tension cracks, as also suggested by Watson et al.
(2004). Moreover, it is shown that the thermal induced sliding can also occur on shallow
dipping planes, which are usually not considered as unstable configurations.

The monitoring station at West Masada (Figure 5-2) is installed on a block that is
separated from the rock slope by clean and tight joints with no wedge fragments. It is
assumed that for this reason, no permanent displacement has been recorded during the
monitoring period in the West slope. On the other hand, it is assumed that the wedge
fragments inside the tension crack of Block 1 in the East slope (Figure 5-8) can trigger the
wedging mechanism conceptually illustrated in Figure 5-7. Since cable bolts were installed
during the summer of 1998 to anchor Block 1 to the cliff, in connection with a comprehensive
slope reinforcement campaign, no evidence for permanent displacement since then is
available. The results obtained from the monitoring system at WMS are therefore utilized to
evaluate the thermal expansion coefficient « of the Masada rock mass, for the analysis of
thermally induced displacement of Block 1 in EMS.

Thermal conductivity measurements performed on a sample from Masada (Figure 5-10)
enable to estimate the skin depth for the Masada rock mass for a seasonal exposure time at Sy
~ 2.5 m, assuming homogeneous, one-dimensional, temperature distribution within the rock
element. In reality, however, the temperature distribution within the rock mass is not
homogenous and the parameter g for non-uniform diffusive temperature distribution must be
considered. A range of values of 0.45 < < 0.7 is used here assuming a typical range for the
thermal expansion coefficient « for the Masada rock mass from 6 X 10 to 8 X 10 1/°C (e.g.
Franklin and Dusseault, 1988). This set of parameters (for « and f) are used to calculate the
permanent thermally induced annual plastic displacement using the analytical model
suggested by Pasten (2012).

It is important to note that the parameter S depends on the rock mass geometry and on
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the tension crack aperture. In the West station, the data from which the parameter S is based
on, the tension crack is very tight, and therefore a non-uniform thermal distribution within the
rock mass is expected and consequently a relatively thin thermal skin depth. On the other
hand, the tension crack behind Block 1 in EMS is relatively wide and the block is clearly
separated from the rock slope (Figure 5-3A and Figure 5-8); it is therefore expected that the
block responds more uniformly and therefore the actual value of parameter S may be higher

than assumed here.

5.6.2 Block displacement rate under thermal and seismic loading

Block 1 is used to study displacement rates under thermal loading on one hand and
seismic loading on the other hand. The geometry of the block is completely known, as well as
the mechanical and physical parameters of the intact block material and the shear strength and
shear stiffness of the sliding surface. Moreover, the magnitude of opening in the tension crack
is readily measurable in the field and amounts to 200 mm. An inclination of 19° and a friction
angle of 41° for the sliding plane are assumed in the analysis, based on field and laboratory
measurements.

Analytical results (Figure 5-13) show that the thermally induced sliding rate of Block 1
ranges from 0.181 to 0.210 mm/year for g = 0.45, and from 0.238 to 0.260 mm/year, for g =
0.7. The sliding rate increases with time because the increased aperture of the tension leads to
increased wedge block length L. This is true as long as the assumed skin depth is larger than
the wedge length (Sq > Lw) and provided that a continuous supply of detritus material is made
available from higher segments of the rock slope above the tension crack. Furthermore, it is
assumed that the crushing strength of the detritus material is sufficiently high so as to sustain
the compressive force Fnax that develops in the block system during the expansion periods.

To obtain the displacement rate under seismic loading one must first make some
assumptions regarding the recurrence probability of Dead Sea rift earthquakes. Based on
paleo-seismic, historical, and instrumental records, the return period for moderate (M,, = 6.5)
and strong (M, = 7.0) Dead Sea rift earthquakes is estimated to be 1100 and 4000 years,
respectively (Begin, 2005; Shapira et al., 2007). Consider Figure 5-18 where results of
dynamic numerical analyses for the displacement of Block 1 under amplified Dead Sea rift
My = 6.0 — 7.5 earthquakes with epicenter at a distance of 1 km from Masada are presented.
From this chart equivalent displacement rates of 0.04 mm/year and 0.11 mm/year may be
deduced for moderate (M,, = 6.5) and strong (M,, = 7.0) Dead Sea rift earthquakes. These rates

clearly provide an upper bound because they apply to an earthquake epicenter at a distance of
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only 1 km from Masada; with increasing epicenter distance up to 20 km from Masada (see
Figure 5-15), the expected displacement of Block 1 under a single episode, and consequently
the deduced displacement rates, would naturally be smaller.

The displacement rates of Block 1 under moderate Dead Sea rift earthquakes at an
epicenter distance of 1 km from Masada, along with the rate deduced from the thermal
mechanism, are plotted in Figure 5-19. Inspection of Figure 5-19 reveals that the thermal

mechanism is more dominant than the seismic loading mechanism when each is considered

individually.
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Figure 5-19. Comparison between thermally and seismically induced displacement rates for
Block 1. Thermal displacement rate is calculated assuming £ = 0.45 and 0.7. Seismic
displacement rate is obtained by summation of earthquake magnitudes 6.0 to 7.0 with
epicenter located 1 km from Masada based on the seismicity of the region. The seismic rates
in the zoom-in box are for the long term seismicity (5000 years).
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5.6.3 Paleo-seismic implications

The total mapped opening of the tension crack in Block 1 (200 mm) imposes some
constraints on possible paleo-seismic scenarios at Masada. Consider for example strong Dead
Sea rift earthquakes (My, > 7.0) with an epicenter 1 km from Masada, the amount of sliding
in a single episode is expected to be greater than 447 mm (see Figure 5-18); therefore Block
1, in its current configuration, could never have experienced a My, > 7.0 earthquake at such
close proximity to Masada. However, a single 6.5 < M,, < 7.0 event at the foothills of Masada,
or a stronger event (M,, > 7.0) at a distance of up to 20 km from the site (see Figure 5-15),
could open the tension crack by the observed 200 mm at once. Therefore, these last two
scenarios cannot be ruled out based on the field and analytical data.

It has been established that under thermal loading the mapped opening of 200 mm could
have been attained over a period of ca. 1000 years assuming climatic conditions have
remained more or less the same over this time period. To examine if this opening could have
been triggered by seismic vibrations it would be instructive to search the historic regional
earthquake catalogue and seek a M,, > 6.5 event at a distance of up to 20 km from Masada
during that time window. The historical earthquake catalog in the Eastern Mediterranean
region is based on a long and well-documented historical record and a wealth of archaeo-
seismological information. Based on the historical earthquake catalog compiled by Ben-
Menahem (1991), the earthquakes of May 362 and of May 1834, both located at the Eastern
Lisan peninsula (for location see Figure 5-1A) with estimated local magnitude of 6.7, may
have been possible candidates for triggering the observed displacements in Block 1, however
the low accuracy of the assumed magnitude and location precludes any robust conclusions.
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CHAPER 6 - CONCLUSIONS

The objectives of this dissertation were to develop an enhanced approach that
numerically simulates complex rock structures and utilize it for dynamic analysis of rock
mass in the context of slope stability. The slope stability issues discussed in this research are
the seismically-induced sliding of tetrahedral wedge and the thermally-induced ratchet model.
Since both of these problems deal with a single removable block, rather than a complex
structure, the new hybrid geo-DFN-DDA preprocessor is demonstrated here for exploring the
effect of mechanical layering on the stability of underground opening and the surface
settlement. Since the hybrid approach has been established in this research, it can now be used

for analyzing deformations in complex structure for any rock mechanics problem.

6.1  Simulating mechanically layered rock masses

The combination of the geologically realistic fracture models of mechanical layering
provided by FRACMAN, and the advanced block-cutting algorithm and forward modeling
capabilities of DDA can provide a powerful design tool in geomechanic analyses.

Classic mechanically layered rock masses, as simulated in the FMML model, obey the
maximum Terzaghi's rock load prediction of 0.5B. Rock masses which exhibit through-going
joints must be modeled differently and parameters such as joint length and bridge must be
considered. In such rock masses with increasing joint length and decreasing rock bridges, the
joint intersection (and block formation) probability increases, and consequently the total
number of blocks in such rock masses increases. This results in more vertical deformations,
expressed in greater surface settlements above the excavated opening. It is found that a rock
mass rich in through-going joints exhibits greater vertical deformation and surface settlements
above deep underground openings when compared to mechanically layered rock masses when
the total number of blocks is kept equal. This is because through-going joints provide
continuous surfaces for vertical shear displacements whereas in a mechanically layered rock
masses the extent of vertical joints is limited by bedding plane boundaries and so are the
vertical displacements. It is also reasonable to assume that mechanically layered
configurations attain better interlocking between blocks, a process which further restricts
vertical displacements in such rock masses.

With increasing bridge length the number of blocks per layer decreases. This is

particularly significant in the stabilization of the immediate roof, because immediate roof
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beam stability increases with increasing block width, up to an optimal block width beyond

which the load due to beam weight dominates over arching (see Figure 3-10).

6.2  Seismically induced dynamic sliding of tetrahedral wedge

A new algorithm for dynamic sliding in three dimensions is presented in this research
based on the static limit equilibrium equations suggested by Goodman and Shi (1985). The
newly developed algorithm is found to be suitable for analyzing the dynamic response of a
single block for both single and double plane sliding. Effective application of this algorithm
however requires that the failure mode is assumed in advance.

A very good agreement between Newmark’s method on one hand and the new 3D
algorithm and 3D-DDA on the other is observed using theoretical dynamic problems, with
high sensitivity to the choice of numerical penalty indicated in 3D-DDA. Dynamic 3D-DDA
is applied in two loading modes ("load" and "displacement™) both of which provide similar
results, with the "displacement™ mode found to be more sensitive to the choice of numerical
penalty.

The friction coefficient of the tested concrete interface exhibits velocity weakening
behavior. Several tens of loading cycles are required for onset of friction degradation when, as
in this case, the input amplitude is slightly higher than the static yield acceleration. The
number of loading cycles required for onset of friction degradation is found to be inversely
proportional to the shaking amplitude.

A logarithmic relationship between friction coefficient and sliding velocity is observed
with the velocity spanning five orders of magnitude, the linear trend of which confirms the
Dieterich-Ruina "rate and state™ variable friction law. The A - B value obtained from slow
direct shear tests is one order of magnitude lower than a single value obtained from the entire
suite of test data including rapid shaking table experiments. Extrapolation from slow rate
direct shear test data to fast sliding rates therefore proves inaccurate, and from an engineering
standpoint - unconservative. Hence, the velocity-dependent friction degradation, as
determined in lab experiments, must be integrated into dynamic rock slope analyses in order

to receive more realistic results.
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6.3  Thermally induced “ratchet” model for rock slope stability

In addition to the seismically triggering dynamic sliding, comprehensive data on the
thermal response of a monitored rock block in the slopes of the Masada Mountain are
presented in this study. A new thermally induced "ratchet” mechanism is suggested to explain
qualitatively the observed annual accumulated translation of the monitored block in the West
slope of the mountain. It is shown that the thermally induced "ratchet™ model is sufficient for
significant cumulative translation of a distinct block that is bounded by a tension crack at the
back and that rests on a discontinuity that provides the sliding plane. The thermally-induced
"ratchet” mechanism may explain rock failure episodes occurring more frequently than is
generally assumed or explained, as it is inferred from the comparison between thermal and
seismic driving mechanisms for block sliding at the 'Snake Path cliff" in the East slope of
Masada. Moreover, it is shown that the thermal induced sliding can also occur on shallow
dipping planes, which are usually considered as stable configurations. Therefore,
understanding the mechanism of the “ratchet” model, and identifying its potential in the field,
can help mitigate rock slope stability risks in rock masses that are prone to such a failure
mechanism.

While only preliminary analyses have been conducted and presented in this dissertation,
it is recommended that in future researches the feasibility of the 'ratchet™ mechanism should
be studied more deeply under controlled conditions in lab and by using coupled thermo-

mechanical solutions.
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APPENDIX 1 - MATLAB FUNCTIONS FOR BLOCK SLIDING IN 3D

Single face sliding

function BlockDisp = BlockOnIncline(time, rx, ry, rz, Dip, DipDir, phi)

% input:

% time - time vector, in seconds; with length L and dimensions LX1

% rx, ry, rz - resultant acceleration vectors, in m/sec”-2 ; each with
dimensions LX1

% Dip - the inclination of the plane, degrees.

% DipDir - dip direction of the plane, clockwise azimuth from the north, degrees.

% phi - friction angle

% output:

% BlockDisp - the 3 components calculated block displacement, in meters.

=

= length(time) ;
dt = time(end) / (L-1);

oe

time step size

nx = sind(Dip) * sind(DipDir); % x component of plane

ny = sind(Dip) * cosd(DipDir); % y component of plane

nz = cosd(Dip); % z component of plane

n = zeros(L,3); p=n; f=n; % Preparing matrixes in dimensions: LX3
n(:,1) = nx;

n(:,2) = ny;

n(:,3) = nz;

oe

resultant force
driving force

r=[rx ry rz];
m=cross (cross(n,r),n);

oe

v=[0 0 0];D=[0 O 0]

oe

Velosity & Displacement at t (0)

% For the first time step:

p(l,:) = n(l,:) * dot(n(l,:),r(l,:)); % (normal force)
% the resisting force:
f(l,:) = tand(phi) * norm(p(l,:)) * ((m(l,:)) / norm(m(l,:)));
if norm(f(1,:))>=norm(m(l,:));
£(l,:) = m(1,:);
end
s(l,:) = m(l,:) - £(1,:); % sliding force
S(1,:) = s(1,:);

% For each time step:
for i=[2:L]

p(i,:) = n(i,:) * dot(n(i,:),r(i,:)); % (normal force)
% the resisting force:
if v(i-1,:) == 0;

f(i,:) = -tand(phi) * norm(p(i,:)) * ((m(i,:)) / norm(m(i,:)));

if norm(f(i,:)) > norm(m(i,:));

f(i,:) = -m(i,:);

end
else

f(i,:) = -tand(phi)*norm(p(i,:)) * ((V(i-1,:))/norm(V(i-1,:)));
end
s(i,:) = m(i,:)+£(i,:); % sliding force
S(i,:) = 0.5*(s(i-1,:)+s(i,:)): % Acceleration
V(i,:) = V(i-1,:)+dt*S (i, :); % Velosity
D(i,:) = D(i-1,:)+dt*vV(i-1,:)+S(1i,:)*(dt)"2; % Displacement

end

BlockDisp = D;
% The end of the code.
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Double face sliding

function WedgeDisp = wedge (time, rx, ry, rz, Dipl,

phi2)

% input:

% time - time vector, in seconds;

% rx, ry, rz - resultant acceleration vectors,
LX1

% Dipl, Dip2 - the inclination of the planes,

% DipDirl, DipDir2 - dip direction of the planes,
north, degrees.

% phil, phi2 - friction angles for each plane

% output:

oe

DipDirl, phil, Dip2, DipDir2,

with length L and dimensions LX1
in m/sec”-2 ;

each with dimensions

degrees.

WedgeDisp - the 3 components calculated block displacement,

clockwise azimuth from the

in meters.

L = length(time);

dt = time(end) / (L-1); $time step size

nxl=sind (Dipl) *sind (DipDirl) ; % x component of plane 1
nyl=sind (Dipl) *cosd (DipDirl) ; % y component of plane 1
nzl=cosd (Dipl) ; % z component of plane 1
nx2=sind (Dip2) *sind (DipDir2) ; % x component of plane 2
ny2=sind (Dip2) *cosd (DipDir2) ; % y component of plane 2
nz2=cosd (Dip2) ; % z component of plane 2
nl=zeros (L, 3); % [L,3] preparing matrix

n2=nl;
nl(:,1)=nx1l;nl(:,2)=nyl;nl(:,3)=nzl;
n2(:,1)=nx2;n2(:,2)=ny2;n2(:,3)=nz2;

j=cross(nl(l,:),n2(1,:));
vV=[0 0 0];D=[0 0 0]; s
r=[rx ry rz]; $resultant force

for i=[1:L];
m(i,:)=j*dot(r(i,:
end

driving force

p(l,:)=(dot(cross(r(l,:),n2(1,:)),J))*nl(1l,:);
g(l,:)=(dot(cross(r(l,:),nl(l,:)),3))*n2(1,:);
f(1,:)=(tand(phil) *norm(p (1, :)+tand(phi2) *norm (g (1, :
% resist force
if norm(f(1,:))>norm(m(1l,:));

f(1,:)=—m(1,:);
end
s(l,:)=m(1l,:)+£(1,:);
S(1l,:)=s(1,:);

for i=[2:L]

p(i,:)=(dot(cross(r(i,:),n2(i,:)),J))*nl (4,
g(i,:)=(dot(cross(r(i,:),nl(i,:)),J))*n2(i,
% resisting force:
if v(i-1,:)==0;
f(i,:)=-

(tand (phil) *norm(p (i, :))+tand (phi2) *norm (g (i, :
if norm(f(i,:))>norm(m(i, :));
f(i,:)=—m(i,:);
end

else

78

Velosity & Displacement at t (o)

% normal force of plane 1
% normal force of plane 2

)))*((m(1,:))/norm(m(Ll,:)));

$sliding force

)))*((m(i,:))/norm(m (i, :

% normal force of plane 1
% normal force of plane 2
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f(i,:)=-(tand(phil) *norm(p (i, :))+tand (phi2) *norm (g (i, :)))* ((V(i-
1,:))/norm(V(i-1,:)));
end
s(i,:)=m(i,:)+£(1i,:); % sliding force
S(i,:)=0.5%(s(i-1,:)+s(i,:)); % Acceleration
V(i,:)=V(i-1,:)+dt*S(i, :); % Velosity
D(i,:)=D(i-1,:)+dt*V (i, :)+0.5*%(dt)"2*S(i,:); % Displacement

% The end of the code.
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