Research:

I. Molecular magnetism and single-molecule magnets

The research in the area of molecular magnetism is focused on molecular assemblies containing a finite number of exchange coupled magnetic ions (metal clusters). These kind of molecular nanomagnets, so-called single molecule magnets (SMMs) can be placed on the border line between the object of quantum and classical physics. Indeed, from one side they show slow relaxation of magnetization and magnetic hysteresis as a bulk magnet and on the other side they are still small enough to show important quantum effects.

The main topics of research: molecular magnetic materials, SMMs exhibiting magnetic bistability and quantum tunneling of magnetization that is expected to allows to use them as the memory storage of molecular size and quantum bits of information (qubits).

1. Exchange interactions in molecule-based materials

Elaboration of the general approach to the problem of the orbitally-dependent kinetic exchange and its application to the interpretation of the magnetic behavior of compounds comprising metal ions with unquenched orbital angular momenta. Under the condition of orbital degeneracy the conventional Heisenberg-Dirac-Van Vleck model is inapplicable and the theoretical approach is based on the developed orbitally dependent exchange Hamiltonian. Exchange interaction in these compounds is strongly anisotropic and therefore they are shown to exhibit a higher barrier for the

![Mn3-cyanometalate fragment](image)

![Scheme for the magnetic bistability in a SMM](image)

Molecular structure of the NiII3OsIII2 complex: (a) a side view emphasizing the NiN6 and OsC6 coordination environments; (b) a view along the axis of the trigonal bipyramid Color scheme: Ni = green; Os = yellow; N = blue; C = gray.
reversal of magnetization. The main factors controlling the magnetic anisotropy in SMMs, are studied: magnetic bistability in Mn₅ based SMMs, barrier for the reversal of magnetization in the octanuclear Re(II)₄ Mn(II)₄ cluster exhibiting SMM behavior, Ni³⁺ Os¹⁺₂ complex (Kramers doublet problem).

2. Mixed valence and double exchange in metal clusters
Development of the microscopic electronic theory of mixed valency (MV) and double exchange, elaboration of the efficient approach to the evaluation of the energy pattern and

Two-electron-reduced polyoxoanions with Keggin and Wells-Dawson structures

Possible types of the vibronic localization in the “broken symmetry states of the electronic pair in the Keggin structure

magnetic properties of complex polynuclear MV metal clusters (iron-sulfur clusters, two-electron-reduced polyoxoanions with Keggin and Wells-Dawson structures, diphtalocyanine based MV chains). Anisotropic double exchange in orbitally degenerate MV clusters. Vibronic approach to the problem of localization-delocalization phenomenon and hyperfine interactions in MV clusters.

Coulomb configurations (a), Coulomb energies (b) of a MV tetrameric system (OCA cell) with two delocalized electrons and the group-theoretical assignments of the electronic terms (c).

Adiabatic potentials of a square planar MV unit for the low lying levels belonging to the \(d \) configuration of the electronic pair: \(\varepsilon_{\text{ad}}(Q) = \varepsilon(Q)/\hbar\omega \) -dimensionless adiabatic energy
4. Cooperative and photochromic phenomena in molecule based systems

Mixed MV crystals: charge and structural ordering, thermodynamic properties, optical charge transfer bands, Mössbauer spectra in localized/delocalized states.
A new model for the photochromic effect in sodium nitroprusside Na$_2$[Fe(CN)$_5$(NO)]$_2$H$_2$O based on the concept of the pseudo-Jahn-Teller effect is proposed. The model takes into account the electron transfer from the Fe$^{2+}$ ion to the π^* orbitals of the NO-ligand as well as the vibronic mixing of three electronic states of the Fe-NO fragment through the non-symmetric and full symmetric modes. Under certain conditions the lower sheet of the adiabatic potential is shown to possess three minima with the increasing energies that correspond to the N-bound, sideways bound and O-bound NO group. The excited minima are attributed to the MS2 and MS1 metastable states observed experimentally.

5. Magnetic anisotropy of spin-frustrated systems, Rabi oscillations

The study is mainly focused on the famous nanoscopic V$_{15}$ cluster (Fig.3) and on the general analysis of the concept of spin frustration in high-nuclearity magnetic clusters. The antisymmetric (AS) exchange gives rise to a strong magnetic anisotropy and acts as a source for the zero-field splitting. The shapes of the steps in magnetization reflect the magnetic anisotropy caused by the AS exchange (Fig.4). Spin-frustration inherently related to the orbital degeneracy creates a structural instability that is shown to be antagonistic to the AS exchange. The pseudo Jahn-Teller is shown to reduce AS exchange giving rise to the restoration of magnetic anisotropy quenched by AS exchange.
II. Vibronic interactions and Jahn-Teller effect in molecules and crystals. Spectroscopy of transition metal complexes and impurity centers in doped crystals

1. A model of the Jahn-Teller impurity ion in crystal is suggested. The theory of polarization dichroism spectra based on the new approach to the moments method was developed. Linear stress and magnetic circular dichroism spectra are considered in detail for F-centers and transition metal ions in crystals.

Jahn-Teller effect in a Cr(II) impurity of the tetrahedral symmetry and calculated phonon-assisted optical absorption band in CdSe-Cr(II) crystals (fine structure of the vibronic levels and the enveloping curve).

This approach is shown to provide an efficient tool for the study of the Jahn-Teller effect by means of spectroscopic methods. A new approach (independent ordering approximation) for the calculation of the optical bands shape in the Jahn-Teller centers was developed. Optical bands of Jahn-Teller ions and small radius excitons are investigated. Specific case of quadratic (Renner-type) vibronic interaction is considered. The theory of multiphonon non-radiative transitions and energy transfer processes in Jahn-Teller systems is formulated. Theory was applied to the first laser material, chromium ion in ruby (multiphonon bands, zero-phonon lines, non-radiative transitions) and rare-earth ions in crystals. A pseudo-Jahn-Teller dynamic vibronic model dealing
with the hybrid electron-vibrational states is proposed for the excited states of CdIn$_2$S$_4$ –Cr(III) and CdSe-Cr(II) crystals widely used as the infrared tunable lasers. The model provides a good explanation of the absorption and luminescence band shapes and anomalous decay life-times that is crucially important for the rational design of the new infrared media.

III. Group theory with application to molecular magnetism and Jahn-Teller effect, computational approaches

1. A general group-theoretical approach was developed for the analysis of spin-orbital multiplets of polynuclear multielectron exchange clusters. On the base of the group-theoretical method (B. S. Tsukerblat, *Group Theory in Chemistry and Spectroscopy*, Dover Pub., Mineola-NY, 2006) “accidental” degeneracies of spin states in the Heisenber-Dirac-Van Vleck model are investigated and the theory of non-Heisenberg exchange interactions was developed on the basis of the irreducible tensor operators (ITO) approach. A MAGPACK software, A Package to Calculate the Energy Levels, Bulk Magnetic Properties, and Inelastic Neutron Scattering Spectra of High Nuclearity Spin Clusters based on the use of the ITO technique is designed and distributed (on request) in the molecular magnetism society. MAGPACK is an efficient tool to evaluate magnetic properties and inelastic neutron scattering cross-section in the exchange magnetic cluster with the due account for all kinds of isotropic and anisotropic exchange interactions.
2. A general approach to the problem of electron delocalization in the high-nuclearity mixed-valence clusters containing an arbitrary number of localized spins and itinerant electrons is developed. Along with the double exchange, we consider the isotropic magnetic exchange between the localized electrons as well as the Coulomb intercenter repulsion. Taking full advantage of the powerful angular momentum technique, we were able to derive closed form analytical expressions for the matrix elements of the full Hamiltonian. These expressions provide an efficient tool for treating complex mixed-valence systems, because they contain only products of $6j$-symbols and $9j$-symbols and do not contain high-order recoupling coefficients and $3j$-symbols that essentially constrained all previous theories of mixed valency. The approach developed here is accompanied by an efficient computational procedure that allows us to calculate the bulk thermodynamic properties (magnetic susceptibility, magnetization, and magnetic specific heat) of high-nuclearity MV clusters. Finally, this approach has been used to discuss the magnetic properties of the octanuclear MV cluster $[\text{Fe}_8(\mu_4-O)_4(4-\text{Cl-pz})_{12}\text{Cl}_4]$ and the diphthalocyanine chains $[\text{YPc}_2] \cdot \text{CH}_2\text{Cl}_2$ and $[\text{ScPc}_2] \cdot \text{CH}_2\text{Cl}_2$ composed of MV dimers interacting through the magnetic exchange and Coulomb repulsion.