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3. Feature Selection for Speaker Recognition 

Often, in pattern recognition problems, there is large number of features that may be used. 

Usually, it is not possible to work with a very large dimensional feature space, since 

recognition errors may increase when using larger feature vectors (“the curse of 

dimensionality” [Jain et al., 2000]). In addition, application forces constraints in memory and 

computation power, which limit the dimension of the feature space.  

Feature selection is the process of selecting a features subset, which is most effective for 

preserving class separability. The problem of feature selection can be described as follows:  

Given a set Y of K features { }| 1, 2,...,iY y i K= =  select a subset X (of k K<  features) 

{ }| 1, 2,..., ,i iX x i k x Y= = ∈  such that the performance criterion ( )J i  is optimized. 

A feature selection method can be specified in terms of two components:  

1) Selection procedure, 

2) Performance criterion, ( )J i  

In speaker verification/identification tasks, the aim of this selection is to determine the 

feature space of size k K<  for which the recognition error is minimized. Minimizing the 

recognition error is not always easy to implement; hence separability measures are often 

introduced as criteria. 

3.1. Selection Procedure 

Several selection procedures are discussed in the pattern recognition literature [Fukunaga, 

1990] [Jain et al., 2000]. On the following, we describe some of the most commonly used 

procedures. 
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3.1.1. Exhaustive search 

Exhaustive search is an optimal method for selecting a subset of k best features among the 

entire set K. It considers all the combinations of k out of K. Implementation of such a search 

requires an enormous amount of computation, namely 
( )

!
! !

K K
k k K k

 
=  − 

 searches. For 

example, with k = 24 and K = 120, the number of searches is ~ 2410.872 10× (!). This is 

obviously cost prohibitive. There is, therefore, a need for some more effective procedures.  

3.1.2. K-best Method  

This method is probably the simplest. The best subset of k features is composed of the k best 

features considered one at a time. However, a set of the best individual k features is not 

necessarily the best set of k features. 

3.1.3. Forward Selection 

This method is sometimes called “bottom-up” [Jain et al., 1997], “ascendant selection” 

[Charlet et al., 1997], or “add-on” [O’Shaughnessy, 1986]. The forward selection procedure 

starts with the empty set and adds features iteratively. Initial tests are done with each of K 

features, one at a time, to select the best single feature. Then, tests with two features, 

including the best one selected at the previous stage, and each (one at a time) of the 

remaining K – 1 features. The cycle is repeated until the desired number of features has been 

chosen. The number of searches in this forward selection is ( )1 2 1
2

k K k− + . For the 

previous example, with k = 24 and K = 120, the number of searches is 2604, which is much 

less than the exhaustive search. 
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Both k-best and forward selection procedures are simple search techniques, which avoid 

exhaustive search enumeration. However, the selection of the optimal subset is not 

guaranteed. 

3.1.4. Backward Selection 

This method is a simple stepwise search technique, sometimes called the “knock-out” 

strategy [Sambur, 1975] or “top-down” [Jain et al., 1997]. The backward selection procedure 

starts from the full set of K features. All K subsets of K −1  features are used in the 

performance criterion calculation to determine the best subset (of K −1  features). The 

feature not used in this best subset is “knock-out” of consideration. The process is repeated 

with K −1 subsets of K − 2  features, etc. 

3.1.5. The l-r Algorithm 

The l-r algorithm [Pandit et al., 1998] uses the forward and the backward selection 

procedures in order to yield a better performance selection procedure. For every iteration, the 

algorithm uses the forward procedure to add l features, and the backward procedure to 

remove the r worst features from the augmented subset.  

3.1.6. The Sequential Floating Forward Sequence (SFFS) 

The Sequential Floating Forward Sequence (SFFS) [Pudil et al., 1994] can be viewed as a 

“dynamic” l-r algorithm. It consists of applying, after each forward step, a number of 

backward steps as long as the resulting subsets are better than the previously ones evaluated 

at that level. Consequently, there are no backward steps at all if the performance cannot be 

improved. The SFFS method can be described algorithmically as follows: 
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where kX  is the feature subset in the kth step, ( )J i  is the criterion, and Y is the full feature 

set. 

3.1.7. Branch-and-Bound (BB) 

The Branch-and-Bound (BB) feature selection algorithm can be used to find the optimal 

subset of features much more quickly than the exhaustive search method [Fukunaga, 1990]. 

One drawback is that the BB procedure requires that the feature selection criterion function 

be monotone (non-decreasing). 

3.1.8. Dynamic Programming  (DP) 

Dynamic programming is utilized to find an optimal set of features using much fewer 

calculations than exhaustive search. Dynamic programming is a multistage optimization 

technique that exploits the principle of optimality which states: whatever the initial state and 

decision are, the remaining decisions must constitute an optimal policy with regard to the 
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state resulting from the first decision. When applied to the selection of features, this principle 

in conjunction with a functional equation permits the choice of attributes that have the 

maximum effectiveness [Cheung et al., 1978]. One may view the dynamic programming 

procedure as a tree search method as shown in figure 3.1. 

 

stage 1     stage 2      stage 3                    stage k-2    stage k-1  features x

x1

x2

x3

x4

x5

xK

optimal path

survivor path

 

Figure 3.1: Feature subset selection using dynamic programming. 
 

In this representation, the features jx  ( 1, 2,...,j K= ) are depicted by the nodes of the 

tree. Subsets can be interpreted as paths or branches joining the nodes of subsequent stages. 

There are k stages in this iterative algorithm, as the number of features in the optimal subset. 

Let ( )1 2, ,...,j j j j
n nq q q=q  ( 1, 2,...,j K= ) be one of the K possible subsets selected after n 

stages where j
nq  represents a feature in X. For every jx  ( 1, 2,...,j K= ) at the nth stage, the 

subset j
nq  is chosen such that: 

 ( ) ( )1 1max , ; 1, 2,..., ;j i i
n n j j ni

J J x i K x− −= = ∉q q q  (3.1) 
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where J is defined as a feature performance criterion. For a detailed discussion of the DP 

algorithm, see [Cheung et al., 1978]. 

To guarantee optimal results, the performance criterion, J, has to be a monotonic, non-

decreasing function of n and can be separated into two parts, one corresponding to the 

history of the process up to the n-1 stage and the other corresponding to the behavior of the 

process at the nth stage [Nemhauser, 1966]. Most of the criteria used in practice cannot 

guarantee these characteristics, especially when the features are dependent. In this case the 

DP is a sub-optimal selection method. 

3.1.9. Genetic Algorithms (GA) 

In a Genetic algorithm (GA) approach, a given feature subset is represented as a binary 

string (a “chromosome”) of length K, with zero or one in position i denoting the absence or 

presence of feature i in the set [Jain et al., 1997]. A population of chromosome is maintained. 

Each chromosome is evaluated to determine its “fitness,” which determines how likely the 

chromosome is to survive and breed into the next generation. New chromosomes are created 

from old chromosomes by one of two processes: (1) crossover, where parts of two different 

parent chromosomes are mixed to create offspring; and (2) mutation, where the bits of a 

single parent are randomly perturbed to create a child. 
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3.2. Performance Criteria 

In speaker recognition systems, a meaningful performance criterion is the speaker 

recognition error over some evaluating data. This measure can be determined experimentally 

by employing the attributes in the recognition experiment and tallying up the mistakes made. 

However, implementation of the criterion requires a great amount of computation, especially 

for HMM/GMM-based classifiers. Moreover, the resolution of such recognition error 

criterion, using relatively small amount of a given training/evaluating data, is not enough. An 

alternative is to exploit the statistical properties of the features and derive information on the 

probability of error from the talker’s PDF. 

3.2.1. F-ratio 

One common measure of effectiveness for scalar features (a single feature) is the F-ratio 

[Sambur, 1975]. The F-ratio compares inter- and intra-speaker variances 

 F =
variance of inter - speaker feature mean
mean of intra - speaker feature variance

 (3.2) 

The numerator is large when values for the speaker-averaged feature are widely spread for 

different speakers, and the denominator is small when feature values in utterance repetitions 

by the same speaker vary little (the denominator averages intra-speaker variances over all 

speakers). High F-ratios are desirable. However, F-ratio measures the features individually, 

and a set of the best individual k features, are not necessarily the best set of k features. A 

criterion is necessary to decide whether a feature set A is better than a feature set B. 

In discriminant analysis of statistics, there are two types of criteria which are frequently 

used in practice. One is based on a family of functions of scatter matrices. The criteria 

measure the class separability of N classes, but do not relate to the Bayes error directly. The 
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other is a family of criteria which gives upper bounds of the Bayes error. The Bhattacharyya 

distance is one of these criteria. However, the criteria only apply for two-class problems, and 

are based on a normality assumption [Fukunaga, 1990]. 

3.2.2. Scatter Matrices and Separability Criteria  

In discriminant analysis, within-class, between-class, and mixture scatter matrices are used to 

formulate criteria of class separability [Fukunaga, 1990]. Given N classes ω i i N; , ,...,= 1 2b g , 

and iµ , the ith class expected vector, defined by 

 ( )|i iE ω= oµ  (3.3) 

where o  is the features vector. The ith class covariance matrix, Wi , defined by 

 ( )( ){ }|T
i i i iE ω= − −W o oµ µ  (3.4) 

The averaged within-class scatter matrix, Sw , shows the scatter of samples around their 

respective class expected vectors, and is expressed by 

 ( ) ( )( ){ } ( )
1 1

|
N N

T
i i i i i i

i i
P E Pω ω ω

= =

= − − =∑ ∑wS o o Wµ µ  (3.5) 

where P iωb g  is the ith class a-priori  probability. On the other hand, a between-class scatter 

matrix, Sb , is the scatter of the expected vectors around the mixture mean 

 Sb = − −
=
∑ P i i
i

N

i
Tωb gb gb gµ µ µ µ0

1
0  (3.6) 

where µ 0  represents the expected vector of the mixture distribution and is given by 

 { } ( )0
1

N

i i
i

E P ω
=

= =∑oµ µ  (3.7) 

The mixture scatter matrix is the covariance matrix of all samples regardless of their class 

assignments, and is defined by 
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 ( )( ){ }TE= − − = +m w bS o o S S0 0µ µ  (3.8) 

The scatter matrices are designed to be invariant under coordinate shifts. 

In order to formulate criteria for class separability, these matrices have to be converted 

to a scalar. This scalar should be larger when the between-class scatter is larger or the 

within-class is smaller. Typical criteria are the following: 

(1) J1 2
1

1= −tr S Sc h ,  (3.9) 

(2) J2 2
1

1= −lnS S ,  (3.10) 

(3) J3
1

2

=
tr
tr

S
S

,  (3.11) 

where S S1 and 2  are one of S S Sb w m, ,or . 

3.2.3. Bhattacharyya Distance 

Bhattacharyya distance is a convenient measure of class separability if the number of classes 

is two. The Bhattacharyya distance of the normal distributions of class ω i  and class ω j , also 

referred to as µ 1
2e j  [Fukunaga, 1990], is 

 dB

i j

i j

i j

T i j
i j=

+

+ −
+F

HG
I
KJ −
−

1
2

2 1
8 2

1

ln

W W

W W

W W
µ µ µ µd i d i  (3.12) 

where µ i  is the ith class expected vector, and Wi  is the ith class covariance matrix. 

Furthermore, (3.12) gives an upper bound of the Bayes error (where the distributions are 

normal). Neglecting scaling, the second term is the Mahalanobis distance using an average 

covariance matrix.  
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3.2.4. Bhattacharyya Shape 

The Bhattacharyya distance (3.12) is the sum of two components, one based solely upon the 

covariance matrices and the other involving differences between the mean vectors. These 

components can be characterized, respectively, as an average shape and the difference in size 

of the PDFs [Campbell, 1997]. This shape component, the Bhattacharyya shape is defined as 

 dBs

i j

i j

=

+

ln

W W

W W

2
 (3.13) 

3.2.5. Divergence Distance 

Divergence is another criterion of class separability, similar to the Bhattacharyya distance. It 

is defined as 

 ( )
( )

( )
( )

| |
ln | ln |

| |
i i

D j i
j j

p p
d E E

p p
ω ω

ω ω
ω ω

      = − − −   
      

o o
o o

 (3.14) 

where ( )| ip ωo  is the class conditional density function. When two density functions are 

normal, the divergence becomes [Campbell, 1997], 

 dD i j j i i j i j i j

T
= − − + + − −− − − −1

2
1
2

1 1 1 1tr trW W W W W Wd id i d id id iµ µ µ µ  (3.15)  

3.2.6. Divergence Shape 

The Divergence (3.15) is the sum of two components, one based solely upon differences 

between the covariance matrices and the other involving differences between the mean 

vectors. Like the Bhachattaryya distance, these components can be characterized, 

respectively, as differences in shape and size of the PDFs [Campbell, 1997]. This shape 

component, the divergence shape, defined as,  
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 dDs i j j i= − −− −tr W W W Wd id i1 1  (3.16) 

3.3. Speaker Recognition with Feature Selection - State of the Art 

Most of the published speaker recognition systems do not use a feature selection process. It 

is often assumed that features used successfully in speech recognition tasks, will also 

perform best in speaker recognition tasks. Thus, in most reported speaker recognition 

systems, the feature space used is that of cepstral and delta cepstral (MFCC). Most of the 

literature on speech feature selection deals with speech recognition systems [Bocchieri et al., 

1993] [Biem et al., 1993] [Sharma et al., 2000]. However, features that have been selected 

for speech recognition systems are not necessarily the best selection for speaker recognition 

systems.  

The specific problem of feature selection for speaker recognition has been published in 

several papers. Some of them use common feature space for all the speakers, few use 

individual feature space, and some take group of features and test them without the use of 

selection algorithm. The next paragraphs describe some published papers on feature selection 

for speaker recognition systems. 

 [Cheung et al., 1978] used dynamic programming for text-independent speaker 

identification. In this work the divergence criterion was chosen. The database consisted of 

reading parts by ten male speakers. A set of 32 initial features was determined from the input 

speech: the pitch value, log energy, ten PARCOR coefficients, ten cepstral coefficients, 

normalized absolute prediction error energy, and nine normalized autocorrelation 

coefficients. Each feature was averaged over some input text. The dynamic programming 

procedure was implemented to select the subset of ten ( k = 10 ) out of the 32 features that 

had the maximum divergence. This selected feature subset was utilized in the linear classifier 



Feature Selection for Speaker Recognition  Yaniv Zigel  

 

  

 

41

for identifying talkers text-independently. The identification results of the dynamic 

programming feature subset (~11% identification error) were superior to the results that were 

achieved by PARCOR coefficients (~21%), cepstral features (~25%), and features selected 

by the knock-out strategy [Sambur, 1975] (~12%). It was concluded also that not much 

improvement in identification error is gained for k > 7 .  

Another paper proposes a framework for feature selection in an HMM-based text-

dependent speaker verification system published by [Charlet et al., 1997]. These authors 

developed a performance criterion (called Score ) for feature selection from the HMM 

emission probability function. Assuming the HMM emission probability function is 

Gaussian, and the covariance matrices of the features are diagonal. The performance 

criterion of a feature subset was defined as 

 ( ) ( ) ( )( ) ( ) ( )( )
( )

2

2
1

log 2
2

T
i i

i i
i X i X i

o
Score Score

τ

τ µ τ
πσ τ

σ τ∈ ∈ =

 −
 = = +
 
 

∑ ∑∑O O  (3.17) 

where ( ) ( ) ( ), , and i i io τ µ τ σ τ  are the ith feature value, mean, and variance, respectively, at 

time frame τ  (from T frames). X is the tested feature subset. Four selection procedures were 

implemented: k-best method, forward, backward, and dynamic programming. The proposed 

framework was applied to study cepstral coefficients and their first and second derivatives. 

Experiments were conducted on a large-scale telephone database of 55 speakers, and a 

distinct database of 130 imposters. For each target, training was performed with three 

repetitions of a password phrase collected during a single call. The four selection procedures 

were tested, and the k-best method was worse than others. The other three procedures 

yielded equivalent performances. In their experiences, the optimal set contained 14 features 

(from an overall set of 27 features). It was found that cepstral coefficients of high order and 
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first derivatives of all cepstral coefficients were the most useful for speaker verification. 

Performance comparison was made between the verification system with the selected 14-

feature set and the initial 27-feature set. It was also found that the selected feature set gives 

an EER of 4.6%, compared to 5.9% with the initial set of 27 features. Moreover, it was 

shown that when a great deal of training data was available, the optimized feature set 

contained much more features than the one obtained with little (three repetitions) training 

data.  

[Campbell, 1997] evaluated the effectiveness of LP-based features and information 

theoretic measures by a simple speaker recognition system. The features included: LARs, 

LSP frequencies, and LP cepstra. The measures evaluated included divergence shape, 

Bhattacharyya shape, Bhattacharyya distance, divergence measure, Mahalanobis distance, 

and Euclidean distance. The decision criterion was to choose the closest speaker according to 

the selected feature and measure. The LSP frequencies were found to be the most effective 

features using the divergence-shape measure. A speaker-identification test yielded 98.9% 

correct closed-set speaker identification, using cooperative speakers with high-quality 

telephone-bandwidth speech. 

[Cohen et al., 1989] investigated whether speakers can be optimally recognized in an 

individual feature space. They suggested using a quadratic classifier for text independent 

speaker identification. Individual features were selected by a dynamic programming 

procedure. The criterion for feature selection was chosen to be the divergence, D ki b g , that 

was defined as the mean distance (in the k dimensional feature space) of the ith class from all 

other classes, namely: 

 D k
Ni j i

T

i j i
j

N

b g d i b g d i=
−

− −−

=
∑1

1
1

1

µ µ µ µW  (3.18) 
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where µ i  and Wi  are the expected feature vector and the covariance matrix of the ith 

speaker, respectively, and N is the number of speakers. The problem of optimal feature 

selection was defined as follows: given a set of K feature, find a subset of k K<  features so 

that the D ki b g  criterion is maximized. The system consisted of two main "libraries" 

representing the N speakers. The general library stored the complete set of K = 77  mean 

features and covariance matrices of all N speakers. The features used by the system included: 

normalized autocorrelation coefficients (model order 10), linear prediction coefficients, 

PARCORs, cepstral coefficients, prediction error, mean frame energy, and mean pitch 

frequency. The active library stored a reduced ( k K< ) set of individual feature vectors and 

covariance matrices. All features were calculated separately for voiced and unvoiced 

segments. The quadratic classifier identification scheme was compared with the linear 

classifier (with non-individual features) using an identification experiment with six male 

speakers. The training data contained about six minutes of Hebrew speech from each 

speaker, using non-overlapping 15-second segments to extract the mean features. The test 

data consisted of about two minutes of text, using overlapping 15-second segments for the 

extraction of test features. Feature vectors of order k = 10  were used. Although individual 

covariance matrices are not easily and accurately estimated, this work demonstrated that the 

quadratic classifier with individual optimal feature spaces is superior to conventional linear 

classifier speaker identification. Moreover, the authors showed that when each speaker is 

represented in his own optimal space, unvoiced utterances have almost equal importance to 

the voiced segments, in contrary to the common assumption.  

[Haydar et al., 1998] experiments further supported the idea of a speaker’s individual 

feature space. The authors introduced a genetic algorithm to reduce a 24-feature (12 LPC 

cepstra + 12 delta-cepstra coefficients) set to a 5-10 feature set, for each speaker in a text-
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independent speaker identification system. For each speaker, not only may the features 

selected be different, but also the space dimensionality could vary. The speech signal was 

taken from 15 male speakers (selected from the SPIDRE database), and was segmented into 

22.5 msec non-overlapping frames. For the speaker identification system, a very simple 

statistical model was used: two Gaussian distributions for each speaker. The experiment 

results showed that an increase in recognition rate of ~5% was achieved when the feature 

selection was made. Moreover, it was shown that cepstral parameters 3-4-5 were selected 

more frequently than the others. Delta-cepstrals, when compared with cepstrals, seemed to 

be less important on average. 

Individual Feature selection for a DTW-based text-dependent speaker verification 

system was reported by [Pandit et al., 1998]. The feature selection technique was based on 

the l-r algorithm, and was applied to study LPC-cepstrums and their first order orthogonal 

polynomial coefficients. Experimental results on French database (0-9 digits, 33 speakers) 

showed that an optimum feature set could be obtained without degrading the performance of 

the system. While experiments using Spanish database (0-9 digits, 40 speakers) showed 

improvement of verification error rate: FA of 6% for 20 features vs. FA of 3.87% for 10 

features (while FR is 0%). 
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3.4. Proposed Performance Criterion for Speaker Verification 

In verification systems, the decision to accept or reject an identity claim is based on the 

comparison of a score, ( )s O , with a threshold, τ : 

 ( )
accept

s
reject

τ
τ

≥ →
< →

O  (3.19) 

The simplest score for stochastic model-based verification systems is the log likelihood, 

which is the log probability of the (utterances) observations, O, given the target’s (claimed 

speaker) model, Tλ :  

 ( ) ( )log | Ts p λ=O O . (3.20) 

Systems based on a heuristic threshold decision (3.19) were shown to be very sensitive to the 

value of τ , to the text, the noise and other parameters of the system. It has been shown that 

normalized scores are preferred over the un-normalized scores. Several normalization 

methods have been suggested, for example, the log-likelihood ratio between the target’s 

model and a background model [Reynolds, 1995]: 

 ( ) ( )
( ) ( ) ( )|

log log | log |
|

T
n T B

B

p
s p p

p
λ

λ λ
λ

 
= = −  

 

O
O O O

O
 (3.21) 

where Bλ  is the background model. Sometimes, cohort based normalized scores are used 

[Zigel and Cohen, 2003]. Note that the normalization may be seen as a dynamic threshold, 

namely the threshold depends on the test utterance (the text) and on the background model. 

A common measure for testing performances of speaker verification systems is the 

Equal Error Rate (EER), namely the case when the false accept error is equal to the false 

reject (miss) error. It is therefore logical to use the EER (or some function thereof), as the 

performance criterion.  



Feature Selection for Speaker Recognition  Yaniv Zigel  

 

  

 

46

The estimation of the EER requires large computation loads. The feature selection 

procedures requires the estimation of the criterion at each stage. Moreover, given a 

relatively small amount of training data available, the EER has very low resolution as a 

criterion. Hence, the use of EER as a criterion becomes impractical. 

The performance criterion for feature selection we propose, is an estimation of a 

function of the EER, based on the assumption that the scores’ Probability Density Function 

(PDF) of the target ( )( )| Tf s ∈ O O O  and imposters ( )( )| If s ∈ O O O , are both 

Gaussians. Here TO  and IO  are the observations uttered by the target and imposters 

respectively. Figure 3.2 schematically describes the estimation of the EER. 

 

 

τIµ Tµ

Tσ

Iσ

( )[ ]| If s ∈O O O

( )[ ]| Tf s ∈O O O

( )s O

missP FAP

 
Figure 3.2: Estimation of verification errors from target and impostors Gaussian-like histograms. 

 

The PDF of the target’s score is assumed to be Gaussian:  

 ( ) ( )( )2

2

1| exp
22

T
T

TT

s
f s

µ
σπσ

 −
  ∈ = −   
 

O
O O O  (3.22) 
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and the PDF of the impostors is similarly assumed to be Gaussian with parameters ( ),I Iµ σ . 

Given a threshold, τ , the False Accept ( FAP ) and False Reject (or “miss” missP ) errors may 

be calculated by the areas under the appropriate curves as shown in figure 3.2. 

To verify that the PDF is indeed Gaussian, a 2χ  goodness-of-fit test was successfully 

performed on the targets’ scores as well as on the impostors’ scores. 

3.4.1. Gaussian Goodness of Fit Test 

To perform 2χ  goodness of fit test to show that ( ) ( ),s N µ σO ∼ , we first divide the range 

of ( )s O  into m subintervals [Huang et al., 2001], such that the expected number of values, 

iE , in each interval is at least 5. The actual number of points ( ( )s O  values) in the ith 

subinterval is denoted by iN . It can be proven [Mood et al, 1974] that the following random 

variable λ  

 ( )2

1

m
i i

i i

N E
E

λ
=

−
=∑  (3.23) 

converges to the 2χ  distribution with 1m k− −  degrees of freedom as the sample size 

n →∞ , where k is the number of parameters that must be estimated from the sample data in 

order to calculate the expected number of values, iE . To make a decision, whether 

( ) ( ),s N µ σO ∼  or not, we need to find the critical point, c, and compare it to λ  (3.23). The 

critical point is calculated using: 

 ( ) ( )2 01P c F x c
χ

λ α> = − = =  (3.24) 
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where ( )2F x
χ

 is the distribution function for 2χ  distribution, and 0α  is the pre-determined 

level of significance. The test procedure simply rejects ( ) ( ),s N µ σO ∼  when the realized 

value λ  (3.23) is such that cλ > . 

 Using 10m =  subintervals, a Gaussian goodness-of-fit test was performed for targets’ 

scores as well as for impostors’ scores. The left column in table 3.1 shows the subintervals 

edges, were ( )E sµ  =  O  and ( )std sσ  =  O . Table 3.1 shows also the corresponding 

probability falling in each subinterval, the expected number of points falling in each 

subinterval and the actual number of points falling in each subinterval, for one example 

target’s scores (speaker #3) and impostors’ scores from 39 speakers. 

 

Table 3.1: the corresponding probability falling in each subinterval, the expected number of points 
falling in each subinterval and the actual number of points falling in each subinterval, for one 

example target’s scores (speaker #3) and impostors’ scores from 39 speakers. 

( )( )i iE nP s I= ∈O
 iN  Subinterval, iI  ( )( )iP s I∈O

 
Target 
( )306n =  

Impostors 
( )657n =  

Target Impostors

[ ], 1.6σ µ−∞ − +  
0.0548 16.7686 36.0031 21 28 

[ ]1.6 , 1.2σ µ σ µ− + − +  
0.0603 18.4427 39.5976 19 55 

[ ]1.2 , 0.8σ µ σ µ− + − +  
0.0968 29.6164 63.5882 25 76 

[ ]0.8 , 0.4σ µ σ µ− + − +  
0.1327 40.6132 87.1989 36 82 

[ ]0.4 ,0.0σ µ σ µ− + +  
0.1554 47.5591 102.1121 42 94 

[ ]0.0 ,0.4σ µ σ µ+ +  
0.1554 47.5591 102.1121 47 89 

[ ]0.4 ,0.8σ µ σ µ+ +  
0.1327 40.6132 87.1989 47 86 

[ ]0.8 ,1.2σ µ σ µ+ +  
0.0968 29.6164 63.5882 34 64 

[ ]1.2 ,1.6σ µ σ µ+ +  
0.0603 18.4427 39.5976 21 41 

[ ]1.6 ,σ µ+ ∞  
0.0548 16.7686 36.0031 14 42 
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For the target’s scores, the value for λ  can be calculated as follows: 

 ( )2

1
5.4494

m
i i

T
i i

N E
E

λ
=

−
= =∑  (3.25) 

Since λ  can be approximated as a 2χ  distribution with 1 10 0 1 9m k− − = − − =  degrees of 

freedom, the critical point c at the 0 0.05α =  level of significance is calculated, using 

cumulative distribution function table [Mood et al, 1974], to be 16.919, according to 

equation (3.24). Thus we should accept the hypothesis ( ) ( ),s N µ σO ∼ , for target’s scores, 

because the calculated Tλ  is less than the critical point c. The same conclusion is also for the 

impostors’ scores.  

 ( )2

1
13.89 16.919

m
i i

I
i i

N E
c

E
λ

=

−
= = < =∑  (3.26) 

Similar results were achieved for other tested target speakers and for test-independent scores 

as well. 

Figure 3.3 shows an example of a target’s score histogram and its impostors’ score 

histogram, with the best-fitted Gaussians. The scores were calculated in the target’s selected 

feature space (24 features).  
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Figure 3.3: Gaussian fit for the histogram of target (#3) and impostors’ scores. 

 

 

3.4.2. The Recognition Related Criterion (RRC) [Zigel and Cohen 2004] 

Under the Gaussian assumption, the false reject, or missP  errors and the false accept FAP  may 

be written as 

 

( )

2

|

1 1 1exp erf2 22

miss T

T T

T TT

P f s ds

s ds

τ

τ µ τ µ
σ σπσ

−∞

−∞

 = ∈ = 

    − − = − = +   
     

∫

∫

O O O

 (3.27) 

 

( )

2

|

1 1 1exp erf2 22

FA I

I I

I II

P f s ds

s ds

τ

τ

µ τ µ
σ σπσ

∞

∞

 = ∈ = 

    − − = − = − +   
     

∫

∫

O O O

 (3.28) 

where τ  is the threshold for which ( )miss FAP P EER= =  (figure 3.2), and: 
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 ( ) 2
0

1 1erf exp
22

x
x t dt

π
 = −  ∫  

 
( ){ } ( ){ }
( ){ } ( ){ }

| , |

std | , std |
T T I I

T T I I

E s E s

s s

µ µ

σ σ

= ∈ = ∈

= ∈ = ∈

O O O O O O

O O O O O O
  

Let us first find the value of τ  for which miss FAP P= : 

 

1 1erf erf2 2

erf erf

T I
miss FA

T I

T I

T I

P P τ µ τ µ
σ σ

τ µ τ µ
σ σ

   − −
= ⇒ + = − +   

   
   − −

⇒ = −   
   

 

Since ( )erf i  is a monotonically injected (one to one) function, the last equation yields 

 T I

T I

τ µ τ µ
σ σ
− −

= −  

hence, the value of τ  for which miss FAP P=  is given by: 

 I T T I

I T

µ σ µ στ
σ σ

+
=

+
 (3.29) 

By introducing the value of τ  (3.29) in the ( )missP EER=  equation (3.27) 

 1erf 2
I T

I T
EER µ µ

σ σ
 −

= + + 
 (3.30)

 

Since we are interested in minimizing EER, the constant ½ is irrelevant. Moreover, since 

erf(·) is a monotonically injected function, its argument may be used as a criterion. Thus, the 

proposed performance criterion, RRC , is 

 T I

I T
RRC µ µ

σ σ
−

=
+

 (3.31) 

The criterion of equation (3.31) is to be maximized. Note that this criterion is somewhat 

similar to the F-ratio for the two Gaussian curves [Cohen and Zigel, 2002].  
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3.4.3. Generalized Performance Criterion   

In many cases speaker verification application calls for some ratio of missP  to FAP  (other than 

the EER). For example, in high-security systems, false accept errors are much less desirable 

than false reject errors, while in “convenience” applications, false reject errors are much less 

desirable.   

Let C be the required ratio between the false reject error, missP , and the false accept error 

FAP : 

 ; 0miss

FA

PC C
P

= < < ∞  (3.32) 

Let us define the generalized error CE  

 ( )1 ; 0 1C miss FAE P Pρ ρ ρ= + − ≤ ≤  (3.33) 

where ρ  is some weighting coefficient. 

We want to minimize CE  with the given constraint (3.32). Introducing (3.32) in (3.33): 

 ( )( )1 1 1C miss FAE P P C
C
ρρ ρ− = + = + − 

 
 (3.34) 

Since the parenthesis part in the last equation is constant, minimizing CE  is equivalent to 

minimizing missP , or minimizing FAP , with the given constant. 

Let us find the value of τ  which fulfills equation (3.32).  Introducing (3.27) and (3.28) into 

(3.32): 

 1 1erf erf2 2
T I

T I

Cτ µ τ µ
σ σ

    − −
+ = − +    

    
 (3.35) 

There is no analytic solution to equation (3.31) (unless 1C = ). A numerical search technique 

may be used to find the value of τ . Let us denote this value, cτ . 
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Introducing the value of cτ  into equation (3.27): 

 1erf
2

c
T

miss
T

P τ µ
σ

 −
= + 

 
 (3.36) 

Since we are interested in minimizing missP , as before, we may use here the (minus) 

argument of the ( )erf i  as a (maximization) criterion: 

 
c

c T
miss

T

P µ τ
σ
−

=  (3.37) 

This criterion is somewhat more complicated to implement than the RRC criterion. 

Equation (3.37) requires a search technique in order to find the value of cτ . The search 

technique may be somewhat simplified by the fact that the search range is bounded by (using 

equation (3.29)): 

 
; for 1

; for 1

I T T I

I T

I T T I

I T

C

C

µ σ µ στ
σ σ

µ σ µ στ
σ σ

+
> >

+
+

< <
+

 

The generalized performance criterion described above, has not been evaluated in this work 

due to lack of time. 

 


