FLOW IN OPEN CHANNELS

Most efficient cross section

Chezy-Manning: \(Q = const \times AR^{2/3} \)

1) Most efficient cross section for a given cross section area \(A \): a flow rate \(Q \) will be a maximum when \(R \) is a maximum which means the perimeter \(P \) is a minimum.

2) Most efficient cross section for a given flow rate \(Q \): a cross section \(A \) will be a minimum when \(R \) is a maximum which means the perimeter \(P \) is a minimum.

Note:
For a given flow rate \(Q \), Chezy-Manning formula means that \(P = const \times A^{5/2} \)

Exercise 24

Channel: A symmetrical trapezoid, Manning's coefficient \(n=0.015 \) (asphalt), \(S=0.001 \).

What are the water velocity and flow rate?

Exercise 25

Water is to flow at a rate of \(Q = 30 \, m^3/s \) in the concrete \((n=0.013) \) channel shown in the sketch.
Find the slope \(S \) and the required vertical drop of the channel bottom per kilometer of length.
Exercise 26

Water flows in the triangular steel channel (n=0.014) at a velocity \(V=0.9 \text{ m/s} \).

Find the depth \(d \) of flow if the channel slope is 0.0015.

Exercise 27

A metal pipe (n=0.024) of 500 mm diameter flows half-full at a slope of 0.005.

What is the flow rate for this condition?

Exercise 28

A cast iron pipe (D=0.6 m, n=0.012, S=0.0025) carries water at a depth of 0.14 m. What is the flow rate?
Exercise 29

A concrete pipe (D=0.5 m, n=0.013, S=0.002) carries water at a flow rate \(Q = 2400 \text{ liter/min} \). What is the depth of flow?

![Diagram of a concrete pipe](image)

Exercise 30

An open channel (n=0.011) is to be designed to carry \(Q = 1.0 \text{ m}^3/\text{s} \) at a slope of 0.0065.

Show that for a given flow rate, the most efficient circular section not flowing full (see the sketch above) is a semicircular section. What is the depth (d) of flow?

Solution:

Chezy-Manning: \(Q = \text{const} \times A \cdot R^{2/3} \). The most efficient cross section for a given flow rate \(Q \): a cross section \(A \) will be a minimum when \(R \) is a maximum: Express \(R \) in terms of \(\alpha \)

Exercise 31

Find the most efficient cross section for Exercise 30 for a triangular section.

Solution:

Chezy-Manning: \(Q = \text{const} \times A \cdot R^{2/3} \). The most efficient cross section for a given flow rate \(Q \): a cross section \(A \) will be a minimum when \(R \) is a maximum which means the perimeter \(P \) is a minimum. But for a given flow rate \(Q \), from Chezy-Manning formula, \(P = \text{const} \times A^{5/3} \). Express the area \(A \) in terms of the triangle's side (a) and the angle (\(\alpha \)) between the sides.

Exercise 32

Find the most efficient cross section for Exercise 30 for a rectangular section.