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4. The Proposed Speaker Verification System 

The proposed speaker verification system was described very briefly in the introduction 

(chapter 1). In this chapter, we present a detailed description of the system. Figure 4.1 shows 

a general scheme of the speaker verification system.  
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Figure 4.1: The proposed speaker verification system 
 

The proposed speaker verification system consists of two main parts (stages): training 

and testing (verification).  
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4.1. The Training Stage 

The purpose of the training stage is to train a model for each one of the target speakers. In 

the proposed system, the model of each target is trained in its own “individual” feature 

space. An Individual Background Model (IBM) is also trained in this stage. This system uses 

HMM for text-dependent tasks and GMM for text-independent tasks. The outputs of this 

training stage (for each target) are:  

(1) A set of indices, which represents the selected individual feature sub-set, 

(2) Target HMM/GMM model, 

(3) Individual HMM/GMM background model; this model is trained for each target in its 

individual feature space. 

These outputs are stored in the memory. 

The input to the training stage is the speaker’s (target’s) training speech utterances (the 

signals). The input signals undergo pre-processing and global feature extraction (set of all 

pre-determined features). This pre-processing and feature extraction is sometimes referred to 

as front-end processing. The training of each target involves the extraction of a high 

dimensional feature space (termed here the “global feature space”), from which the 

individual’s optimal feature sub-space will be extracted. 

The training database consists of three different sub-bases:  

(1) Target’s training speech utterances; 

(2) Background speakers’ speech utterances; 

(3) Impostors’ speech utterances. 

The target’s training database is divided into two parts: the model training database and the 

optimization (validation) database. The first part is used for training two target’s models:  
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(1) A temporary target model, using the global feature space, in the individual feature 

selection process (optimization process), 

(2) The final target’s model, using its individual feature space (after the feature selection 

process), which is stored in the memory. 

The second part of the target’s training database is used to calculate the target scores, 

( )Ts O , in the individual feature selection process.  

The background speakers’ speech utterances database is used for training two 

background models1: 

(1) A Universal Background Model (UBM), incorporating the global feature space, which is 

used for score normalization in the individual feature selection process, 

(2) The final Individual Background Model (IBM), using the current target’s individual 

feature space, which is stored in the memory. 

The impostors’ speech utterances database is used to calculate the impostors’ scores, ( )Is O , 

in the individual feature selection process. 

 

4.1.1. Front-End Processing and the Global Feature Set 

Conventional front-end processing is employed in the system. First, the speech signal is 

windowed by a 30 ms Hamming window with a 15-ms frame rate. A speech activity 

detector is then used to discard silence–noise frames. The speech activity detector is a self-

normalizing, energy-based detector. Next, a global set of feature vectors is extracted from 

                                                 

1 Background models are required for the normalization of the score. Such normalization provides a “dynamic 

threshold” that reduces dependency on the text, its duration, channel distortion, noise, and more. 
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the speech frames. The global feature set was chosen to contain K = 120 features from 10 

groups of 12 order features. Table 4.1 lists the overall set of features and their assigned 

symbols. 

Table 4.1: The features and their symbols. 
# Feature name Order Symbols 
1 Mel Frequency Cepstral Coef. (MFCC) 12 1 12m m÷  
2 Linear Prediction Cepstral Coef. (LPCC) 12 1 12c c÷  
3 Log Area Ratio (LAR) 12 1 12a a÷  
4 Linear Prediction Coef. (LPC) 12 1 12l l÷  
5 Partial Correlation (PARCOR) 12 1 12p p÷  
6 First diff of MFCC (∆ - MFCC) 12 1 12m m∆ ÷∆  
7 First diff of LPCC(∆ - LPCC) 12 1 12c c∆ ÷∆  
8 First diff of  LAR (∆ - LAR) 12 1 12a a∆ ÷∆  
9 First diff of LPC (∆ - LPC) 12 1 12l l∆ ÷∆  
10 First diff of PARCOR  (∆ - PARCOR) 12 1 12p p∆ ÷∆  
 Total number of features: 120  

 
The MFCC features [Davis and Marmelstein, 1980] were chosen since they are commonly 

used in speaker verification/recognition systems. In our work, no Cepstral Mean Subtraction 

(CMS) is added. The other features [Deller et al., 1993] were chosen due to ease of 

estimation. Since the goal of the work is mainly proof of concept, only 120 features were 

used, in order to reduce the calculation time in the feature selection process. In future work, 

we plan to include other features, such as PLP’s [Hermansky et al., 1992]. The features have 

been normalized to their standard deviation in the feature extraction process to improve 

results. 

An algorithm for individual feature selection is executed on the global feature set in 

order to obtain the optimal individual feature space (X). For each speaker, an index of the 

selected features is stored and an HMM/GMM target model is trained in that individual 

feature space along with the target individual background model. 
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4.1.2. The Individual Feature Selection Procedure 

The proposed individual feature selection procedure is an integral part of the training stage. 

The procedure uses the proposed Recognition Related Criterion (RRC), which was described 

in section 3.4.2. The individual feature selection procedure using the RRC requires two sets 

of scores: target scores, ( )Ts O , and impostor scores, ( )Is O . The equations of the scores 

are 

 ( ) ( ) ( )log | log |T T T T UBMs p pλ λ= −O O O  (4.1) 

 ( ) ( ) ( )log | log |I I T I UBMs p pλ λ= −O O O  (4.2) 

where Tλ  is the target model; UBMλ  is the universal background model; TO  is a sequence of 

feature vectors extracted from the target’s validation database, and IO  is an impostor 

sequence of feature vectors. In the feature selection stage, universal background models are 

used for score normalization rather than cohorts [Tran and Wagner, 2001]. This is done due 

to computation speed considerations. To calculate the RRC, using the above scores (4.1-4.2), 

in each feature selection step, two appropriate models ( Tλ  and UBMλ ) are used in the current-

step feature sub-space. These models are initially trained from a training database using the 

global feature set (global models), and for each sub-space, the models are derived from the 

global models, using only the tested features in the sub-space. The individual feature 

selection procedure requires also a set of target utterances, which are taken from the target’s 

validation database, as well as impostor utterances. Obviously, because of computation-time 

considerations, one cannot use all the impostors’ utterances in the database; rather a small set 

of impostors’ utterances must be selected. This impostor set selection process is described 

later in section 4.1.3. 



Feature Selection for Speaker Recognition  Yaniv Zigel  

 

  

 

59

Any one of the feature selection methods discussed in section 3.1 may be used here. In 

our experiments (described later in chapter 5) we use several selection procedures: k-best, 

forward, SFFS, and DP. We found that in terms of accuracy and computation complexity the 

best procedure is the SFFS. 

After determining the target individual feature space, an HMM/GMM model is retrained 

in that individual feature space, using the target’s model training database. An individual 

background model is also retrained, using the database of background speakers, in the 

target’s individual feature space. 

4.1.3. Impostor Selection for the Feature Selection Procedure 

As we previously noted, for the individual feature selection procedure using the RRC, a small 

set of impostor utterances must be selected for each target speaker. For this, we need to 

select several impostors (cohort). For each one of the target models, C “selected” impostors 

(cohort speakers - c) were determined using the Close Impostors Clustering (CIC) method 

[Zigel and Cohen, 2003] with the following divergence-like criterion: 
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where ( )|i
T cp λO  is the probability of the ith target’s utterance i

TO  given the candidate 

impostor model cλ . j
cO  is the jth impostor’s utterance, and 

T
NO  and 

c
NO  are the number of 

target utterances and candidate impostor utterances, respectively. These models were defined 

for the global 120-feature space. The cohorts selected in the 120-feature space were used for 

all sub-spaces required by the feature selection algorithm. 
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4.1.3.1 The Close Impostors Clustering (CIC) Method [Zigel and Cohen, 2003] 

Different cohort selection techniques have been suggested in the literature, such as closest 

impostors [Rosenberg et al., 1992], which choose the “closest” impostor models to the target 

model. The main disadvantage of such technique is that it may leave the target exposed from 

a certain “angle” in the feature space. The CIC [Zigel and Cohen, 2003] is an effective 

algorithm of choosing cohort that engulfs the target model from all (or as many as possible) 

space angles. 

The goal of the CIC is to select the best C impostor models from the complete impostor 

set using clustering technique, for each target. The algorithm consists of three main steps: (1) 

outliers removal - the initial step of the algorithm is to select a subset of N impostors 

( 2N C≥ ) from the complete impostor community. The subset of N impostors consists of the 

candidates for cohort. The impostors excluded from this set are outliers and impostors that 

are very un-similar to the target that may obscure the correct selection of cohort; (2) 

clustering - the subset of N impostors is clustered into C clusters. Any one of several 

clustering methods may be used; (3) cohort selection procedure – one impostor is selected 

from each cluster as a representative of the given cluster. Any one of several selection 

methods may be used, for example, selecting the “closest” (to the target) member of the 

given cluster. 

In the version of the CIC used here, a single-link hierarchical clustering [Ripley, 1996] 

for finding C models has been employed:  

(1) Start with initial closest set, ( )TA , which has N = 2C models. ' 0C = . 

(2) Find the two closest impostors to each other (m and n) in ( )TA : 
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 ( )
( )

( ){ }
,

, arg min ,D m nm n T
m n

m n d λ λ
∈

≠

=
A

 (4.5) 

(3) Between m and n, remove from ( )TA  the farthest impostor (from the target), l, where l 

is found by: 

 
{ }

( ){ }
,

arg max ,D l Tl m n
l d λ λ

∈
=  (4.6) 

' ' 1C C= + . 

(4) Repeat from step (2) until 'C N C= − . 

4.2. The Testing Stage 

In the testing stage, an unknown speaker’s claimed identity and test utterance are introduced 

to the system. From the identity claim, the appropriate feature space, X, is drawn and feature 

extraction is made on the pre-processed utterance in order to yield these features, which 

belong to the speaker feature space. The verification algorithm provides a probabilistic score, 

( )s O , which is compared to a threshold (τ), to yield an accept or reject decision. The score 

( )s O  used here is the log likelihood ratio, ( ) ( ) ( )log | log |T IBMs p pλ λ= −O O O , where O 

is the speech observations, Tλ  is the target speaker model; and IBMλ  is the individual 

background model. The decision to accept or reject an identity claim is based on a 

comparison of the score, ( )s O , with a threshold, τ : 

 ( )
accept

s
reject

τ
τ

≥ →
< →

O  (4.7) 

Because each trial is tested in the claimed target feature space, one cannot use a universal 

threshold, rather individual thresholds must be used. 
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5. Experiments and Results 

This chapter presents the experimental evaluation of the proposed speaker verification 

system, which uses individual feature space. The experiments were performed for text-

dependent speaker verification as well as for text-independent speaker verification. The 

behavior of the system in a noisy database is examined. Comparison of performances 

between individual feature spaces and a common MFCC feature space is discussed. This 

common MFCC space was chosen for comparison because the MFCC is the most popular 

feature-set used in the speaker-recognition literature. 

5.1. Text-Dependent Speaker Verification 

5.1.1. Experimental Setup 

The experiment was setup for text-dependent speaker-verification task. The model for each 

speaker was trained as a left-to-right Continuous Density Hidden Markov Model (CD-

HMM), with 5 states and 2 Gaussians per state. Individual background models (CD-HMM 

with 5 states and 2 Gaussians per state) were trained using 26 speakers (one utterance from 

each speaker). This experiment consisted only of male speakers. 

The feature selection procedure was executed for each target with the RRC (3.31) 

criterion using the evaluation database: 20 target utterances and 10 utterances from each of 

the six cohort impostors. The result of the selection procedure was a set of k = 24 features for 

each target speaker. This feature order of 24 was determined in order to compare the results 

of the feature selection algorithm with the “almost standard” MFCC feature space (12 

MFCCs + 12 ∆MFCCs). Several feature selection procedures were executed: k-best, 

forward, DP, and SFFS. 
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5.1.2. The Text-Dependent Database 

The algorithm was evaluated with utterances of the Hebrew word /hamesh/ (five), taken 

from the Hebrew Isolated Digits (HID) database [http:\\www.ee.bgu.ac.il\~spl]. The 

database contains high quality speech (SNR of 60dB), recorded over a six-months period 

and sampled at 16KHz with 12 bits resolution. 

Ten male speakers from this database having the highest number of utterance repetitions 

were chosen to be target speakers. For each target, there were 39 male impostors. The 

number of utterances for each target speaker was between 70 to 400, and the number of 

utterances for each impostor was 45. The first 20 utterances for each target speaker were 

used for model training, the next 20 for the feature selection procedure, and the remaining 

utterances for testing. 

5.1.3. Results and Discussion 

Figure 5.1 shows the maximum value of the RRC criterion (3.31) as a function of the 

dimension of the selected feature space, k, as evaluated by the different feature selection 

procedures: k-best, forward, DP and SFFS. The data is from the training database. These 

curves indicate that the worst selection procedure is, as expected, the k-best, followed by the 

forward selection procedure. The two best selection procedures are the DP and the SFFS. 

The SFFS yields similar results to the DP, however, it is more efficient than the DP in terms 

of the calculation load. Therefore, we used the SFFS as the selection procedure for our 

individual feature selection system. 

Figure 5.2 shows EER test results of the various selection methods as a function of the 

feature space dimension, for speaker #3, using the testing database. One can see that the 

dimension of k = 33 yields the best results (for the SFFS). For dimension sizes above 35, the 
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EER increases, most probably due to overfitting in the training (sometimes referred to as: 

“the curse of dimensionality”). In practical situations, one would like to determine the order 

of the feature space from the training/evaluation data, during the training process. 
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Figure 5.1: Maximum RRC criterion as a function of the feature space dimension, k, for 
several feature selection procedures (for speaker #3). 
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Figure 5.2: Real EER test results of the different feature selection procedures in different 

feature space dimension (for speaker #3). 
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Table 5.1 shows the 24 selected feature subsets for each of the first five target speakers, 

using the SFFS feature selection procedure. The SFFS employed the RRC criterion (3.31). 

The table shows that different feature spaces were selected for the different target speakers, 

and that the dominant features in the optimal sets belong to the MFCC family. 

 
Table 5.1: Selected features for the first 5 target speakers. 

Speaker 
# 

Selected features 

1 
4 5 10 8 2 11

2 4 5 6 7 8 9 11 12

3 2 12 4 2 4 5 8 10

m m m c a l
m m m m m m m m m
c a a l p p p p p

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

 

2 
2 4 5 8 9 12 8 10 12 11

1 6 7 9 10 11 12

1 4 5 12 1 4 5

m m m m m a l l l p
m m m m m m m
a a a a p p p

∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆

 

3 
5 8 9

3 5 6 7 9 10 11 12

2 3 5 6 9 10 11 12 1 2 9 10

m m m
m m m m m m m m
a a a a a a a l p p p p

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

 

4 
3 7 8 9 10 4 6 11 6 11 6 8 11

4 5 8 10 12

2 8 8 9 10 2

m m m m m a a a l l p p p
m m m m m
a a l l l p

∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆

 

5 
4 7 12 7 8 9 10 11 7 8 9 10

4 5 7 9 11 12

1 7 10 11 2 10

m m m a a a a a p p p p
m m m m m m
a a a a p p

∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆
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Figure 5.3 is a histogram of feature occurrences (only the top probable features) in the 

individual selected feature subsets (from the ten targets). As the figure shows, most of the 

selected features belong to the ∆MFCCs, especially the highest order coefficients 

4 12m m∆ ÷∆ . 
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Figure 5.3: Number of feature occurrences in the individual selected feature subsets (ten 

targets). 
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Figure 5.4 shows the results of verification experiments obtained with different feature 

spaces. Results are presented by Detection Error Tradeoff (DET) plots. DET plots show the 

system tradeoff of misses versus false acceptances. The figure shows the average2 DET 

curves of the full set of 120 features and two different (24 dimensional) spaces: the MFCC 

(12 MFCC + 12 ∆MFCC) feature space and the individual selected feature space. Each curve 

is an average of ten DET curves of the ten target speakers. The number of target trials is 

1734, and the number of impostor trials is 6600. 
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Figure 5.4: Average DET curves of speaker verification results (feature spaces:  global 120 

features, 24 MFCC and Del MFCC space, and 24 individual optimal space) 
 

                                                 

2 Note that the DET curves here are not performed conventionally (universal threshold), since scores for each 

target are given in a different feature space. Therefore, individual DET curves are calculated individually for 

each of the targets and average DET curve is performed by averaging all individual DET curves. 
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According to figure 5.4 the individual selected feature system yields the best results. The 

worst results were obtained with the overall 120-feature space, probably due to the “curse of 

dimensionality.” 

Table 5.2 shows the mean EER values for each tested feature space. An average EER of 

0.48% was achieved with the individual selected feature space. This is an improvement of 

31% comparing to the ‘almost standard’ MFCC feature space (average EER = 0.7%).  

Table 5.2: Mean equal error rate of the verification results 

Feature Space Mean Equal Error Rate (EER) in % 

120 features 6 
MFCC 0.7 

FS 0.48 
 
 

5.2. Text-Dependent Speaker Verification in Noisy Speech 

This section presents two experiments that examine speaker verification performance of the 

HMM text-dependent speaker verification system with respect to different Signal to Noise 

Ratios (SNR). The first experiment was performed with a noisy training and a noisy testing 

database, and the second with a clean training database and a noisy testing database. 

5.2.1. Training on a Noisy Database  

The database used in this experiment was the same as that used in the previous text-

dependent experiment (section 5.1), except that to each speech file (including training, 

evaluating, and testing speech files), was added white noise in different SNRs of 20dB and 

5dB. The background models, as well as the target models, were retrained using the noisy 

database. The individual feature selection process used the noisy training database and the 

testing was performed using the noisy testing database. 
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Table 5.3 shows the 24 feature subsets selected from the 20dB noisy database, for each 

one of the first five target speakers (the same speakers as in table 5.1). The individual feature 

selection process again employed the SFFS selection procedure and the RRC criterion (3.31). 

Again, different feature spaces were selected for the different target speakers. Moreover, the 

selected features are somewhat different from the “clean” database case (table 5.1). One can 

see also that the dominant features in the optimal sets belong to the MFCC family. 

 

Table 5.3: Selected features for the first 5 target speakers on 20dB noisy database. 
Speaker 

# 
Selected features 

1 
5 7 9 10 3 4 5 9 9 5 9 10

5 7 9 10 11 12

3 12 12 9

m m m m a a a a l p p p
m m m m m m
a a l p

∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

 

2 
2 3 6 8 11 12 3 3 6 7 10 3 6

4 5 7 8 9 12

10 11 9 10 10

m m m m m m a l l l l p p
m m m m m m
a a l l p

∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆

 

3 
5 6 7 9 5 9

5 8 9 11 12

1 2 4 8 10 11 6 10 2 4 8 11

m m m m a a
m m m m m
a a a a a a l l p p p p

∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

 

4 
7 8 9 11 12 2 6 8 9 2 4 9 12 8 10 12

5 8 10 11 12

7 8 7

m m m m m c a a a l l l l p p p
m m m m m
a l p

∆ ∆ ∆ ∆ ∆
∆ ∆ ∆

 

5 
5 10 11 12 3 10 12 3 1 3 10

2 3 5 9 10 11

7 5 9 10 5 6 7

m m m m a a a l p p p
m m m m m m
c a a l p p p

∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆
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Figure 5.5 is a histogram of the top probable feature occurrences in the individual selected 

feature subsets (from the ten targets), using the 20dB noisy database. From this figure one 

can see that, like the “clean” database (figure 5.3), most of the selected features belong to 

the ∆MFCCs. However, the MFCCs are more prominent now than in the “clean” database 

case. 
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Figure 5.5: Number of feature occurrences in the individual selected feature subsets (ten 

targets) – using the 20dB noisy database. 
 

Figure 5.6 shows the results of the verification experiments using the 20dB SNR 

database, obtained with two different 24-dimensions feature spaces: 1) the individual feature 
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spaces, and 2) MFCC feature space. The figure shows that the best results, like the “clean” 

database, are achieved with the individual feature space (EER of 2.93%). The MFCC feature 

space yielded an EER of 3.43%. 
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Figure 5.6: Average DET curves of speaker verification results in 20dB noisy database. 

 
 

A similar experiment was performed using the 5dB noisy database. Figure 5.7 is a 

histogram of feature occurrences in the individual selected feature subsets, using the 5dB 

noisy database. As in the “clean” and 20dB noisy database cases (figure 5.3 and figure 5.5), 

most of the selected features belong to the MFCC family. However, in this case the MFCCs 

are more prominent than the ∆MFCCs. Moreover, the feature distribution is more uniform 

than for the two other SNRs. The best one feature, which is most common in all the three 

SNR cases and almost in all the targets’ individual feature spaces is 12m∆ . 
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Figure 5.7: Number of feature occurrences in the individual selected feature subsets (ten 

targets) – using the 5dB noisy database. 
 

 

Figure 5.8 shows the results of the verification experiments using the 5dB SNR 

database, obtained with two different 24-dimension feature spaces: 1) the individual feature 

spaces, and 2) the MFCC feature space. From this figure one can see that the results are 

similar. However, in the EER point the MFCC feature space (EER of 10.45%) has an 

advantage over the individual feature space system (EER of 11.91%). 
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Figure 5.8: Average DET curves of speaker verification results in 5dB noisy database). 

 

Figure 5.9 summarizes the EER values of the speaker verification systems (conventional 

MFCC space and the proposed system using individual feature space) vs. the SNR. The 

“clean” database case is indicated by 60dB. 
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Figure 5.9: Average EER vs. SNR of the two verification systems. 
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5.2.2. Training on the Clean Database (60 dB) 

In this experiment, the database is the same database as that used in the previous “clean” 

text-dependent experiment (section 5.1), except that to each testing speech file was added a 

white noise of two different SNRs: 20dB, and 5dB. The individual feature subsets are the 

same as in the “clean” database case, as well as are the background models and the target 

models. 

Figure 5.10 shows the results of the verification experiments using the 20dB SNR 

testing database, obtained with two different 24-dimension feature spaces: 1) the individual 

feature spaces, and 2) the MFCC feature space. From this figure, one can see that the best 

results are with the MFCC feature space (EER of 5.8%). The individual feature space yields 

an EER of 11.37%. 
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Figure 5.10: Average DET curves of speaker verification results in 20dB noisy testing 

database (using a clean training database). 
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Figure 5.11 shows the results of the verification experiments with the 5dB SNR testing 

database, obtained with different 24-dimension feature spaces (individual feature spaces and 

the MFCC feature space). From this figure, one can see that the best results are, again, 

obtained with the MFCC feature space (EER of 28.16%). The individual feature space yields 

an EER of 41.07%. 
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Figure 5.11: Average DET curves of speaker verification results in 5dB noisy testing 

database (using clean training database). 
 

Figure 5.12 summarizes the EER values of these two speaker verification systems vs. 

SNR. The figure shows that the verification system using the individual feature space 

exhibits much worse results as the SNR decreases (using clean training database). As 

opposed to the performances using the noisy training and testing database (section 5.2.1) or 

the clean database (section 5.1), under the present conditions the MFCC feature space system 

gives better verification results. One can conclude from these results that the proposed 
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system using the individual feature space is much more sensitive to changing environmental 

conditions than the system using the MFCC feature space. For some applications, this could 

be a disadvantage. On the other hand, it is more robust to impostors using recording devices 

for purpose of fraud.  
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Figure 5.12: Average EER vs. SNR of the two verification systems, using a noisy testing 

database. 
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5.3. Text-Independent Speaker Verification 

5.3.1. Experimental Setup 

The experiment was conducted for a text-independent speaker-verification task. This 

experiment consists of only male speakers taken from the NIST99 and NIST98 databases. 

Front-end processing was employed, as discussed in section 4.1.1, and individual feature 

selection was employed, as discussed in section 4.1.2. The feature selection procedure was 

executed for each target with the RRC (3.31) criterion and with the forward selection 

procedure. The SFFS selection procedure was not employed due to computation speed 

considerations. Impostor selection for the individual feature selection process was not 

employed as well; instead a fixed group of impostors was used for all the targets’ feature 

selection procedures. The selection procedure resulted in a set of k = 24 features for each 

target speaker. As in the test-dependent experiments, a feature order of 24 was determined in 

order to compare the results of the feature selection algorithm with the “almost standard” 

MFCC feature space (12 MFCCs + 12 ∆MFCCs). The model for each target was trained as a 

Gaussian Mixture Model (GMM), with 16 (diagonal covariance) Gaussians. Individual 

background models (GMM with 32 Gaussians) were trained using 30 speakers. These 

numbers of Gaussians were chosen using computation-time, memory, and overfitting 

considerations. 

5.3.2. The Text-Independent Databases 

As mentioned in the previous section, we used the NIST98 and NIST99 (1SPK) databases 

[Martin and Przybocki, 2000]. These databases are derived from the Switchboard-II corpus 

and consist of variable length utterances (0.5 – 60 seconds) extracted from one-sided 
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conversational telephone speech. For the experiments, we used only part of these databases. 

All the speakers (targets, background speakers, and impostors) were males, used electret 

handsets.  

The target speakers were taken from the NIST99 database. For each target, the training 

data consisted of two minutes of total speech, one minute from each of two conversations. 

From this training database, one minute was taken to train the target model and one minute 

for the individual feature selection process. The file used for the feature selection process 

was segmented into 30 8-sec segments (after silence removal) with an 0.7-sec segment rate, 

to yield 30 target scores. 30 speakers from the NIST98 database were arbitrarily selected to 

be the background speakers; one 10-second speech file for each speaker. The impostor 

speech utterances for the feature selection procedure were taken also from the NIST98 

database and consisted of 50 speech files, each one from a different speaker, arbitrarily 

selected (~10-second length).  

For the testing database, 50 male impostors were taken from the NIST98 database, 

which are present neither in the background speaker database nor in the impostor feature 

selection database. 50 one-minute impostor files were arbitrarily chosen. The impostor trials 

were segmented from these files. Each impostor trial segment was 10-sec long (after silence 

removal) with 0.5-sec segment rate. The target trials (10-sec, 0.5-sec segment rate) were 

segmented from the other target files (NIST99) which were not used in the training process. 

The verification test includes 941 target trials (from ten target speakers) and 23670 impostor 

trials (males only).   
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5.3.3. Results and Discussion 

Table 5.4 lists the 24 selected feature subsets for each of the first five target speakers, 

which were selected using the forward feature selection procedure along with the RRC 

criterion (3.31). From this table one can see that like for the text-dependent task, different 

feature spaces were selected for the different target speakers.  

 

Table 5.4: Selected features for the (first 5) target speakers (text-independent). 
Speaker 

# 
Selected features 

1 
7 6 11 3 8 2 4

3 4 8 9 11 12

2 3 7 12 3 8 12 2 4 7 12

m a a l l p p
m m m m m m
a a a a l l l p p p p

∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

 

2 
10 12 3 5 6 7 9 11

2 6 7 8 9 10 11

7 11 2 6 7 8 9 10 11

m a m m m m m m
a a a a a a a
l l p p p p p p p

∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

 

3 
4 6 7 4 5 8 5 10

2 3 4 8 9

9 10 12 3 4 7 12 5 8 9 10

m m m a a a l p
m m m m m
a a a l l l l p p p p

∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

 

4 
3 5 6 7 8 9 10 11 12

5 6 5 8 11 8 2 5 11

6 12 10 11 10 11

m m m m m m m m m
c c a a a l p p p

m m a a p p∆ ∆ ∆ ∆ ∆ ∆
 

5 
12 8 12

1 5 6 7 8 9 10 11 12

1 8 9 10 11 12 12 6 8 9 11 12

m a a
m m m m m m m m m
c a a a a a l p p p p p

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
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Figure 5.13 is a histogram of feature occurrences (the top probable features, not all the 

120 features) in the individual selected feature subsets. From this figure, one can see that 

most of the selected features are dynamic (delta) features. Moreover, most of them consist of 

higher order coefficients from MFCC ( 3 12m m∆ ÷∆ ), PARCOR ( 7 12p p∆ ÷∆ ), and LAR 

( 7 12a a∆ ÷∆ ). As in the case of the text-dependent task, the MFCC features are the most 

prominent, however, here, the PARCOR and LAR are much more noticeable than in the text-

dependent case. 
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Figure 5.13: Number of feature occurrences in the individual selected feature subsets (ten 

targets). 
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Figure 5.14 shows the results of the verification experiments obtained with different 

feature spaces. The results are presented by average DET curves of the two different (24 

dimensional) spaces: 1) the MFCC (12 MFCC + 12 ∆MFCC) feature space, and 2) the 

individual selected feature space. Each curve is an average of ten DET curves of the ten 

target speakers. The number of target trials is 941, and the number of impostor trials is 

23670. From the figure we can see that the verification results in the individual feature space 

(EER of 4.15%) is much better than those in the MFCC feature space (EER of 6.14%). 
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Figure 5.14: Average DET curves of text-independent speaker verification results using 

individual thresholds (feature spaces: 24 MFCC and Del MFCC space, and 24 individual 
optimal space) 

 
As mentioned in section 4.2, because of the use of different feature spaces for each 

target, one cannot use a universal threshold; rather individual thresholds must be used.  
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5.3.3.1 Statistical Significance 

The statistical significance [Mood et al., 1974] of the results in figure 5.14 can be visualized 

by shown by plotting a rectangle around the EER point of each curve which indicates a 95% 

confidence interval. This rectangle is computed under the assumption that each verification 

test is an independent trial and that misses and false alarms are decorrelated errors [Dunn et 

al., 2000]. The 95% confidence rectangle at the operating point (Pmiss, Pfa) is bounded by the 

values 

 ( )miss miss
miss

tgt

1P P
P z

N
−

±  (5.1) 

 ( )fa fa
fa

imp

1P P
P z

N
−

±  (5.2) 

where Pmiss is the probability of miss, Pfa is the probability of false alarm, Ntgt is the number 

of target trials, and Nimp is the number of impostor trials. z is defined by  

 ( ) 1
2

z γ+
Φ =  (5.3) 

where γ  is the confidence coefficient, ( )zΦ  is the cumulative normal distribution, which is 

defined by 

 ( )
2

21
2

z
t

z e dt
π

−

−∞

Φ = ∫  (5.4) 

In this statistical significance test, ( )0.95 0.975 1.96z zγ = →Φ = → = , tgt 941N = , and 

imp 23670N = . The non-overlapping error rectangles in figure 5.14 indicate that the 

performance improvement of the FS system is statistically significant. 
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6. Conclusions and Future Work 

This work has proposed an individual feature selection algorithm for text-dependent and 

text-independent speaker verification systems based on HMM/GMM classifiers. The 

individual feature selection algorithm employed the proposed Recognition Related Criterion 

(RRC), which was proved in this work to correlate with the verification results.  

It was shown that the use of an individual feature space can significantly improve 

speaker verification accuracy in text-dependent as well as in text-independent tasks. It was 

also shown that the individual feature space is more sensitive to SNR mismatch than the 

“conventional” MFCC space. Using an individual feature space requires the use of individual 

verification thresholds. Obviously, an individual feature selection process causes a greater 

computational load during the training process, and therefore consumes more time.  

The proposed HMM-based verification system was evaluated on a local text-dependent 

database. A significant improvement over the “standard” MFCC space (12 MFCC + 12 

∆MFCC) in verification results was demonstrated with the selected individual feature space. 

An EER of 0.7% was achieved when the feature set was the MFCC space. Under the same 

conditions, the system based on the selected individual feature space (order of 24) yielded an 

EER of only 0.48%.  

The proposed GMM-based verification system was evaluated on a text-independent 

database (NIST98 & NIST99). A significant improvement in verification results was 

demonstrated with the selected individual feature space. An EER of 6.14% was achieved 

when the feature set was the MFCC space. Under the same conditions, a system based on the 

selected feature space yielded an EER of only 4.15%. 
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It was found that most of the selected features in the text-dependent tests belong to the 

∆MFCCs, especially the highest order coefficients 4 12m m∆ ÷∆ . In the text-independent tests, 

most of the selected features belong to the dynamic (delta, transitional) coefficients. This is 

somewhat similar to the finding of [Charlet and Jouvet, 1997] that: “much of speaker-

dependent information is contained in transitional coefficients.” It has also been 

demonstrated that the SFFS selection procedure is preferable to the other selection methods 

tested here.  

Very few published papers deal with individual feature space (section 3.3). These papers 

were employed on relatively simple speaker recognition methods (quadratic classifier, VQ) 

and not with the state-of-the art HMM/GMM based speaker recognition systems. Moreover, 

they have tested relatively few features, in the task of speaker identification. The main 

innovation in this research was the combination of individual feature selection algorithm 

with the state-of-the art HMM/GMM based speaker verification systems (chapter 4). A novel 

criterion (RRC) was employed in the individual feature selection algorithm. This criterion 

was proved (chapter 3) to correlate with verification results.  

The global feature set was chosen to contain K = 120 features from 10 groups of 12 

order features. Among them: LPCs, MFCCs, PARCORs, LARs, LPCCs, and their 

derivatives (delta). These features were chosen due to computation considerations. In future 

work, we plan to include other features, such as PLPs [Hermansky et al., 1992] and prosodic 

features. Because of limitations in computation power and time, only ten target speakers 

were considered in the text-independent test. The results have shown to be statistical 

significant. We feel however, that tests with larger number of target speakers should be 

considered. Work is under way to employ more target speakers, as well as employing female 

speakers. 
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Work is under way to apply the algorithm to the problem of identification rather than 

verification. For the identification problem, we plan to use a common ‘optimal’ feature space 

rather than individual feature space. 

 


