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Abstract

Oscillatory systems are common features of our lives, one may find their realizations in
simple clocks or in more complicated technological equipments like satellite-based navi-
gation systems and pacemakers implanted to prevent cardiac arrhythmia. The ecological
and biological worlds also reveal diverse oscillatory dynamical behaviors like seasonal flower
blooms, predator-prey relations, or cell divisions. In the context of large-scale objects, it is
easy to notice that the earth (like many other planets) is making oscillations around a sun
with an approximate period of one year (365 days). It was also indicated that the galaxies
perform rotational periodic motion around black holes, assumed to exist in their center.
In small-scale systems, the Quantum mechanical descriptions of the elementary particles,
Electromagnetism, crystals etc. involve oscillatory behaviors. The scientific significance of
oscillatory dynamics have attracted both theoretical studies and studies of specific physical,
chemical, biological, ecological and even economical systems.

When oscillatory systems are subjected to temporal forcing they may exhibit en-
trainment or frequency locking phenomena. A system is frequency locked when its oscilla-
tion frequency is adjusted to an irreducible fraction of the forcing frequency. This resonance
condition admits a tongue-like domain in the plane spanned by the forcing amplitude and
frequency. Outside the resonance tongue the system exhibits quasiperiodic oscillations.
Frequency locking phenomena have been extensively studied for single oscillator type sys-
tems, however, the fundamental description of resonance phenomena for spatially extended
systems is missing.

This thesis is concerned with frequency locking phenomena in spatially extended
media and addresses the effects of pattern formation on resonance behavior. We study
pattern formation mechanisms and parameters ranges where resonant and non-resonant
patterns are developed. Among our results we show that in extended systems:

(a) Standing waves are the only patterns (besides uniform oscillations) that satisfy the
frequency locking condition: each point in space can oscillate either in or out of
resonance.

(b) Spatial structures and instabilities may reduce or extend the boundaries of frequency
locking so that the resonance ranges for a single oscillator do not always coincide with
resonance ranges in extended systems.

This research has been motivated by recent experiments on temporally driven
Belousov-Zhabotinsky (BZ) reaction-diffusion systems. It was observed that standing–
wave patterns may develop from spiral waves when the system is periodically forced at
approximately twice its natural frequency (hereafter 2:1 resonance), and that the standing
waves occupy only a part of the 2:1 resonance tongue. The experiments also indicate that
labyrinthine standing–wave patterns may develop in two distinct ways. Labyrinths may
develop by a fingering instability, and by nucleation of stripes from unlocked oscillations.
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In both cases, large amplitude labyrinthine patterns form, involving adjacent domains of
frequency locked oscillations differing in phase by π.

The study is based on the forced complex Ginzburg-Landau (FCGL) equation.
This is the normal form equation for an extended system that goes through a Hopf bi-
furcation to uniform oscillations, and is subjected to uniform, time-periodic forcing at a
frequency about twice as large as the frequency of unforced oscillations. The theoretical
analyzes consist of linear stability studies of nonuniform solutions, weakly nonlinear multi-
ple time-scale analyzes, and numerical calculations. The results are tested and supported
by direct numerical solutions of the FCGL equation.

The FCGL equation has both resonant uniform solutions and resonant standing-
wave solutions such as stripes or labyrinths. The former form a tongue-shaped region in
the parameter plane of the forcing amplitude and frequency. On one side of the tongue,
the boundary of resonant patterns is inside the tongue and is given by the Nonequilibrium
Ising Bloch bifurcation to traveling waves. A traveling wave within the 2:1 resonance of
the uniform system destroys the resonance as any individual point in the vicinity of the
traveling front experiences a temporal phase change. On the other side of the tongue the
appearance of a stationary Turing mode also changes, extends or reduces the resonance
boundaries. Resonant standing waves may appear outside the 2:1 resonance tongue of
uniform oscillations, whereas non-resonant standing waves may prevail inside the resonance
tongue. A weakly nonlinear analysis of FCGL equation near a Hopf-Turing bifurcation gives
the existence and stability regions of the standing–wave patterns.

Moreover, analysis of the FCGL equation captures both mechanisms of labyrinth
formation observed the BZ experiments. The fingering instability is found to correspond to
a transverse instability of front solutions inside the resonance tongue whereas the stripe nu-
cleation is attributed to invasion of resonant Turing solutions to unlocked Hopf oscillations.
These labyrinthine patterns are found in a similar location in the forcing amplitude and
frequency parameter plane as the experimentally observed labyrinths - the high right edge
of the resonance boundary. Additionally, we find a third mechanism of labyrinths forma-
tion: standing–wave labyrinths may also develop from a Turing instability of the uniform
phase-locked states in a narrow range near one of the resonance tongue boundaries.
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