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Appendix A. Continuous Density Hidden Markov Model 

(CD-HMM) 

Hidden Markov Model (HMM) is a very well known and established modeling method for 

many years now. It is well documented in books and tutorial papers. A short summary of the 

method is brought here to help the un-informed reader. Some practical implementation 

information is included in this appendix.  

HMM is a stochastic function of a Markov chain. As such, it is composed of two 

elements: a Markov process and a set of stochastic functions, or output probabilities [Rabiner 

et al., 1993], [Dugad et al., 1996]. The name HMM stands from the fact that the model 

assumes the process to be Markovian and the fact that there is no direct way of determining 

the state the model is in at any given time. There are two kinds of output probabilities to 

consider: discrete probability - in Discrete Density HMM (DD-HMM), and continuous 

probability - in Continuous Density HMM (CD-HMM).  

Two kinds of model architectures are often related with speaker recognition systems: 

Left-to-Right model, where the transitions between states are constrained to left-to-right 

direction (suitable for text-dependent tasks). The other architecture is Ergodic, where all the 

state transitions are allowed (suitable for text-independent tasks). In our text-dependent 

speaker verification system, we employed a left-to-right CD-HMM, which trains models 

using multiple observations training (enrollment of several sequences/utterances). 

A CD-HMM is characterized by the following parameters: 

(1)  N, the number of states in the model. We label the individual states as { }1, 2,..., N , and 

denote the state at time t as tq . 
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(2)  The state-transition probability distribution matrix { }ija=A  where 

 [ ]1 | ; 1 ,ij t ta P q j q i i j N+= = = ≤ ≤ . (A.1) 

(3)  The initial state distribution { }iπ π=  in which  

 [ ]1 ; 1i P q i i Nπ = = ≤ ≤ . (A.2) 

(4)  When the observations are continuous, the output of state j when the observation is o is 

represented by means of the Probability Density Function (PDF): ( ) ; 1b j Nj ≤ ≤o  

The PDF is estimated here by a linear combination of M Gaussians. 
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where, for every state j j N= 1 2, ,...,b g  and mixture k ( k M= 1 2, ,..., ), the output model 

parameters are:  

• cjk  - the mixture coefficients of the linear combination ( cjk
k

M

=
∑ =

1

1),  

• µ jk  - the expectation vector, and  

• jkΣ  - the covariance matrix. 

Finally, the CD-HMM model λ  is represented by the parameters: 

 { }λ = π, A,c,µ,Σ  

In general, the covariance matrix jkΣ  is a full matrix. In many practical implementations, the 

covariance matrix jkΣ  is assumed diagonal. This does not imply feature independence. 
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A.1. Estimation of Model Parameters - The Training Problem 

Given a training database that contains H sequences, (of duration: Th  ; h = 1,2,…,H), it is 

required to estimate the model's parameters: 

 ˆ ˆ ˆˆˆ ˆ{ }λ = π, A,c,µ,Σ  

For training the model, we use some probability variables: 

(1)  Forward variable: ( ) ( ) ( )1 2; , ,..., , |t t t ti i p q iα α λ= =o o o , and 

(2)  Backward variable: ( ) ( ) ( )1 2; , ,..., | ,t t t t T ti i p q iβ β λ+ += =o o o . 

These forward and backward variables are calculated iteratively [Rabiner et al., 1993]:  

 ( ) ( )1 1 ; 1j jj b j Nα π= ≤ ≤o  
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=

= ≤ ≤ ≤ ≤∑ o  (A.3) 

The training of the model is performed by the Baum-Welch algorithm, which is an iterative 

Expectation-Maximization (EM) algorithm [Dempster et al., 1977], [Moon, 1996]. With this 

algorithm, we start with an initial model, 0 0 0 0 0 0
ˆ ˆ ˆˆˆ ˆ{ }λ = π , A ,c ,µ ,Σ , usually using k-means 

algorithm [Rabiner et al., 1993]. In every iteration, the model is re-estimated, by, first 

calculating the forward and backward probabilities (for every sequence), and calculating 

variable γ t i k,b g : ( , ) ( , using the -th component , )t ti k p q i kγ λ= = O , 
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And then, re-estimating the model parameters: ˆ ˆˆˆ ˆπ,A,c,µ,Σ , by 
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Note that in left-to-right HMM the initial vector is set to π = 1 0 0 0, , ,..., T  and is not 

estimated. 

A.2. The Identification Problem - Output Probability 

The identification algorithm is very simple as compared with the training process. Given a 

model { }, , , ,λ = π A c µ Σ , and an observation sequence, O, we want to calculate the 

probability of having the sequence from the model: ( )|p λO . For this, the forward variables 

are calculated using (A.3). Then, the probability ( )|p λO  is the calculation:  

 ( ) ( )
1

|
N

T
i

p iλ α
=

=∑O  (A.9) 



Feature Selection for Speaker Recognition  Yaniv Zigel  

 

  

 

95

There is a third HMM problem – the “optimal” state sequence, which is not discussed here.  

There are some implementation issues for HMMs. Scaling of the forward and the 

backward variables is essential in order to keep their values within the dynamic range of the 

computer [Rabiner et al., 1993]. We have noticed that even doing so, the forward variable is 

sometimes lower than the smallest positive floating-point value of the computer (underflow). 

Therefore, we have limited the forward variable to the minimum value of 10-200 (in double-

float precision). Diagonal covariance matrices have been used, limited in their minimum 

value to 0.001, to avoid singularity.  
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Appendix B. Gaussian Mixture Model (GMM) 

GMM can be viewed as one component (state) of (continuous-density) HMM. Since the 

GMM is always at the (only) given state, it is no longer “hidden.” 

A Gaussian mixture density is a weighted sum of M component densities, as given by 

the following [Reynolds and Rose, 1995] 

 ( ) ( )
1

|
M

i i
i

p c bλ
=

=∑o o  (B.1) 

where o  is a D-dimensional random observation vector, ( )ib o , 1,...,i M=  are the 

component densities, and ic , 1,...,i M=  are the mixture weights. Each component density is 

a D-variate Gaussian function of the form 
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 (B.2) 

with mean iµ  and covariance matrix iΣ . The mixture weights have to satisfy the constraint 

1
1M

ii
c

=
=∑ . The complete Gaussian mixture density is parameterized by the mean vector, the 

covariance matrix and the mixture weight from all component densities. These parameters 

are collectively represented by  

 { }, , ; 1,...,i i ic i Mλ = =µ Σ  (B.3) 

As in the general case of HMM, the covariance matrices iΣ  are often restricted to be 

diagonal.  

In the training process, the maximum likelihood (ML) procedure is adopted to estimate 

model parameters, by maximizing the likelihood of GMM given the training data. For a 
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sequence of T training vectors { }1,..., T=O o o , the GMM likelihood can be written as 

(assuming observations independence) 

  ( ) ( )
1

| |
T

t
t

p pλ λ
=

=∏O o  (B.4) 

The ML parameter estimates are obtained iteratively using the expectation-maximization 

(EM) algorithm. At each iteration, the parameter update formulas are as below, which 

guarantee a monotonic increase in the likelihood value.  

Mixture weight update: 
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Mean vector update: 
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Covariance matrix update: 
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The a posteriori for the ith mixture is given by 
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