An Ordinal Shapley Value for Economic Environments\(^1\)

David Pérez-Castrillo\(^2\)
Universitat Autònoma de Barcelona

David Wettstein\(^3\)
Ben-Gurion University of the Negev

November 2004

\(^1\)We wish to thank Ezra Einy, Sergiu Hart, Andreu Mas-Colell, Michael Maschler, Hervé Moulin, Andrés Perea, Carles Rafels, Roberto Serrano, and two anonymous referees for several insightful discussions and comments. We also gratefully acknowledge financial support from project BEC 2003-01133, the Generalitat de Catalunya (2001 SGR-00162 and Barcelona Economics, CREA), and the Israeli Science Foundation.

\(^2\)Department of Economics & CODE, Universitat Autònoma de Barcelona, Edificio B, 08193 Bellatera (Barcelona), Spain. Email: david.perez@uab.es.

\(^3\)Corresponding Author: Department of Economics, Ben-Gurion University of the Negev, Monaster Center for Economic Research, Beer-Sheva 84105, Israel. Email: wettstein@bgu.ac.il. Ph: 972-8-6472291, Fax: 972-8-6472941
Abstract

We propose a new solution concept to address the problem of sharing a surplus among the agents generating it. The problem is formulated in the preferences-endowments space. The solution is defined recursively, incorporating notions of consistency and fairness and relying on properties satisfied by the Shapley value for Transferable Utility (TU) games. We show a solution exists, and call it the Ordinal Shapley value (OSV). We characterize the OSV using the notion of coalitional dividends, and furthermore show it is monotone and anonymous.

JEL Classification numbers: C72, D50, D63.

Keywords: Non-Transferable utility games, Shapley value, Ordinal Shapley value, consistency, fairness.
1 Introduction

A feature common to most economic environments is that the interaction among agents, be it through exchange, production or both, generates benefits shared among the participating individuals. The question of what would be the resulting distribution of gains has been central to economic theory. In this paper, we propose and analyze a new solution concept (sharing method) that satisfies appealing properties in economic environments.

In economic environments characterized by transferable utility (TU), where there exists a “numeraire” commodity that all agents value the same in terms of utility, there are several popular notions of the distribution of gains, the most well-known of which are the Core and the Shapley value. These satisfy several desirable properties such as efficiency and group stability in the case of the core, and efficiency, fairness and consistency for the Shapley value.

Extending the notion of the Core to more general environments with non-transferable utility (NTU) is straightforward. However, the extension of the central concept of the Shapley value turns out to be a much more demanding task. The three known extensions describe the environment in the utility space, i.e., specifying feasible utility tuples, abstracting from the physical environment generating the tuples. They associate with each environment one or more TU games, and use their Shapley value to generate a surplus sharing method. To define such a method, Shapley [14] associates with each environment a TU game, by means of a weights vector, giving the “worth” of each utility tuple. This TU game has a well-defined Shapley value. If this value is feasible for the original game, it is a utility profile associated with this environment. Harsanyi [1] suggests a different extension, by stressing the idea of equity. His solution contains the notion of coalitional “dividends” and each agent must end up with a payoff corresponding to the sum of his dividends. Finally, Maschler and Owen [3, 4], using a TU game associated with the grand coalition, provide an extension preserving the consistency properties of the Shapley value.

A major shortcoming of the extensions of the Shapley value is that the solutions are not invariant to order-preserving transformations of the agents’ utilities. The notion of invariance has been addressed in the literature in two different ways. One approach considers bargaining problems, where the environment is given by the utility possibilities
frontier for the whole set of agents and the disagreement point. A solution is then said to
be ordinal, if it is invariant with respect to strictly increasing monotonic transformations
of these entities. Shapley [14] shows that there does not exist an ordinal, efficient and
anonymous solution for the case of two agents, and constructs one for the three-agent
case. Safra and Samet [10] provide a family of ordinal, efficient and anonymous solutions
for bargaining problems with any number of agents greater than two.

The second approach towards the ordinality issue considers the underlying physical
environment generating the utility possibilities frontier. This approach better captures
the basic structure of the environment since identical economic environments may lead to
drastically different bargaining problems, by appropriate choices of utility functions that
represent the same preferences. In this approach the solution is defined in terms of the
physical environment, i.e., in terms of allocations of commodity bundles.

To clarify the difference between the two approaches, take the example of a two-agent
exchange economy. Consider the representation of this economy as an NTU game. Follow-
ing Shapley [14] there is no ordinal, efficient and anonymous solution concept for this
game. However, there are several ordinal, efficient and anonymous solution concepts for
the exchange economy such as the competitive equilibrium, the core and others. There-
fore, an ordinal solution for the economic environment need not be an ordinal solution for
the NTU game. Similarly, an ordinal NTU solution need not be ordinal if analyzed as a
solution for the economic environment.

Pazner and Schmeidler [7] provide a family of ordinal solutions given by Pareto-
Efficient Egalitarian-Equivalent (PEEE) allocations for exchange economies. They con-
sider the problem of allocating a bundle of goods among a set of agents. In their envi-
ronment, each of the agents has the same a priori rights. An allocation is PEEE if it
is Pareto efficient and fair, in the sense that there exists a fixed commodity bundle (the
same for each agent) such that each agent is indifferent between this bundle and what he
gets in the allocation. McLean and Postlewaite [5] consider pure exchange economies as
well, and define an ordinal solution given by nucleolus allocations, extending the notion
from the physical environment, and provide ordinal solutions for the case of two agents
that, under some conditions, also extend to environments with any number of agents.
Our work continues this line of research by proposing an *ordinal solution* based on the physical environment. This new solution incorporates several of the principles underlying the Shapley value in *TU* environments, and will be referred to as the *Ordinal Shapley Value (OSV)*. It generalizes the fairness notion (of *PEEE*) by considering possibly different *a priori* rights (i.e., different initial endowments), and also the options agents have in any possible subgroup, and not just their own initial endowments. It is consistent in the sense that agents’ payoffs are based on what they would get according to this rule when applied to sub-environments. In addition to these properties of equity and consistency, the solution is efficient, monotonic, anonymous, and satisfies individual rationality. Also, the OSV is characterized through the use of “coalitional dividends” similar to the characterization of the Shapley value by the use of Harsanyi dividends [1].

The OSV exists whenever preferences are continuous and monotonic. No convexity restrictions common in the specification of NTU games are necessary. It provides a reasonable outcome for a large class of environments even where competitive equilibria or core allocations may fail to exist.

2 The Shapley Value in *TU* environments

Consider a *Transferable Utility* (*TU*) game \((N, v)\), where \(N = \{1, ..., n\}\) is the set of players, and \(v : 2^N \rightarrow R\) is a characteristic function satisfying \(v(\emptyset) = 0\), where \(\emptyset\) is the empty set. For a coalition \(S \subseteq N\), \(v(S)\) represents the total payoff that the partners in \(S\) can jointly obtain if this coalition is formed. We define a *value* as a mapping \(\xi\) which associates with every game \((N, v)\) a vector in \(R^n\) that satisfies \(\sum_{i \in N} \xi_i(N, v) = v(N)\).\(^2\)

The *Shapley value* (Shapley, [12]) of every agent \(i \in N\) in the *TU* game \((N, v)\) is (denoting \(|S|\) the cardinality of the subset \(S\)):

\[
\phi_i(N, v) = \sum_{S \subseteq N \setminus i} \frac{|S|!(n - |S| - 1)!}{n!} [v(S \cup \{i\}) - v(S)].
\]

The next theorem provides a new characterization of the Shapley value.\(^3\)

\(^1\)Throughout the paper, we use \(\subseteq\) to denote the weak inclusion and \(\subset\) to denote the strict inclusion.

\(^2\)Thus we require efficiency as part of the definition of a value.

\(^3\)When using the symbol \((M, v)\) where \(v\) is *a priori* defined on \(N \supseteq M, v\) is taken to be the restriction of the original \(v\) to \(2^M\).
Theorem 1 A value \(\xi \) is the Shapley value if and only if it satisfies:

\[
\sum_{i \in N \setminus j} (\xi_i(N, v) - \xi_i(N \setminus j, v)) = \sum_{i \in N \setminus j} (\xi_j(N, v) - \xi_j(N \setminus i, v))
\]

(1)

for all \((N, v)\) with \(|N| \geq 2\) and for all \(j \in N\).\(^4\)

The expression \(\phi_i(N, v) - \phi_i(N \setminus j, v) \) is usually referred to as the contribution of player \(j \) to the Shapley value of player \(i \). It corresponds to the amount that makes player \(i \) indifferent between receiving the value suggested to him in the game \((N, v)\), or receiving this payment and reapplying the value concept to the game without player \(j \). Theorem 1 states that a value is the Shapley value if and only if, for any player \(j \), the sum of the contributions of player \(j \) to the other players is equal to the sum of the contributions of the other players to player \(j \). We refer to the difference \(\phi_i(N, v) - \phi_i(N \setminus j, v) \) as a concession, what player \(j \) concedes to player \(i \), and denote it by \(c^j_i \).\(^5\)

Corollary 1 A value \(\xi \) is the Shapley value if and only if for each game \((N, v)\) with \(|N| \geq 2\) there exists a matrix of concessions \(c(N, v) \equiv (c^j_i(N, v))_{i,j \in N, i \neq j} \), with \(c^j_i(N, v) \) in \(R \) for all \(i, j \in N, i \neq j \), such that:

1. \(\xi_i(N, v) = \xi_i(N \setminus j, v) + c^j_i(N, v) \) for all \(i, j \in N, i \neq j \), and
2. \(\sum_{i \in N \setminus j} c^j_i(N, v) = \sum_{i \in N \setminus j} c^i_j(N, v) \) for all \(j \in N \).

We can view part (1) in Corollary 1 as a consistency property of the Shapley value. When the \(n - 1 \) players other than \(j \) consider the value offered to them by the solution concept, they contemplate what might happen if they decide to go on their own. However, the resources at their disposal should incorporate rents they could conceivably achieve by cooperating with \(j \). We call these rents the concessions of \(j \) to the other players. Part (2) can be interpreted as a fairness requirement: the concessions balance out, the sum of concessions one player makes to the others equals the sum of concessions the others make to him.

The Shapley value can also be characterized via the “Harsanyi dividends” (they are also called coalfitional dividends):

\(^4\)The text includes the proof of the main theorem. The reader is referred to Pérez-Castrillo and Wettstein [9] for the proofs of the other results.

\(^5\)See also Pérez-Castrillo and Wettstein [8], where concessions are interpreted as bids.
Proposition 1 A value ξ is the Shapley value if and only if, for any game (N, v) there exists $\lambda_S \in R$ for all $S \subseteq N$ such that,

$$\xi_i(T, v) = \sum_{S \ni i \subseteq T} \lambda_S \text{ for all } i \in T, \text{ for all } T \subseteq N. \quad (2)$$

Following Proposition 1, we can write:

$$c_i^T(N, v) = \sum_{S \ni i} \lambda_S \text{ for all } i, j \in N, i \neq j.$$

Therefore, in TU games, the concessions are symmetric in the sense that what player j concedes to i is the same as what player i concedes to j.

3 The Environment and the Solution

We consider a pure exchange economy with a set $N = \{1, 2, \ldots, n\}$ of agents and $k \geq 2$ commodities. Agent $i \in N$ is described by $\{\preceq^i, w^i\}$, where $w^i \in R^k$ is the vector of initial endowments and \preceq^i is the preference relation defined over R^k. An economy (usually denoted by E) is thus given by $E = \{\preceq^i, w^i\}_{i=1}^n$. We denote by \succ^i and \sim^i the strict preference and indifference relationships associated with \preceq^i. For each $i \in N$, the preference relation \preceq^i is assumed to be continuous and monotonic on R^k (i.e., if $y_l > x_i$ for all $l = 1, \ldots, k$, then $y \succ^i x$). To simplify the notation in several definitions and proofs it would be convenient to refer to a utility function representing the preferences of agent i, denoted by u^i. For concreteness we map each commodity bundle x to the (unique) number $u^i(x)$ that satisfies $x \sim^i u^i(x) \cdot e$, where $e = (1, \ldots, 1) \in R^k$. As we define an ordinal solution concept, the solution itself will, of course, not depend upon this particular choice of a utility function.

We let $w = \sum_{i \in N} w^i$. The set of feasible utility profiles in R^n for an economy E is denoted by $A(E)$ and defined by:

$$A(E) = \left\{ u \in R^n | \exists (x^i)_{i=1,\ldots,n} \in R^{kn}, \text{ such that } u^i(x^i) = u^i, \ i = 1, \ldots, n \text{ and } \sum_{i \in N} x^i \leq w \right\}.$$

Agents can conceivably be better off by reallocating their initial endowments. However, it should not be possible for the utility of one agent to grow arbitrarily large if the utilities
of the other agents are bounded from below. To capture this idea, we assume that, for any $u \in A(E)$ and $i \in N$, the set $A_i(u) \equiv \{\pi \in A | \pi_{-i} = u_{-i} \}$ is bounded from above.\footnote{For a vector $x \in \mathbb{R}^n$ and $i \in N$, $x_{-i} \equiv \{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n\}$.}

We note that this property is ordinal. In this paper, any pure exchange economy that satisfies the previous requirements is referred to as an economic environment.

We propose a solution concept, called the Ordinal Shapley Value (OSV), for pure exchange economies, the construction of which relies on the notion of concessions. However, since these economies constitute NTU environments, which are described in terms of the underlying physical structure, concessions cannot be in the form of utility transfers. Concessions are expressed in terms of commodities. We measure them in terms of a “base bundle” which we take to be e. The main characteristic of the concept proposed is that it is ordinal. That is, the solution associates with each economy a set of allocations that do not depend on the numerical representation of the underlying preferences of the agents. Moreover, the solution proposed is efficient and satisfies consistency and fairness requirements.

What is a “fair” and “consistent” sharing? Let us first discuss the rationale of our proposal in the case of two agents. According to our proposal, a sharing is fair if the gains from cooperation are equally distributed among the two agents. A crucial question is how to measure these gains. In our proposal, the benefits from cooperation are measured in terms of e. The gain of each agent is the amount of e units that when added to his initial endowment, yields a bundle indifferent to the bundle received by the sharing. This amount of e assumes the role of the difference in values (in the TU case).

A sharing is consistent if each agent is indifferent between the sharing outcome and what he could get if he were to walk away and keep what remains of the aggregate endowment, after compensating the other agent according to the solution concept. We measure the surplus he can keep by the maximal amount of e units for which, when he receives a bundle indifferent to his initial endowment augmented by that amount of e units, the other agent is left with a bundle equivalent to the bundle he received in the sharing. To state these properties more succinctly we use the notion of a concession just as in the TU case. An efficient sharing is fair and consistent if there exists a pair of concessions such that the concession made by agent i to agent j equals the concession...
made by agent \(j \) to agent \(i \), and each agent is indifferent between keeping this allocation or taking the concession proposed by the other (to add to his initial endowment).

Extending this notion to the \(n \)-person case, a solution is an efficient allocation for which there exists a matrix of concessions, one from each agent to any other agent, satisfying consistency and fairness. The consistency property now requires that any set of \((n - 1) \) agents should be indifferent between keeping their allocation or taking the concessions made by the remaining agent and reapplying the solution concept to the \((n - 1) \)-agent economy. The recursive nature of the definition implies that this consistency property extends to coalitions of any size. Moreover, to ensure that the allocation reached is “fair”, we require the concessions to balance out, in the sense that the sum of concessions one player makes to the others equals the sum of concessions the others make to him. In other words, the surplus generated for any set of \(n - 1 \) agents is the same as the surplus they are willing to concede to the remaining agent.

The formal definition of this solution concept, the \(OSV \), is as follows:

Definition 1 The Ordinal Shapley Value is defined recursively.

\((n = 1)\) In the case of an economy with one agent with preferences \(\succeq^1 \) and initial endowments \(a^1 \in R^k \), the \(OSV \) is given by the initial endowment: \(OSV(\succeq^1, a^1) = \{a^1\} \).

For \(n \geq 2 \), suppose that the solution has been defined for any economy with \((n - 1) \) or less agents.

\((n)\) In the case of an economy \((\succeq^i, a^i)_{i \in N}\) with a set \(N \) of \(n \) agents, the \(OSV ((\succeq^i, a^i)_{i \in N}) \) is the set of efficient allocations \((x^i)_{i \in N}\) for which there exists an \(n \)-tuple of concession vectors \((c^i)_{i \in N}, c^i \in R^{n-1} \) for all \(i \in N \) that satisfy:

1. for all \(j \in N \), there exists \(y(j) \in OSV ((\succeq^i, a^i + c^i c)_{i \in N \setminus j}) \) such that \(x^i \sim^i y(j)^i \) for all \(i \in N \setminus j \), and
2. \(\sum_{i \in N \setminus j} c^i_i = \sum_{i \in N \setminus j} c^i_j \) for all \(j \in N \).

It should be noted that the choice of the bundle \(e \) to measure the surplus that accrues to each agent is arbitrary. The \(OSV \) could be constructed by using any other positive vector.\(^7\) The following analysis is valid regardless of the particular reference bundle chosen.

\(^7\)Given this fact, it may be more appropriate to use the notation \(OSV_e \) instead of \(OSV \). We use \(OSV \) for notational simplicity.
Note also that this solution concept reduces to the Shapley value in economic environments that can be described as a TU environment. In such environments there is a common unit of account which can be thought of as money, and agents’ preferences are (normalized) quasi linear of the form \(m + v^i(x) \) where \(m \) is “money”, \(v^i \) is a utility function, and \(x \) is a commodity vector. If we measure concessions in terms of money (\(m \)), our solution yields the Shapley value.

For a two-agent economy, the OSV is the set of efficient allocations for which there exists an identical concession for each agent, such that any agent is indifferent between the bundle offered to him in the allocation or taking the concession and staying on his own. In this economy, our proposal bears many similarities to the Pareto-Efficient Egalitarian-Equivalent (PEEE) allocation proposed by Pazner and Schmeidler [7], when addressing the issue of allocating a bundle of goods among a set of agents. An OSV allocation when the two agents have the same initial endowments is a PEEE allocation as well. The construction by Nicolò and Perea [6] also yields the OSV for the class of exchange economies where aggregate endowments of all the commodities are equal and are shared equally among the two agents. While we require indifference with respect to adding to the two agents initial endowments, multiples of \(e \), they require indifference with respect to adding to each agent’s initial endowment a multiple of the other agent’s initial endowment.

4 Existence and characteristics of the OSV

It is not obvious there exists an efficient allocation for which one can find concessions satisfying the requirements imposed by the definition of the OSV. To show such allocations exist, we invoke in Theorem 2 a fixed point argument. Furthermore we show that allocations in the OSV satisfy the desirable property of individual rationality, that is, if \(x \in OSV ((\succeq^i, w^i)_{i \in N}) \), then \(x^i \succeq w^i \), for all \(i \in N \).

The following lemma plays a crucial role throughout the paper.

Lemma 1 For any economy \(E = (\succeq^i, \beta^i)_{i \in N} \) and any \(u \in A(E) \), there exists a unique vector \(a \in \mathbb{R}^n \) that varies continuously with \(u \), such that an OSV allocation for the \(n \)-agent economy \((\succeq^i, \beta^i + a^i e)_{i \in N} \) yields the utility tuple \(u \).
Theorem 2 The Ordinal Shapley Value is non empty and satisfies individual rationality in economic environments.

Proof. The proof proceeds by induction. The results hold for \(n = 1 \). We assume the results hold for any economy with up to \((n - 1) \) agents and prove that they hold for any economy with \(n \) agents, for \(n \geq 2 \).

We consider the economy \((\succeq^i, w^i)_{i \in N}\). We proceed to construct a continuous mapping from a suitably defined set of bounded utility profiles for this economy into itself. Let \(\underline{u} = u_i (w_i - e) \). The set of utility profiles that constitute the domain (as well as range) of the mapping is denoted by \(H \), and defined by:

\[
H \equiv \{ u \in R^n \mid \exists \text{ a Pareto efficient allocation } (x^i)_{i \in N} \in R^{nk} \text{ with } u^i(x^i) = u_i \text{ and } u_i \geq \underline{u}_i \text{ for } i = 1, ..., n \}.
\]

Through an argument similar to the one used in Mas-Colell [2], we can prove that the set \(H \) is homeomorphic to the unit simplex. We denote by \(H^b \) the “border” of \(H \), the set of all the utility vectors for which the \(i \)th component equals \(\underline{u}_i \) for some \(i \). Formally:

\[
H^b \equiv \{ u \in H/ u^i = \underline{u}_i \text{ for some } i \in N \}.
\]

For any vector \(u \in H \) and for all \(j \in N \), Lemma 1 provides for each \(u_{-j} \) a unique vector \(a^j \in R^{n-1} \) such that an OSV allocation for the \((n - 1)\)-agent economy \((\succeq^i, w^i + a^j_i e)_{i \in N/\bar{j}}\) yields the utility tuple \(u_{-j} \). We let \(c^j(u) \equiv a^j_i \). These are the concessions that agent \(j \) “needs” to make in order for the other \(n - 1 \) agents to achieve the utility level \(u_{-j} \).

Using the concessions \((c^j(u))_{j \in N, j \neq i}\) we construct \(n \) “net concessions” by:

\[
C^i(u) \equiv \sum_{j \in N \setminus i} c^j(u) - \sum_{j \in N \setminus i} c^j_i(u), \text{ for all } i \in N.
\]

Notice that \(\sum_{i \in N} C^i(u) = 0 \).

We now define a mapping from \(H \) into \(H \). Each utility profile \(u \) in \(H \) is mapped to a utility profile \(\overline{u}(u) \in H \) by increasing (decreasing) the components associated with positive (negative) \(C^i(u) \)’s, making necessary adjustments to preserve feasibility and efficiency. More precisely, we let

\[
D(u) \equiv \min_{i \in N, C^i(u) < 0} \{ u^i - \underline{u}_i \} \text{ if } C(u) \neq 0 \in R^n.
\]
\[D(u) \equiv 0 \text{ otherwise.}\]

Note that, if \(u\) is not in \(H^b\) (that is, if \(u\) is at the “interior” of \(H\)) then \(D(u) > 0\) if \(C(u) \neq 0\). Consider the following vector:

\[
\tilde{u}(u) \equiv u + \frac{D(u)}{\max_{i \in N} \{|C_i(u)|\}} + 1\, C(u).
\]

Denote by \(C(u)_+ \in \mathbb{R}^n\) the vector defined as follows: \(C_i(u)_+ = C_i(u)\) if \(C_i(u) > 0\), and \(C_i(u)_+ = 0\) if \(C_i(u) \leq 0\). Similarly, denote by \(C(u)_- \in \mathbb{R}^n\) the vector that is defined by \(C_i(u)_- = C_i(u)\) if \(C_i(u) < 0\), and \(C_i(u)_- = 0\) if \(C_i(u) \geq 0\).

If \(\tilde{u}(u)\) is feasible and efficient, take \(\overline{u}(u) = \tilde{u}(u)\).

If \(\tilde{u}(u)\) is feasible but not efficient, take

\[
\overline{u}(u) = u + \frac{D(u)}{\max_{i \in N} \{|C_i(u)|\}} + 1\, (C(u) - \delta C(u)_-),
\]

where \(\delta \in (0, 1)\) is the unique real number such that \(\overline{u}(u)\) previously defined is feasible and efficient. (The efficiency requirement implies \(\delta > 0\), whereas feasibility implies \(\delta < 1\).)

If \(\tilde{u}(u)\) is not feasible, take

\[
\overline{u}(u) = u + \frac{D(u)}{\max_{i \in N} \{|C_i(u)|\}} + 1\, (C(u) - \delta C(u)_+),
\]

where \(\delta \in (0, 1)\) is the unique real number such that \(\overline{u}(u)\) previously defined is feasible and efficient. (Here, feasibility implies \(\delta > 0\), whereas efficiency implies \(\delta < 1\).)

To prove that \(\overline{u}(u) \in H\), we only need to show that \(\overline{u}(u) \geq u_i^i\) for all \(i\). If \(D(u) = 0\), this property is trivially satisfied. If \(D(u) > 0\) then \(C(u) \neq 0\). By the definition of \(D(u)\) and \(\tilde{u}(u)\), it is easy to check that for \(i\)'s for which \(C_i(u) < 0\) the decrease in coordinate \(i\) is small enough so that \(\tilde{u}(u)_i \geq u_i^i\). Second, if \(\tilde{u}(u)_i \geq u_i^i\), then the construction of \(\overline{u}(u)\) makes sure that also \(\overline{u}(u)_i \geq u_i^i\).

Claim a: The mapping \(\overline{u}(u)\) has a interior fixed point.

To prove it, notice first that the mapping \(\overline{u}(u)\) is continuous. Indeed, the function \(D(u)\) is clearly continuous. Also, \(C(u)\) is continuous as soon as the “concessions” \(c_j^i(u)\) are a continuous function of \(u\). By Lemma 1, the \(c_j^i(u)\)’s are a continuous function of \(u\). Since \(H\) is homeomorphic to an \(n\)–unit simplex, the mapping \(\overline{u}(u)\) must have a fixed point.
It now remains to show that the fixed point \(u \) cannot occur on the boundary. Suppose it is on the boundary, that is, \(\varepsilon_i(u) = u^i = u_i \) for some \(i \in N \). Assume w.l.o.g. that \(u^1 = u \). We claim that \(C^1(u) > 0 \). First, we prove that \(\sum_{i \in N \setminus 1} c^i_1(u) > 0 \). Indeed, if \(\sum_{i \in N \setminus 1} c^i_1(u) \leq 0 \), then after the concessions are made, player 1 obtains at least the utility \(u^1(w^1) > u^1 \) since the aggregate endowment at the disposal of the others is lower or equal to \(\sum_{i \in N \setminus 1} w^i \) and the final allocation is efficient. Second, for \(u^1 \) to equal \(u \) it is necessarily the case that \(c^i_1(u) < 0 \) for all \(i = 2, \ldots, n \). Otherwise, the initial endowment of player 1 when \(i \) conceives is at least \(w^1 \) and hence, because the OSV is individually rational for any environment with \((n-1) \) agents, his final utility cannot be \(u^1 \). Therefore, \(C^1(u) > 0 \) if \(u^1 = u \).

Since the previous reasoning holds for every \(i \) with \(u^i = u^i \), \(D(u) > 0 \) since \(u^i - u^i > 0 \) as soon as \(C^i(u) < 0 \) and \(C^i(u) < 0 \) for at least one \(i \in N \) given that \(C^1(u) > 0 \). Therefore, by the construction of our mapping, the utility tuple \(u \) is mapped to a point with a strictly larger utility level for agent 1 and cannot constitute a fixed point. This proves Claim a.

Claim b: A utility tuple \(u \) is a fixed point of the function \(\varepsilon \) if and only if there exists an allocation \(x \in OSV((z^i, w^i)_{i \in N}) \) such that \(u(x) = u \).

To prove the claim, let \(u \) be a fixed point of the previous mapping, \(x \) the feasible allocation that yields the utility level \(u \), and \(c \) the matrix constructed using Lemma 1 (for simplicity, we write \(c, C, \) and \(D \) instead of \(c(u), C(u), \) and \(D(u) \)). We claim that \(c \) is the matrix of concessions that support \(x \) as an OSV allocation. Given the way we constructed \(c \), each agent is indifferent with respect to the identity of the conceding agent. Requirement n.1) of the definition of the OSV is then immediately seen to hold. Also requirement n.2) holds since, by interiority of the fixed point, \(D > 0 \) if \(C^j < 0 \) for some \(j \in N \). In an interior fixed point, \(C^j = 0 \) for all \(j \in N \). Therefore, the concessions satisfy \(\sum_{i \in N \setminus j} c^i_1 = \sum_{i \in N \setminus j} c^i_j \) for all \(j \in N \).

Notice also that the utility corresponding to any OSV allocation is a fixed point of our mapping by construction. Therefore, the set of utilities generated by the OSV allocations coincides with the set of fixed points of the mapping \(\varepsilon(u) \).

To complete the proof of the theorem we show that every OSV allocation is individually rational for the economy \((z^i, w^i)_{i \in N}\). Assume by way of contradiction that agent \(i \) receives a bundle strictly worse than \(w^i \) in an element of \(OSV((z^i, w^i)_{i \in N}) \). It must
then be that $\sum_{i \in N \setminus j} c_j^i > 0$, hence $\sum_{i \in N \setminus j} c_i^j > 0$ as well. This however means that there exists a $j \neq i$ for which $c_i^j > 0$. Hence if agent j concedes, agent i is in an environment with $n - 1$ agents and initial endowment $w^i + c_j^i e$ which is strictly larger than w^i. By the induction assumption, any OSV allocation for this environment would be preferred to $w^i + c_j^i e$, hence strictly preferred to w^i. This is in contradiction to the original OSV allocation yielding an outcome worse than w^i for agent i. ■

The proof of Theorem 2 uses a fixed point argument, it does not provide an algorithm to calculate the OSV in a particular economy, and yields no information regarding the possible unicity of the solution in particular environments. There is, however, much more information regarding the concessions associated with OSV allocations. First, Lemma 1 implies that the matrix associated with any OSV allocation is unique. Indeed, let $x \in OSV((\succeq^i, w^i)_{i \in N})$ and $u^i \equiv u^i(x^i)$ for all $i \in N$. For every $j \in N$, Lemma 1 says that there exists a unique vector $c_j^i \in \mathbb{R}^{n-1}$ such that an allocation in $OSV((\succeq^i, w^i + c_j^i e)_{i \in N \setminus j})$ yields the utility tuple u_{-j}. That is, there exists a unique matrix of concessions supporting x. Second, if we identify an allocation in the OSV, then Lemma 1 allows us to construct the unique matrix of concessions associated with this allocation.

By definition, the OSV allocations satisfy some fairness and consistency properties. Also, Theorem 2 shows that they are individually rational. The OSV allocations however satisfy several additional appealing properties.

Proposition 2 If the concession matrix c supports an OSV allocation, then $c_j^i = c_i^j$ for all $i, j \in N, i \neq j$.

The following theorem provides a characterization of the OSV analogous to the characterization of the Shapley value in terms of coalitional dividends.

Theorem 3 Let Φ be a correspondence that associates a set of efficient allocations to every economic environment $(\succeq^i, w^i)_{i \in N}$. Suppose that it satisfies property (Q):

(Q) For all $x \in \Phi((\succeq^i, w^i)_{i \in N})$ and $u^i \equiv u^i(x^i)$ for all $i \in N$, there exists a vector $(\lambda_S)_{S \subseteq N} \in \mathbb{R}^{2^n}$ such that

\[
 u^i \left(w^i + d_i(T)e + \sum_{S \subseteq T, S \cap i \neq \emptyset} \lambda_S e \right) = u^i \text{ for all } T \subseteq N, \text{ for all } i \in T,
\]

(3)
where \(d(T) \in \mathbb{R}^{|T|} \) is a vector such that an element of the set \(\Phi(\{ \succeq^j, w^i + d_j \}_{j \in T}) \) yields the utility tuple \(u_T \).

Then, \(\Phi \) is a sub-correspondence of the OSV correspondence.

Moreover, the OSV correspondence satisfies property (Q).

Therefore, the OSV correspondence is characterized as the union of the correspondences (or as the largest correspondence) that satisfy property (Q). Borrowing the terminology used in \(TU \) environments, we refer to the vector \((\lambda_S)_{S \subseteq N} \) as the coaltional dividends. Although the coaltional dividends are somewhat more complex to define in our economic environment than they are in \(TU \) environments, they reflect the same idea: if \(i \in S \), then \(\lambda_S \) is the dividend agent \(i \) obtains because he belongs to coalition \(S \). Indeed, given that \(d(N) = 0 \), the final utility agent \(i \) obtains in the OSV allocation characterized by the dividends \((\lambda_S)_{S \subseteq N} \) is \(u^i = u^i \left(w^i + \sum_{S \supseteq \{i\}} \lambda_Se \right) \). The added difficulty in our framework is how to measure the value of a coalition, since the additional utility (in terms of \(e \)) that agents in a certain coalition \(S \) obtain depends upon the level of their initial endowment. Theorem 3 shows that the proper reference to measure the increase in utility is given by the level of utility at the OSV allocation. In \(TU \) environments, the reference point is not important since the value of the coalition does not depend on the initial endowment.

Moreover, it is easy to see that \(d(N \setminus j) = (c^j_i)_{i \in N \setminus j} \) for any \(j \in N \). Therefore, applying (3) to the sets \(N \) and \(N \setminus j \), we obtain:

\[
u^i \left(w^i + \sum_{S \supseteq \{i\}} \lambda_Se \right) = u^i = u^i \left(w^i + c^j_i e + \sum_{S \supseteq N \setminus j} \lambda_Se \right) \quad \text{for any } i \in N \setminus j,
\]

hence,

\[
c^j_i = \sum_{S \supseteq \{i\}, S \subseteq N} \lambda_S \quad \text{for all } i, j \in N, i \neq j.
\]

We conclude this section with two further properties of the OSV. The next proposition shows that the OSV is monotonic in initial endowments.

Proposition 3 Consider an economic environment \((\succeq^i, w^i)_{i \in N} \) where \(\succeq^i \equiv \succeq^k \) and \(w^j \geq (\succ)w^k \) for some \(j \neq k \). Then, \(x^j \succeq^j (\succ^j)x^k \) for any \(x \in OSV((\succeq^i, w^i)_{i \in N}) \).
The anonymity of the OSV is an immediate corollary of the previous proposition.

Corollary 2 Consider an economic environment \((\succeq^i, w^i)_{i \in N}\) where \(\succeq^j \equiv \succeq^k\) and \(w^j = w^k\) for some \(j \neq k\). Then, \(x^j \sim x^k\) for any \(x \in OSV((\succeq^i, w^i)_{i \in N})\). Moreover, if the preferences of agents \(j\) and \(k\) are strictly quasiconcave, then \(x^j = x^k\) for any \(x \in OSV((\succeq^i, w^i)_{i \in N})\).

5 Conclusion

The OSV is a natural extension of the Shapley value to general environments (NTU games). The main advantage of this extension compared to previous attempts to extend the value is the fact it is ordinal. It is also defined in the commodity space rather than the “utility” space, whereas several previous ordinal values were defined solely on the utility space (Safra and Samet, [10]). It naturally shares most of the attractive properties of the Shapley value, and thus offers important insights augmenting those derived from another ordinal solution concept, the ordinal nucleolus (McLean and Postlewaite, [5]).

Since it exists for a large class of environments it can be used to address a variety of distributional issues dispensing of the need to assume quasi-linear preferences or convexity of preferences. Problems of allocating joint costs can be handled as well without restricting the environment through the quasi-linearity in “money” assumption or convexity of the cost function.

The OSV can be easily extended to a situation where the agents have different weights, in a similar way as Shapley [13] extended the Shapley TU value to define the (now called) **weighted Shapley value**. In Pérez-Castrillo and Wettstein [9], we provide a new characterization of the weighted Shapley value, similar to the one provided in Corollary 1. We use such a characterization to define a **weighted Ordinal Shapley value**, an ordinal solution concept that exists (and satisfies individual rationality) in economic environments.

The OSV approach allowing for different reference bundles generates a family of plausible outcomes. A similar phenomenon is given by the family of **PEEE** allocations in Pazner and Schmeidler [7] where conceivably different allocations are obtained by choosing different rays along which the search for an allocation proceeds. Clearly not all Pareto
Efficient allocations can be generated as OSV allocations. More research is needed to determine what happens to the set of OSV allocations as the economy grows and more restrictions are imposed on the preferences.

Further research should also clarify the connections between the OSV and other well-known ordinal solution concepts like the core and competitive equilibria outcomes. The implementability of the OSV remains the topic of further work as well.

References

