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Abstract. Colon cancer is the third leading class of cancer causing
increased mortality in developed countries. Polyp is one type of lesion
observed in a majority of colon cancer patients. Here, we report a
microscopic Fourier transform infrared (FTIR) study of normal, ad-
enomatous polyp and malignant cells from biopsies of 24 patients.
The goal of our study was to differentiate an adenomatous polyp from
a malignant cell using FTIR microspectroscopy and artificial neural
network (ANN) analysis. FTIR spectra and biological markers such as
phosphate, RNA/DNA derived from spectra, were useful in identifying
normal cells from abnormal ones that consisted of adenomatous
polyp and malignant cells. However, the biological markers failed to
differentiate between adenomatous polyp and malignant cases. By
employing a combination of wavelet features and an ANN based clas-
sifier, we were able to classify the different cells as normal, adenoma-
tous polyp and cancerous in a given tissue sample. The percentage of
success of classification was 89%, 81% and 83% for normal, ad-
enomatous polyp and malignant cells, respectively. A comparison of
the method proposed with the pathological method is also discussed.
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1 Introduction
Colon cancer is one of the major causes of morbidity and
mortality in both men and women. It is estimated that 135 400
will be diagnosed and 56 700 deaths will occur from colorec-
tal cancer in 2001 in the U.S.1 If colorectal cancer is detected
at an early stage, then the 5-year relative survival rate is 90%;
however only 37% of colorectal cancers are diagnosed at
early stages. Hence, it is essential to device methods for early
detection of the disease.

Colorectal cancers have a broad range of neoplasms from
benign growths to invasive cancer. There are three cells of
lesions known, non-neoplastic polyps, neoplastic polyps~ad-
enomatous polyps! and cancers. Polypoid lesion is defined as
any mass projecting above the surface of normal mucosa.2

Non-neoplastic polyps are not generally considered precursors
of cancer and adenomatous cells have a lot of clinical signifi-
cance because they have a high probability of becoming ma-
lignant. Adenomatous polyps have three major subcells, tubu-
lar, tubulovillous, and villous, that are classified based on
epithelial architecture.

Apart from conventional methods of cancer diagnosis,3–6

there is a need to develop new approaches which are simple,
objective and noninvasive. Among the optical methods avail-
able, Fourier transform infrared~FTIR! spectroscopy has
shown encouraging trends in the field of medicine. Various

bimolecular components of the cell give a characteristic IR
spectrum, which is rich in structural and functional aspects.7,8

The biochemical fingerprint of cells,9 tissues and fluids altered
in a diseased state can be detected using IR spectroscopy.
There are reports of the application of FTIR spectroscopy in
the diagnosis of various cells of cancer.10–12 Gao et al.13 car-
ried out a FTIR study of the human breast, normal and carci-
noma tissues, and their method of analysis resulted in nearly
100% diagnostic accuracy of carcinoma tissues from normal
ones. The grading of breast tumors has also been achieved by
FTIR successfully.14

Our group has previously reported that normal and malig-
nant cells can be clearly distinguished using standard
formalin-fixed tissues of colon cancer patients and FTIR
microspectroscopy.15 There are no data available in the litera-
ture on FTIR of polypoid lesions, which may be vital in op-
tical diagnosis of a pre-malignancy. In this article, we charac-
terization adenomatous~pre-malignant! polyps and make a
comparison with normal and cancerous tissues obtained from
colon cancer patients. In addition, artificial neural network
~ANN! analysis of spectra of different cells as a tool for di-
agnosis of the premalignant stage is also discussed. To our
knowledge, this is the first report of FTIR data on polyp by
advanced mathematical analysis.
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2 Materials and Methods
2.1 Sample Preparation
Formalin-fixed, parafin-embedded tissues from colon adeno-
carcinoma patients were received from the histopathology
files of Soroka University Medical Center~SUMC!. The tis-
sue samples selected for this study had normal, adenomatous
polyp ~pre-malignant! and malignant areas. Two thin~10 mm!
parafin sections were cut from each biopsy; one was placed on
a zinc–selenium slide and the other on a glass slide. The slide
to be used for microscopic FTIR measurements was deparaf-
finized and dehydrated using a standard procedure.16 The sec-
ond slide was stained with hematoxylin and eosin for a his-
tology review.

2.2 FTIR Microspectroscopy
Microscopic FTIR measurements were performed in transmis-
sion mode using the FTIR microscope IRscope II with a
mercury–cadmium–telluride~MCT! detector coupled to the
FTIR spectrometer~Bruker Equinox model 55/S, OPUS soft-
ware!. All three kinds of cells~normal, polyp and malignant!
in the tissue samples were obtained from each patient. Mea-
surements were performed on normal, polyp and cancerous
epithelial cells from intestinal tissues using microscopic in-
spection in parallel with a detailed pathological analysis of the
tissue architecture. During each measurement, the area of the
sites measured was about 50350 mm2, it had only a few cells.
The spectra measured cover a wave number range of 600–
4000 cm21 in the mid-IR region. The number of co-added
scans was increased to 128 to achieve a high signal to noise
ratio. A data base of about 300 measured spectra at a resolu-
tion of 4 cm21 was created. The spectra were normalized to
an amide I peak after baseline correction for the entire spec-
trum using the rubber band method~a polynomial function!.
Spectral analysis was done using OPUS software. The inte-
grated absorbance were calculated by a band fitting procedure
that was reported previously.17,18 The error bar~standard er-
ror! was calculated for each sample~normal or malignant!
separately for all patients reported in this article.

2.3 ANN Analysis of the FTIR Spectra of Normal,
Polyp and Malignant Cells from Biopsy Tissue
Samples of Colon Cancer Patients
Artificial intelligence ~AI ! is a well established area of com-
puter science that focuses on the creation of software capable
of performing highly sophisticated intelligent computational
work similar to that of the brain. AI has two different classes,
namely, the expert systems that simulate human experience
using a set of rules and the other comprises systems modeling
the function of the human brain.1 The human brain is the best
recognition system in the world. In the recognition process,
the biological neuron in a specific area of the brain identifies
a given object by linking it with previous experience through
past learning. ANN can be a computational model derived
from hundreds of single units~like neurons! connected in a
network. Each model@Figure 1~a!# is a processing element
with weighted~the degree of importance! inputs, a transfer
function ~prescribed task! and the output. As the neurons are
interconnected in the brain, the power of the ANN mainly
depends on the number of connections between artificial neu-
rons. ANNs can process huge amounts of data and make ac-

curate predictions. There are various types of NNs~neural
networks or models! designed that have different transfer
functions and network connections. The applications of ANNs
in medicine and biology are increasing rapidly.19,20A detailed
account of ANNs can be obtained from two excellent
books21,22 and a review article.23 In our case,X( i ) are the
FTIR spectra,W( i ) are the weights andZ is the assignment
~prediction! given by the modelf (w,x).

Multilayer perception~MLP! has commonly been used in
many NN applications due to its simple implementation. The
network consists of many processing elements connected in
several layers. The output of one processing element is con-
nected to the input paths of other processing elements through
connection weights. When presented repetitively with the in-
put and the desired output the MLP organizes internally,
gradually adjusting the weights to achieve the input/output
mapping desired. Given enough data it is possible to design
and teach a MLP with one hidden layer to reproduce the be-
havior of any process, linear or nonlinear. The training pro-
cess is shown in Figure 1~b!, where the network is trained or
‘‘taught’’ by showing a set of examples, observing the net-
work answers and correcting the ‘‘wrong’’ answers by chang-
ing or adapting the network weights.

Fig. 1 (a) Schematic of an artificial neuron. (b) Supervised network
with a backpropagation learning rule.
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2.4 Multiscale Decomposition by Fast Wavelet
Transform
An appropriate description of a feature is considered to be one
of the most important components of classification proce-
dures. The result of feature extraction is a more concise de-
scription that still retains most of the spectrum characteristics.
The use of features rather than the signal itself makes the
classification process easier and faster. In this case, we have
examined the performance of the NN based classifiers by per-
forming multiscale decomposition of the spectrum.24 The
wavelet transform provides an important tool for signal analy-
sis and feature extraction.25 It provides a good local represen-
tation of the signal in both the time domain and the frequency
domain. Shown in Figures 2~a! and 2~b! is the Fourier trans-
form ~FT!, which is global and provides a description of the
overall regularity of the signals, whereas the wavelet trans-
form looks for the spatial distribution of singularities. While
the FT decomposes the signal into a series of sinusoidal com-
ponents, the fast wavelet transform~FWT! decomposes the
signal into a series of wavelets of different scales and posi-
tions.

In this article, the FWT, proposed by Mallat and Zhong,25

was applied. The sampled spectrum is decomposed into an
orthogonal set of wave forms that are the dilations, transla-
tions and modulations of the Coiflet wavelet~the mother
wavelet!. The Coiflet wavelet was chosen because in practice
it showed better results than other common wavelets that were
tested. The wavelet transform is computed by convolving the
spectrum with these dilated wavelets. The wavelets’ coeffi-
cients of the different scales offer a compact representation of
the spectrum signal. It is evident that the transform involves
differentiation and progressive smoothing. Details of the
peaks are gradually lost as the downward slopes of the wave
are picked up at higher scales. The number of scales is chosen
by searching for the optimal signal representation. It was
found that scales higher than the first five do not add signifi-
cant information about the spectrum. In the present case, the
performance of the MLP based classifier for different sets of
wavelet coefficient features was examined~Table 1!. The
wavelet coefficients were located around the two main peaks
of the spectra.

The data employed in this work was extracted from 25
patients. The data sets consist of three groups: the cancer
group ~83 records extracted from 11 patients!, the control
group ~109 records extracted from 6 patients! and the polyp
group~106 records extracted from 12 patients!. A total of 298
records was available. The samples obtained were classified
with the help of an expert pathologist and confirmed by clini-
cal diagnosis using standard pathological methods. In this
study, training and test sets were selected randomly from the
same data sets. Seventy percent of each set was employed for
training and the remainder was for testing. In addition, the
simulations were repeated 100 times, with the same networks
parameters but with different sets of randomly selected train-
ing vectors, and then the results were averaged.

3 Results
3.1 Morphological Changes for Normal, Polyp and
Malignant Lesions in Human Colonic Tissue
A histological cross section of formalin-fixed human colonic
tissue is shown in Figure 3. The encircled areas in Figures
3~a!–3~c! show the site covered by FTIR-Monte Carlo~MC!
measurements in this study. Figure 3~a! shows the crypts of
the normal colonic mucosa. The epithelium surrounds a center
opening and the lumen of the crypt. The normal epithelial
cells show a single row of regular cells with small nuclei in
the periphery of the cell and abundant cytoplasm. The nuclear
to cytoplasm ratio is low. The extracellular matrix~lamina
propria! around the epithelium consists of scattered lympho-
cytes and granulocytes~inflammatory cells! ~dark dots!. Fig-
ure 3~b! shows the neoplastic epithelial lesion~tubular ad-
enoma!, which shows a slight change from the normal
architecture, with a slightly irregular crypt, and it has crowded
nuclei. The nuclear to cytoplasm ratio is increased compared
with that of normal colon tissue, while the lumen becomes
narrow. Figure 3~c! depicts the adenocarcinoma of the colon,
showing stratification of hyperchromatic nuclei with marked
atypical cells. The glands become irregular and are back to
back. The size of the lumen is uneven and contains cellular
debris. There is a desmoplastic stromal reaction with a sec-
ondary inflammatory reaction.

Fig. 2 Graphic representation of a one-dimensional signal decompo-
sition by (a) Fourier and (b) wavelet transforms.

Table 1 Feature combinations.

Description Vector size
Feature

identification

Coefficients from 2465 to 2963 cm−1 13 1

Coefficients from 1055 to 1719 cm−1 17 2

5 coefficients from 2631 to 2797 cm−1

and 9 from1221 to 1553 cm−1
14 3

Coefficients from 1055 to 2963 cm−1 47 4

13 coefficients from 2465 to 2963 cm−1

and 17 from 1055 to 1719 cm−1
30 5
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  3.2 FTIR Microspectroscopy (FTIR-MC) of Normal,
Adenomatous Polyp and Malignant Human
Colonic Tissues
Microscopic mid-IR spectra of normal, adenomatous polyp
and malignant cells from biopsy tissue samples of three dif-
ferent patients of varying disease stages are shown in Figure
4. Patients~a!, ~b!, and ~c! are classified as those with early,
moderate and advanced stages of malignancy, respectively, as
assigned by group pathologists. Due to the limited availability
of all three kinds of cells~normal, polyp and malignant! in
any given tissue sample, only three cases are given. The ab-
sorption due to normal tissue was higher than polyp and can-

cerous cells in this entire region of the spectrum in all three
patients. In the early case@patient~a!#, the absorbance of ad-
enomatous polyp was higher than in the malignant cells. This
trend was reversed in the advanced case@patient ~c!#. This
effect was more pronounced in the phosphate region com-
pared to in other regions of the spectrum. There was a distinct
change in the pattern in the region between 1000 and 1200
cm21 for normal and abnormal tissue samples, which include
polyp and malignant tissues. In the spectrum of normal cells,
splitting can clearly be observed, whereas it disappeared in
the case of adenomatous polyp and malignant cases. This has
been observed in most of the cases studied by our group. No
shifts in frequency were observed over the entire region
~600–2000cm21) in any of the three cases.

3.3 Phosphate Content
The variation of phosphate levels measured by integrating the
absorbance between symmetric~1000–1150cm21) and asym-
metric ~1170–1310cm21) bands for 24 cases is presented in
Figure 5. On average the phosphate level of polyp and malig-
nant tissue samples was lower than that of the controls. The
average content of polyp and malignant samples was equal. It
is also clear from Figure 5 that the diversity among polyps
was larger than for the malignant and the controls.

Fig. 3 Histological image cross sections of formalin-fixed human co-
lonic tissue stained with hematoxylin teosin: (a) normal, (b) polyp and
(c) malignant. Circled areas are those selected for FTIR-MC measure-
ments.

Fig. 4 FTIR microspectroscopy of normal, polyp and malignant tissue
samples in the range of 900–1600 cm−1 from three patients. (a), (b)
and (c) early, moderate and advanced stages of malignancy, respec-
tively. All spectra are consistently normalized to amide I.
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3.4 RNA/DNA
The ratio of absorbance at 1121/1021 provides an estimate of
the RNA/DNA ratio in cells and it is found that this ratio
increases with the stage of malignancy.26 Our analysis pre-
sented in Figure 6 indicates that the RNA/DNA ratio was
lower for normal cells in comparison to that for polyp and
malignant cells. Also, it is interesting to note that the RNA/
DNA ratio was nearly constant for normal and polyp samples.
But, there was a marked variation among the malignant
samples obtained from different patients.

3.5 Two-dimensional Carbohydrate Versus
Phosphate Content
It is interesting to find the correlation between different me-
tabolites among the different categories of cells. The two-
dimensional~2D! plot shown in Figure 7 gives the relation-
ship between carbohydrate and phosphate content in normal,
polyp and malignant cells. It is clear from Figure 7 that there
is a linear correlation between these two metabolites. As was
reflected in the earlier spectra, the normal samples had the
highest carbohydrate and phosphate contents. There was no
distinction between polyp and malignant samples. The perfect
mixing of these two cells categorizes them into a single fam-
ily.

3.6 Classification of Normal, Polyp and Malignant
Samples by ANN
A summary of the results obtained with the proposed classifier
for five sets of features~Table 1! is shown in Table 2. The
feature combinations were selected according to the biomar-
kers in their respective spectral regions. For example, the
spectral region between 1055 and 1719cm21 includes the
phosphate~both symmetric and asymmetric stretching bands!
and total protein contents of the cells. The best results were
obtained for the MLP with a set composed of 13 input feature
coefficients located between 2465 and 2963cm21 which cor-
respond to the absorption of phospholipids~set 1, Table 1!.
The MLP-based classifier resulted in sensitivity values of
89.4%, 83.1% and 81.3% for normal, cancer and polyp tis-
sues, respectively. Although the sensitivity values obtained
using this classifier were high, a careful analysis of Table 3
revealed that the false positive for normal was up to 10.6%
which might be classified as either cancer~2.0%! or polyp
~8.6%!. On the other hand, the sum of the false negative and
false positive for the polyp group was about 18.6%~about
9.7% of the polyp cases might be classified as normal while
up to 8.9% might be classified as cancer!. It is important to
note that compared with the results obtained by the local den-

Fig. 5 Phosphate as a biological marker derived from FTIR spectra for
24 patients. The phosphate content is calculated as the sum of the
integrated absorbance of the symmetric and asymmetric bands of the
phosphate group. PeakFit software was used.

Fig. 6 Absorbance ratio at 1121/1020 as the RNA/DNA ratio for all 24
patients.

Fig. 7 2D plot of carbohydrate vs the phosphate content for 24 pa-
tients. The carbohydrate content is measured as the ratio of the absor-
bance at 1080/1545.

Table 2 FTIR assessment of normal, cancer and polyp diagnoses:
Percentage of success of the test results. The shaded areas show the
best results.

Feature
identification Normal Cancer Polyp Total

1 89.4 83.1 81.3 84.8

2 84.4 84.4 80.1 84.3

3 90.7 83.9 79.5 84.8

4 89.0 83.6 79.5 84.1

5 87.6 83.6 80.3 83.9
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sity approximation~LDA !17 method for classification of nor-
mal and malignant samples from colon cancer patients, these
results show good agreement and have greater consistency.

4 Discussion
The FTIR-MC spectra of normal, polyp and malignant cells
from tissue samples of different colon cancer patients showed
the presence of two families: normal and abnormal and in-
clude polyp and malignant cells. The splitting pattern ob-
served in the range between 1000 and 1150cm21 for normal
cells and its absence in polyp and malignant cells clearly in-
dicates that FTIR-MC is capable of detecting early malig-
nancy among colon cancer patients using biopsied tissue
samples. This observation has been consistent in many of our
samples which have been studied and can be used as a reliable
difference in the spectral pattern for diagnostic purposes. The
grading of the malignancy has a profound effect on the varia-
tion in absorbance of the polyp with respect to malignant cells
for the early and advanced stage patients shown in Figure 4.
Our analysis showed that the spectral differences between
polyp and malignant were not significant. Hence, more so-
phisticated computational tools are necessary to get good dif-
ferentiation between these two kinds of cells, the results of
which are discussed in the coming sections. The higher absor-
bance of normal relative to polyp and malignant cells may be
attributed to the difference in the cellular life cycle in the
tubular gland~called the crypt! between normal and malignant
cells.

Use of biological markers derived from IR spectroscopy in
the identification of normal and malignant cells has been ex-
tensively investigated by many groups.27 Phosphate, one of
the most abundant metabolites, clearly differentiates normal
samples from both polyp and malignant classes. But, it fails to
separate polyp from malignant cells in the tissue samples of
colon cancer patients. The lower phosphate content for pa-
tients ~sample Nos. 11 and 14! is possibly due to a reduction
in the total carbohydrate level which is clear from the 2D plot
shown in Figure 7. RNA/DNA can distinguish only normal
cells from abnormal ones such as polyp and malignant. Again,
the mixing of both polyp and malignant does not provide
unambiguous identification of these two classes. Presently
biological markers are not useful in the correct classification
of polyp and malignant cells.

Because the FTIR spectra and the biological markers were
not capable of obtaining a good classification between polyp
and malignant samples, we investigated the use of advanced
computational methods. The correct diagnosis for normal

cells was higher than that for polyp and malignant cells~Table
2!. Therefore, normal can be differentiated from abnormal
with good accuracy. Polyp and malignant classes have a simi-
lar classification percentage with various features. But, using
selected regions of the spectrum provided better results in the
case of polyp in comparison to malignant cells. The false
negative diagnosis of polyp was about 20%, indicating that
progress still must be made to enhance the accuracy of iden-
tifying polyp at a high percentage. The ANN gives better clas-
sification for polyp and malignant cells than the other compu-
tational methods, such as cluster analysis and LDA~data not
shown!.

The sensitivity of standard pathological methods using bi-
opsies in the positive identification of adenoma is 83.6% and
our method is comparable to this ‘‘gold standard’’ approach.28

In summary, our results using a limited data base are encour-
aging, and they are expected to improve dramatically with a
larger data base and suitable changes in the computational
methods.
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