Vapor—Liquid Equilibrium in Electric Field Gradients

Sela Samin and Yoav Tsori*

Department of Chemical Engineering and The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel

Received: August 10, 2010; Revised Manuscript Received: November 11, 2010

We investigate the vapor—liquid coexistence of polar and nonpolar fluids in the presence of a nonuniform electric field. We find that a large enough electric field can nucleate a gas bubble from the liquid phase or a liquid droplet from the vapor phase. The surface tension of the vapor—liquid interface is determined within squared-gradient theory. When the surface potential (charge) is controlled, the surface tension increases (decreases) compared to the zero-field interface. The effect of the electric field on the fluid phase diagram depends strongly on the constitutive relation for the dielectric constant. Finally, we show that gas bubbles can be nucleated far from the bounding surfaces.

1. Introduction

The phase behavior of fluids in external electric fields has drawn increasing interest in recent years. Theoretical1–3 and experimental4–8 investigations thus far focused mainly on the application of a uniform field. The first treatment of dielectric fluids, with more complex phase behavior due to the dipole interaction, have been studied more recently.2–5 Simulations of Stockmayer fluids found reasonable agreement with mean-field theory.5 Experiments in pure fluids and low molecular weight binary mixtures agree with the theory on the magnitude of \(\Delta T_c \) but reports in the literature on the sign of the change are conflicting.8–11 The effect of a uniform gravitational field on vapor—liquid coexistence is even smaller and can only be detected very close to fluid’s critical point.12

Field gradients naturally occur in complex systems like microfluidic devices and colloidal suspensions. In nonpolar binary mixtures, nonuniform electric fields, originating from the proximity to a curved charged object, can induce a phase-separation transition and change the phase diagram substantially.13–15 In polar binary mixtures, the existence of salt leads to intrinsically nonuniform fields. Here, a small amount of ions can modify the phase equilibrium and surface tension of the mixture considerably.16–19

Here we show, on the mean-field level, that the effect of nonuniform fields on the vapor—liquid coexistence can be quite large. For concreteness we use a simple van der Waals theory together with Onsager’s theory of dielectrics to treat fluids placed in condensers at constant voltage or charge. The paper is organized as follows: In section 2 the van der Waals theory is extended to include the contribution of electric fields. In section 3.1 we describe the field-induced phase transition and calculate the density and pressure profiles. In section 3.2 we explore the field effect on the temperature—density phase plane in various circumstances. In section 3.3 we use gradient theory to calculate the surface tension change due to the electric field. In section 3.4 we give an example of a complex electrode configuration: the quadrupolar electrode array. In this configuration we demonstrate that phase separation can occur away from the confining surfaces. Conclusions are given in section 4.

2. Model

We consider a one-component van der Waals fluid. We characterize the fluid by its temperature \(T \) and density \(\rho = NV \), where \(N \) is the number of molecules and \(V \) the volume. In the presence of an external field the density is allowed to change in space and the Helmholtz free energy is expressed as

\[
F = \int \left[f_{vdw}(T, \rho) + f_{es}(T, \rho, r) \right] dr
\]

(1)

where \(f_{es} \) is the electrostatic energy density and \(f_{vdw} \) is the van der Waals free energy density given by20

\[
f_{vdw} = k_B T \rho \left[\log(\rho \Lambda^3) - 1 - \log(1 - \rho b) \right] - a \rho^2
\]

(2)

Here, \(\Lambda \) is the thermal de Broglie wavelength and \(k_B \) is the Boltzmann constant. The parameter \(b \) accounts for the reduction in effective volume due to the hard-core repulsion; \(b = (2\pi d^3)/3 \), where \(d \) is the molecular hard-core diameter. The parameter \(a \) takes into account the pairwise attractive interaction between the fluid molecules. Within the mean-field approximation \(a \) is given by

\[
a = -\frac{1}{2} \int_0^\infty u(r) dr
\]

(3)

where \(u(r) \) is the spherically symmetric interaction potential between a pair of molecules. The modified Lennard–Jones potential with hard-core repulsion is a natural choice for the van der Waals fluid...
\(u(r) = \begin{cases} \infty & r < d \\ -\Delta r^6 & r > d \end{cases} \)

where \(\Delta \) is a constant. Putting eq 4 in eq 3 we have \(a = 2\pi \Delta / (3d^2) \). In the absence of an electric field, the fluid’s pressure \(P \) is given by \(P = \rho(\partial f_{\text{vdw}}/\partial \rho) - f_{\text{vdw}} \) and hence the van der Waals equation of state is \((P + a\rho^2)(1 - b\rho) = \rho k_B T \).

The fluid’s equilibrium density is obtained by minimization of \(F \) under the constraint that the total number of molecules is conserved. Thus, one needs to minimize the functional \(\Omega = \int f f \, dr \), where

\[
\omega = f - \mu \rho
\]

is the grand potential density. The Lagrange multiplier \(\mu \) is identified as the chemical potential. The van der Waals theory predicts qualitatively correct the first-order vapor transition, identified as the chemical potential. The van der Waals theory bounding surfaces, permittivity. When the total charge \(Q \) is polated and we add the electrostatic energy density \(f_{\text{es}} \), which is given by22,23

\[
f_{\text{es}}(\rho, E) = \frac{1}{2} \varepsilon(\rho) E^2
\]

where \(E = -\nabla \psi \) is the electric field and \(\varepsilon \) is the fluid’s permittivity. When the total charge \(Q \) is prescribed on the bounding surfaces, \(f_{\text{es}} \) is given by22,23

\[
f_{\text{es}}(\rho, D) = \frac{1}{2} \varepsilon(\rho) D^2
\]

where \(D \) is the electric displacement field and we assume the linear relation \(D = \varepsilon E \) for the isotropic fluid.

In order to correctly describe the fluid on submicrometer scale we employ gradient theory24 and add a \(|\nabla \rho|^2 \) term to the free energy, namely,

\[
F = \int \left[\frac{1}{2} m |\nabla \rho|^2 + f_{\text{vdw}} + f_{\text{es}} \right] \, dr
\]

where the positive parameter \(m \) is given by24,25

\[
m = -\frac{1}{6} \int_{\Delta} u(r) r^2 \, dr
\]

From eqs 4 and 9 we obtain \(m = 2\pi \Delta / 3d = \alpha d^2 \). Extremization of the free energy with respect to \(\rho \) and \(\psi \) gives the Euler–Lagrange equations18,19,25,26

\[
\frac{\delta \Omega}{\delta \rho} = -m \nabla \rho^2 \varepsilon + \frac{\delta f_{\text{vdw}}}{\delta \rho} - \frac{1}{2} \frac{\delta (\nabla \psi)^2}{\delta \rho} - \mu = 0
\]

\[
\frac{\delta \Omega}{\delta \psi} = \nabla \cdot (\varepsilon(\rho) \nabla \psi) = 0
\]

The constitutive relation \(\varepsilon = \varepsilon(\rho) \) couples Gauss’s law (eq 11) with eq 10. In the canonical ensemble, \(\mu \) is an adjustable parameter needed to conserve mass: \(\rho = \rho_0 \), where \(\rho_0 \) is the average density. An equation similar to eq 10 is obtained for the fluid density in a gravitational field,12,27 but the coupling of the density to the Laplace equation is unique to electromagnetic fields. We will also treat the grand-canonical ensemble in which the chemical potential is set by the chemical potential \(\mu_0 \) of the reservoir. On the system boundaries we impose the condition \(\mathbf{n} \cdot \nabla \rho = 0 \), where \(\mathbf{n} \) is the outward unit normal to the surface.28 This boundary condition corresponds physically to a vanishing surface field. In order to elucidate the influence of the electric field, we do not consider any direct short- or long-range interactions between the fluid and the confining solid surfaces.

We begin by considering the two elementary model geometries shown schematically in Figure 1. In these geometries the solution of eqs 10 and 11 is greatly simplified since one can easily calculate the electric field as a function of the density. The first geometry is the cylindrical condenser made up of two concentric cylinders of radii \(R_1 \) and \(R_2 \). In the limit \(R_2 \to \infty \), this reduces to an isolated wire of radius \(R_1 \) and surface charge density \(\sigma \).

In cylindrical symmetry the solution of eq 11 is \(E(r) = \alpha r / (\varepsilon(\rho) r) \), where \(r \) is the distance from the inner cylinder’s center and \(\alpha \) is the surface charge density. A similar setup has been used by Lee et al., who investigated the phase equilibrium of lipid monolayers.29 The above expression for \(E \) also applies to a charged spherical colloid with radius \(R_1 \); the main difference is that in this case the field decays as \(r^{-2} \). The second geometry we consider is the wedge condenser, made up from two flat electrodes with a potential difference \(V \) across them and an angle \(\beta \) between them. Here also, symmetry requires that \(\rho = \rho(r) \) and the solution of eq 11 is \(E(r) = (V/\beta r) \delta \), where \(r \) is the distance from the imaginary meeting point of the electrodes and \(\theta \) is the azimuthal angle. This and similar designs have been used by Chaikin and co-workers to investigate phase equilibria of colloidal suspensions in electric field gradients.30–32

Figure 1. Two model systems. (a) Wedge condenser made of two flat electrodes with a potential difference \(V \) across them and an angle \(\beta \) between them. \(r \) is the distance from the imaginary meeting point of the electrodes. \(R_1 \) and \(R_2 \) are radii of the electrode’s edge. (b) Charged cylindrical wire with radius \(R_1 \) or condenser made of two concentric cylinders with radii \(R_1 \) and \(R_2 \). The inner cylinder surface charge density is \(\sigma \).
The governing equations are now one dimensional and decoupled, and thus, we are left with the task of solving eq 10 for the van der Waals fluid. We rewrite eq 10 for the cylinders as

$$\tilde{m} \nabla^2 \phi = \frac{\partial \tilde{f}_{vdw}}{\partial \phi} - M_{vdw} \tilde{\varepsilon}/\varepsilon_0^2 \tilde{r}^{-2} - \tilde{\mu}$$

(12)

where $\tilde{f}_{vdw} \equiv f_{vdw}/P_c$, $\tilde{r} \equiv r/R_1$ is the scaled radius, $\tilde{m} \equiv 3d^2R_1^2$, and $\tilde{\varepsilon} \equiv \varepsilon/\varepsilon_0$ is the dimensionless permittivity (ε_0 is the vacuum permittivity). Here, $M_{vdw} \equiv \varepsilon_0^2/(2P_c \varepsilon_0 \tilde{r})$ is the dimensionless magnitude of the maximal electrostatic energy density in units of the critical pressure. For the wedge condenser we similarly obtain

$$\tilde{m} \nabla^2 \phi = \frac{\partial \tilde{f}_{vdw}}{\partial \phi} - M_w \tilde{\varepsilon}/\varepsilon_0^2 \tilde{r}^{-2} - \tilde{\mu}$$

(13)

where $M_w \equiv \varepsilon_0^2/(2P_v \varepsilon_0 \tilde{r})$ is the scaled field squared.

Before we continue we need to specify the nature of the constitutive relation $\tilde{\varepsilon}(\rho)$ of the fluid. For the dielectric constant of a polar fluid Onsager’s relation holds

$$\frac{(\tilde{\varepsilon} - \tilde{\varepsilon}_m)(2\tilde{\varepsilon} + \tilde{\varepsilon}_m)}{\tilde{\varepsilon}} = \left(\tilde{\varepsilon}_m + \frac{2}{3}\right)^2 \frac{\mu_D^2}{k_B T \varepsilon_0} \rho$$

(14)

where μ_D is the molecular dipole moment and $\tilde{\varepsilon}_m$ is the high-frequency limit of the permittivity, as given by the Clausius–Mossotti equation

$$\frac{\tilde{\varepsilon}_m - 1}{\tilde{\varepsilon}_m + 2} = \frac{\alpha}{3\varepsilon_0 \rho}$$

(15)

where α is the molecular polarizability. Equation 14 predicts quite well the dielectric constant of polar materials. However, since it neglects short-range orientational order of the fluid molecules (e.g., hydrogen bonds) it underestimates the dielectric constant in cases where these short-range effects are important. For nonpolar fluids we use Onsager’s relation with $\mu_D = 0$, that is, $\tilde{\varepsilon}$ is given by the Clausius–Mossotti equation. Since the van der Waals system is bistable in the absence of electric fields, we expect a phase-separation transition to occur in nonuniform electric fields. In the next section we show that this is in fact the case.

3. Results and Discussion

3.1. Phase Separation. Typical equilibrium density profiles $\phi(\rho)$ obtained from eqs 12 and 13 at a temperature $T < T_c$ in the sharp interface limit ($m = 0$) are presented in Figure 2. For a homogeneous vapor phase in the absence of an electric field, if M is small, a smoothly decaying profile develops (dashed line). The density is higher where the field is strong (small ρ) due to the dielectrophoretic force which favors a higher permittivity (density) fluid in the region of strong field.

Above a critical value of M, the dielectrophoretic force nucleates a liquid phase (solid line) with an interface at $\tilde{R} = \tilde{R}_i$ (in Figure 2a). An increase of M moves the interface to larger radius (dash-dot line, $\tilde{R} \approx 1.52$ in Figure 2a). The nucleation of a liquid drop from the vapor phase occurs first at $\tilde{R} = \tilde{R}_1$ where the electric field is maximal.

We can estimate the typical demixing charge/voltage from the value of M being in the range $M \approx 0.001 - 0.1$. Consider a wire of radius 1μm placed in a vapor of a polar fluid, for example, acetonitrile ($T_c = 545 K$, $P_v = 4.85$ MPa, $d = 5.14 \AA$, $\mu_D = 3.93$ D) at $T = 0.99$. Then, the typical demixing electric field is of the order of $10^9 - 10^{10}$ V/m. This is a large field but still below the dielectric breakdown for many fluids near T_c. This field corresponds to a wire voltage of $10 - 100$ V or equivalently to charge densities per unit length of the wire of $10^4 - 10^5$ e charges/μm.

Typical values of M in the wedge condenser are an order of magnitude smaller than in the cylindrical condenser. In the wedge condenser E is perpendicular to ϕ and hence to the dielectric interface, and therefore, the dielectrophoretic force (proportional to $d\phi/d\varepsilon$) exists without the energy penalty proportional to $(d\varepsilon/d\phi)^2$ occurring when the dielectric interfaces are parallel to E. For a fluid dielectric in an external field and in mechanical equilibrium, the fluid’s pressure is a tensor P_{ik} which depends on position. In an electric field it is given by

$$P_{ik} = \left(\rho \frac{\partial (\rho, E)}{\partial \rho} - f(\rho, E)\right) \delta_{ik} - E_i D_k$$

(16)
The density difference

\[\Delta \phi = \phi_2 - \phi_1 \]

at the demixing interface is an important quantity. The conditions for a discontinuity from \(\phi_1 \) to \(\phi_2 > \phi_1 \) at a point \(\mathbf{r} \) in the sharp interface limit are

\[\tilde{f}_{vdw}(\phi_1) - \frac{1}{2} \tilde{\varepsilon}(\phi_1) \tilde{E}^2(\mathbf{\tilde{r}}) - \tilde{\mu}_0 = 0 \]

(20)

\[\tilde{f}_{vdw}(\phi_2) - \frac{1}{2} \tilde{\varepsilon}(\phi_2) \tilde{E}^2(\mathbf{\tilde{r}}) - \tilde{\mu}_0 = 0 \]

(21)

\[\tilde{f}_{vdw}(\phi_1) + \frac{1}{2} \tilde{\varepsilon}(\phi_1) \tilde{E}^2(\mathbf{\tilde{r}}) - \tilde{\mu}_0 \phi_1 = \tilde{f}_{vdw}(\phi_2) + \frac{1}{2} \tilde{\varepsilon}(\phi_2) \tilde{E}^2(\mathbf{\tilde{r}}) - \tilde{\mu}_0 \phi_2 \]

(22)

where the apostrophe sign indicates differentiation with respect to \(\phi \) and \(\tilde{E} \equiv (P_{ij}E_i/E_0)^{1/2}E \) is the dimensionless electric field. The first two equations are eq 10 calculated at \(\tilde{\mathbf{r}} \), and the third one is the condition that a high density is as favorable as the low density: \(\tilde{\omega}(\phi_1) = \tilde{\omega}(\phi_2) \). This set of equations determines \(\phi_1 \), \(\phi_2 \), and \(\tilde{\mathbf{r}} \). The negative sign in eq 22 corresponds to constant potential and the positive sign to the constant charge case.

Insertion of eqs 20 and 21 into eq 22 gives

\[\tilde{\omega}_{vdw}(\phi_1) \mp \frac{\tilde{\varepsilon}(\phi_1)}{\tilde{\varepsilon}(\phi_1)} \tilde{\omega}_{vdw}(\phi_2) = \mp \frac{\tilde{\varepsilon}(\phi_2)}{\tilde{\varepsilon}(\phi_2)} \tilde{\omega}_{vdw}(\phi_2) \]

(23)

where \(\tilde{\omega}_{vdw}(\phi) = \tilde{f}_{vdw}(\phi) - \tilde{\mu}_0 \phi \) is the van der Waals grand potential density.

In zero fields, eq 23 reduces to the equality \(\tilde{\omega}_{vdw}(\phi_1) = \tilde{\omega}_{vdw}(\phi_2) \) and its solutions are the liquid and vapor densities \(\phi_1 = \phi_\ell \) and \(\phi_2 = \phi_v \) respectively. Equation 23 shows that when phase-separation occurs, the dielectric ratio \(\tilde{\varepsilon} \tilde{E} \) is the significant quantity determining the densities at the interface and the location of the interface. A detailed investigation of the nonlinear equation eq 23 reveals that the dielectric ratio determines the relation between \(\Delta \phi \) and the density difference at the liquid–vapor interface \(\Delta \phi_0 \equiv \phi_l - \phi_v \) in the absence of an electric field. At a constant potential (wedge geometry), \(\tilde{\varepsilon} \tilde{E} \) is usually convex and \(\Delta \phi > \Delta \phi_0 \), whereas in the constant charge case (cylindrical system) \(\Delta \phi \) can be larger or smaller than \(\Delta \phi_0 \).

A simple derivation of this result is possible near the critical point \((\phi_{c,0}) = (1,1) \). We employ the Landau expansion of \(\tilde{f}_{vdw} \) in powers of \(\phi - 1 \) for \(t \) close to 1 and expand \(\tilde{\varepsilon}(\phi) \) in eq 14 at \(t = 1 \) up to second order in \(\phi - 1 \)

\[\tilde{\varepsilon}(\phi) = \tilde{\varepsilon}_c + \tilde{\varepsilon}(\phi - 1) + \frac{1}{2} \tilde{\varepsilon}''(\phi - 1)^2 + ... \]

(24)

Thus, eq 10 (with \(m = 0 \)) for a constant potential can be rewritten as

\[6(t - 1)(\phi - 1) + \frac{3}{2} (\phi - 1)^3 \]

\[\tilde{\varepsilon}(\phi - 1) \tilde{E}^2(\mathbf{\tilde{r}}) - \tilde{\mu}_E = 0 \]

(25)
where the chemical potential μ_E is $\mu_E = \mu + \tilde{\varepsilon}^2 (\tilde{\varepsilon}^2/3)$. By symmetry the densities ϕ_1 and ϕ_2 satisfy the Maxwell equal area rule for $\mu_E = 0$. Hence, by eq \ref{eq:25}

$$\phi_{1,2} = 1 \mp \sqrt{4(1-t) + \frac{2\varepsilon^2 \tilde{\varepsilon}}{3} \tilde{\varepsilon}^2 (\tilde{\varepsilon}^2(\tilde{\varepsilon}^2/3)$$

A similar derivation leads in the constant charge case to

$$\phi_{1,2} = 1 \mp \sqrt{4(1-t) - \frac{2\varepsilon^2 \tilde{\varepsilon}}{3} \tilde{\varepsilon}^2 (\tilde{\varepsilon}^2(\tilde{\varepsilon}^2/3)$$

where we expanded $\tilde{\varepsilon}^{-1}$ up to second order in powers of $\phi - 1$. In the absence of the field, $\phi_{1,2} = 1 \pm \sqrt{4(1-t)}$ are the binodal densities. Since the electrostatic terms in eqs 26 and 27 have opposite signs ($\tilde{\varepsilon} > 0$), the difference between $\Delta \phi$ and $\Delta \phi_0$ for constant potential/charge becomes clear. The significance of this result will be understood when we discuss the vapor–liquid surface tension in section 3.3.

3.2. Stability Diagrams

In the previous section we showed density curves for a few points (ϕ_0, T, M) in the phase diagram. One can now keep M constant and calculate the stability curve $\phi_0^* (T)$ in the $\phi_0 - T$ plane. We consider only the region outside the binodal curve where the unperturbed fluid is homogeneous. Between the binodal curve and the stability curve the homogeneous fluid becomes unstable under the influence of the field and phase separation occurs, whereas outside ϕ_0^* the fluid’s density varies smoothly in space.

Figure 4 shows ϕ_0^* for three materials: two are polar fluids (acetonitrile and acetone) and one nonpolar (ethane). As is seen from the solid curve (closed system) and the dash-dot curve (open system) in Figure 4a, the unstable region is slightly larger for an open system. The reason is that in a closed system material conservation dictates that a change in the liquid density is accompanied by a change in the vapor density, and this is associated with an energy penalty in f_{diss}.

The unstable region grows with increasing value of M: compare the solid curve in Figure 4 (a) with ϕ_0^* in the inset of Figure 4 (a) where $M = 100$ times smaller. Even for this small value of M, the unstable region is significant near T_c.

Compared to the wedge, a larger field is required to induce phase separation in the cylindrical geometry and the unstable region is accordingly smaller. In the wedge, the unstable region is largest for acetonitrile, smaller for acetone, and very small for ethane. In contrast, in the cylindrical geometry the unstable region is largest for acetone and smaller for acetonitrile and ethane (which have regions of similar size). This qualitative difference is due to the different electrostatic term in the density equations. The wedge has a term proportional to $\text{d}^2\phi/\text{d}\phi^2$ in eq 13. From Onsager’s relation (eq 14) near ϕ_c we see that $\tilde{\varepsilon} \approx \mu_0^2 \tilde{\rho} + \text{constant}$ and hence $\text{d}^2\phi/\text{d}\phi^2 \approx \mu_0^2$. This explains the behavior of ϕ_0^* in the wedge since μ_0 is largest for acetonitrile and vanishes for ethane. To explain the behavior in the cylinder geometry we note that eq 12 has a term proportional to $g(\phi) \equiv (\text{d}^2\phi/\text{d}\phi^2)/\tilde{\varepsilon}^2$. We plot $g(\phi)$ in Figure 5. From this figure we deduce that $g(\phi)$ and hence the field effect is largest for acetone. For acetonitrile and ethane, the average value of $g(\phi)$ is close and hence the effect is similar.

Figure 4 shows that the instability region of closed systems extends to values of ϕ_0 larger than ϕ_c, meaning that a vapor bubble can be nucleated from a homogeneous liquid. Here, the dielectrophoretic force increases the liquid density near \tilde{R}_1.
The electrostatic term in eq 28 is negative and hence, the unstable region is suppressed below T_c. As we cross into the unstable region at the other two sections of the wedge geometry, phase separation occurs at a finite value of ϕ connecting the two kink points, phase separation is possible even above T_c. For the cylinders

$$f' = \frac{\partial^2 F_{vdw}}{\partial \phi^2} + M_w \left(\frac{2(\partial \tilde{\varepsilon}/\partial \phi)^2}{\tilde{\varepsilon}} - \tilde{\varepsilon} \frac{(\partial^2 \tilde{\varepsilon}/\partial \phi^2)}{\tilde{\varepsilon}^3} \right) f^{-2}$$

The electrostatic term in eq 29 is positive, and hence, the unstable region is suppressed below T_c.

On the section of ϕ_0 connecting the two kink points, phase separation occurs at a finite value of R, $R_1 < R < R_2$. On this "critical" line the density at R satisfies

$$\frac{\partial^2 f}{\partial \phi^2}(\tilde{R}) = 0, \quad \frac{\partial^2 f}{\partial \phi^2}(\tilde{R}) = 0$$

The kink points are therefore the transition points in ϕ_0 from a first-order phase transition to a second-order phase transition. As we cross the section of ϕ_0 between them from the stable region into the unstable region, $\Delta \phi$ increases continuously from zero. As we cross into the unstable region at the other two sections of ϕ_0, $\Delta \phi$ jumps abruptly from zero to a finite value.

The kink temperatures $T_{k,1}$ and $T_{k,2}$ may be found by setting in eq 30 $\tilde{R} = R_1$ and $\tilde{R} = R_2$, respectively. The expansion of $\tilde{\varepsilon}(\phi)$ (eq 24) allows us to approximate these temperatures for the wedge geometry

$$T_{k,1} = T_c \left[1 + \frac{\tilde{\varepsilon} M_w}{3R_1^2} \right]$$

$$T_{k,2} = T_c \left[1 + \frac{\tilde{\varepsilon} M_w}{3R_2^2} \right]$$

For acetonitrile we find $T_{k,1} - T_c \approx 0.6$ K ($M_w = 4 \times 10^{-3}$). Solving eq 30 numerically for the cylindrical case with $M_{sc} = 8 \times 10^{-2}$ we find $T_{k,1} - T_c = -2.1$ K. These estimates are 2 orders of magnitude larger than the change in T_c in uniform fields.

3.3. Surface Tension

In real systems the interface between phases is not sharp but microscopically diffuse. A surface tension γ is associated with the interfacial area. In the presence of a long-range electric field, an increase of the area of the interface by A does not increase the energy by $\gamma \times A$ because displacement of the interface changes the electric field far away and leads to a volume contribution to the energy.

In order to examine the effect of the electric field on the fluid’s surface tension we apply the squared gradient approximation eq 8 and solve the Euler–Lagrange equations (eqs 12 and 13) numerically for $m \neq 0$. We find that inclusion of the $(\nabla \rho)^2$ term leads to a smoothing of the density profiles on a microscopic scale but does not change the results presented thus far on the mesoscopic scale.

The smooth line in Figure 6 shows the interface profile $\phi^i \equiv \phi(\tilde{R}^i)$, while the step curve is the density profile in the sharp interface limit $\phi^s \equiv \phi(\tilde{R}^s) = 0$. The distance in this figure is measured in units of the molecular diameter. As expected, the $(\nabla \rho)^2$ is only appreciable around \tilde{R} defined by eqs 20–22. It can be shown that mass conservation leads to \tilde{R} being equal to the equimolar Gibbs dividing surface defined by

$$\int_{\tilde{R}_1}^{\tilde{R}_2} [\phi^s - \phi^i] d\tilde{R} = \int_{\tilde{R}_1}^{\tilde{R}_2} [\phi^1 - \phi^s] d\tilde{R}$$

meaning that the two shaded areas in Figure 6 have equal areas.

The thermodynamic surface tension γ is the excess of the grand potential per unit area due to formation of the surface. ϕ^0 is the reference profile through which we define the surface tension γ^{lk}

$$\frac{\gamma}{P_c R_1} = [\tilde{\Omega}(\phi^i) - \tilde{\Omega}(\phi^s)]/A$$

$$= \int_{\tilde{R}_1}^{\tilde{R}_2} \left[\frac{1}{2} \tilde{m} \nabla \phi^2 + \tilde{\omega}^0(\phi) - \tilde{\omega}(\phi^s) \right] d\tilde{R}$$

where A is the interfacial area. The surface tension is related to density difference $\Delta \phi$ at the interface. A large value of $\Delta \phi$ results in large density gradient which increases γ. γ depends on the location of the interface \tilde{R} because $\tilde{\omega}(\phi)$ and $\tilde{\omega}(\phi^s)$ depend on \tilde{R}.

We define γ_0 to be the zero-field surface tension between two coexisting phases having binodal densities at a given temperature. We find that near the critical point, the mean-field result for the surface tension of a one-component fluid

$$\frac{\gamma}{P_c R_1} = \frac{1}{6} \left(\frac{\tilde{m} B^{1/2}}{2} \right)^2 (\Delta \phi)^3$$

holds for both γ and γ_0. For γ_0, eq 35 is used with $\Delta \phi_0$ instead of $\Delta \phi$. Here $B = 3/2$ is the coefficient of the $(\phi - 1)^3$ term in the Landau expansion of \tilde{f}_{vdw} in powers of $\phi - 1$. In Figure 7,
the surface tensions γ calculated numerically using eq 34 for the wedge and cylinders and γ_0 (zero field) are shown to be consistent with eq 35.

The derivation of eq 35 shows that linear and quadratic terms in the Landau expansion of f^+ / f^- do not contribute to γ. Since the Landau expansion of the electrostatic energy (eq 25) contains terms only up to second order in $\phi - 1$, γ and γ_0 are described both by the mean-field theory in the absence of a field. Physically, eq 35 holds because of the long-range nature of the field. Since the field changes over a length scale much larger than the interface width, the field and hence the energy are nearly constant in each phase near the interface, as in the zero-field case. This is in contrast to systems where ions reside at the interface. Here, the electric field changes significantly at length scales comparable to the width of the interface and eq 35 is not expected to hold.

Figure 8 is a plot of the surface tension change defined by

$$\Delta \gamma = \gamma(T, \phi_b, M) - \gamma_0(T) \tag{36}$$

In section 3.1 we have shown that $\Delta \phi < \Delta \phi_b$ for a wire while $\Delta \phi > \Delta \phi_b$ for a wedge (see inset of Figure 7), and this is the reason why $\Delta \gamma$ is negative for a wire and positive for a wedge, see Figure 8. Note that $\Delta \gamma$ is appreciable: it can be as large as 50% of γ_0, whereas in much larger uniform fields it is only a few percent of γ_0.3

As is seen in Figure 8, when ϕ_0 increases at constant T, $\Delta \gamma$ increases for the wire and decreases for the wedge. The reason is that in the cylindrical geometry $\Delta \Phi$ and hence γ increase with ϕ. In the wedge $\Delta \phi$ and γ decrease with ϕ_b.

$\Delta \gamma$ depends on T via $\Delta \phi_b(T)$ as well as via $\Delta \phi(T)$. In the van der Waals theory, γ_0 decreases with T since $\phi_b \propto t - 1$1/2 close to T_c.25 In the presence of the field, we find that in both geometries $\Delta \phi$ and γ decrease with increasing T (see inset of Figure 7). Here, $\Delta \phi$ is excellently described near T_c by ϕ_1 and ϕ_2 given by eqs 26 and 27. The net result is a complex behavior of $\Delta \gamma$. In Figure 8 we find a concave curve with a maximum for the wedge and $\Delta \gamma$ decreases for cylinders.

However, for a different set of parameters (T, ϕ_0, M) one may find a minimum for the cylindrical geometry.

3.4. Complex Geometries. Until now we only considered effectively one-dimensional systems. In this section we describe more complex geometries where E has two components: $E = (E_x, E_y)$. Consider the quadrupole configuration consisting of four metal wires with alternating voltages $\pm V$ placed inside a grounded cylinder as is seen in Figure 9. As before, we find that a phase-separation transition occurs if the voltage V exceeds a critical voltage V_c. Figure 9 shows five nearly cylindrical gas bubbles nucleated from a homogeneous liquid phase when $V = 20 \text{ V}$: four on the grounded surface and one at the center of the cylinder.

In general, the fluid density follows the field intensity and therefore the shapes of drops or bubbles follow the contours of E^2, see Figure 9. Bubbles or drops appear only above a critical size, when the electrostatic gain in the bubble volume is enough to overcome the interfacial energy. Hence, when the voltage is increased from zero the four bubbles at the outer surface appear before the one at the center. As the intensity of the electric field increases, the contours of E^2 displace and bubbles or drops grow.
The quadrupole configuration is an example showing that the electric field may in principle be used to create drops and bubbles of myriad shapes. By controlling the electrode configuration and the boundary conditions one can design the contours of \(E^2 \) and thus the fluid density profile. In these complex configurations the angle between \(E \) and \(V \phi \) is not constant, and this makes it difficult to determine analytically the critical demixing charge/voltage.

4. Conclusions

We study a one-component fluid dielectric in the presence of nonuniform electric fields within the van der Waals mean-field theory. Above a critical value of the electric field, a phase-separation transition occurs and fluid drops (bubbles) nucleate from a homogeneous vapor (liquid) phase. This type of transition is general and it should occur in any bistable system with a dielectric mismatch sufficiently close to the coexistence line. We calculate the density and pressure profiles in two model geometries where the field orientation is either perpendicular or parallel to the density gradient.

The modification of the vapor—liquid coexistence by the electric field is given by stability diagrams in the temperature—density plane. The differences in the stability diagrams between closed and open systems and in the two model geometries are highlighted. These diagrams show that nonuniform fields change the transition temperature appreciably and much more than uniform fields do. The spatial dependence of the thermodynamic quantities in a nonuniform field leads to the appearance of two special points at temperatures \(T_{k,1} \) and \(T_{k,2} \). At the stability line connecting these points the interface appears at a finite radius \(\tilde{R}_1 < \tilde{R} < \tilde{R}_2 \).

We show that the electric field can increase or decrease the surface tension and that this change is comparable in magnitude to the zero-field surface tension. The change in surface tension is strongly dependent on temperature and average density. Although the dynamical mechanism for phase separation in nonuniform electric fields is yet to be determined, our results suggest that in a nucleation-and-growth mechanism the nucleation rates in the electric field may vary substantially as they generally depend exponentially on \(\gamma \).

As is shown in the quadrupole electrode array, the appearance of the phase-separation interface is not restricted to the vicinity of the confining surfaces. The quadrupole configuration also demonstrates that the electric field may be used to control and design the shape of bubbles and drops.

We suggest two experiments to test our predictions. Consider a wedge condenser immersed in a vapor near the coexistence temperature. A density gradient in the fluid implies a refractive index gradient. Beam bending and light scattering experiments can probe the details of formation of a liquid drop as voltage increases. Alternatively, upon suspending a microwire in a vapor, its transverse fundamental vibration frequency is expected to change from \(f_0 \) to \(f \) due to condensation of a liquid. The applied voltage is expected to be proportional to \((f/f_0)^2 \).

We suggest two experiments to test our predictions. Consider a wedge condenser immersed in a vapor near the coexistence temperature. A density gradient in the fluid implies a refractive index gradient. Beam bending and light scattering experiments can probe the details of formation of a liquid drop as voltage increases. Alternatively, upon suspending a microwire in a vapor, its transverse fundamental vibration frequency is expected to change from \(f_0 \) to \(f \) due to condensation of a liquid. The applied voltage is expected to be proportional to \((f/f_0)^2 \).

Room temperature experiments can be performed in substances like ethane or carbon dioxide, albeit a high-pressure cell is necessary since \(P_c \) is in the MPa range.

Acknowledgment. We gratefully acknowledge numerous discussions and correspondences with D. Andelman, C. Bechinger, M. Bier, H. Diamant, S. Dietrich, M. Kardar, A. Onuki, P. Pincus, R. Podgornik, and I. Szalai. This work was supported by the Israel Science Foundation under grant no. 11/10 and the European Research Council (ERC) “Starting Independent Researcher” grant no. 259205.

References and Notes

(28) Morse, P. M.; Feshbach, H. Methods of Theoretical Physics, Part I; McGraw-Hill: New York, 1953.
Vapor–Liquid Equilibrium in Electric Field Gradients

(34) Chelkowski, A. Dielectric Physics Chap. I, Sec. 17; Elsevier Scientific Publishing Company: Amsterdam, 1980; Chapter I, Section 17.

(37) In the most general case this condition is written as \(\omega(\phi_1) \geq \omega(\phi_2) \) and one has to verify that it holds first as an equality. This may not be the case if, for example, some density range becomes thermodynamically unstable due to the electric field.

JP107529N