
Hierarchical Probabilistic Segmentation Of Discrete Events

Guy Shani
Information Systems Engineeering

Ben-Gurion University
Beer-Sheva, Israel
shanigu@bgu.ac.il

Christopher Meek and Asela Gunawardana
Machine Learning and Applied Statistics

Microsoft Research
Redmond, USA

{meek/aselag}@microsoft.com

Abstract—Segmentation, the task of splitting a long sequence
of discrete symbols into chunks, can provide important infor-
mation about the nature of the sequence that is understandable
to humans. Algorithms for segmenting mostly belong to the
supervised learning family, where a labeled corpus is available
to the algorithm in the learning phase. We are interested,
however, in the unsupervised scenario, where the algorithm
never sees examples of successful segmentation, but still needs
to discover meaningful segments.

In this paper we present an unsupervised learning algorithm
for segmenting sequences of symbols or categorical events.
Our algorithm, Hierarchical Multigram, hierarchically builds
a lexicon of segments and computes a maximum likelihood
segmentation given the current lexicon. Thus, our algorithm
is most appropriate to hierarchical sequences, where smaller
segments are grouped into larger segments. Our probabilistic
approach also allows us to suggest conditional entropy as a
measurement of the quality of a segmentation in the absence
of labeled data.

We compare our algorithm to two previous approaches
from the unsupervised segmentation literature, showing it to
provide superior segmentation over a number of benchmarks.
We also compare our algorithm to previous approaches over
a segmentation of the unlabeled interactions of a web service
and its client.

I. INTRODUCTION

In a number of areas data is naturally expressed as a long
sequence of discrete symbols or events. Typically, humans
find it difficult to identify patterns or chunks within the long
sequence. In such cases it may be beneficial to automatically
segment the sequence into smaller chunks, resulting in a
shorter sequence over a higher level lexicon [1], [2].

For example, many modern software applications main-
tain logs of events that occur during the execution. Such
logs are useful for understanding the behavior of the de-
ployed application under real conditions and for analyzing
traces of failures. Typically these logs are very large and
understanding the behavior by looking at the sequence of
recorded events becomes very difficult. However, if we can
automatically identify that certain subsequences (or chunks)
of these sequences originate from certain procedures, re-
placing these chunks by a single procedure name can make
understanding these logs more manageable.

We are interested in two specific types of scenarios.
The first scenario is the analysis of web service usage;

web services are software applications that provide services
for software clients. In this application, the web service
are instrumented to maintain a log of the client requests.
Analyzing these logs can shed light on the behavior of the
client applications, allowing us to better optimize the server
responses. The second type of scenario is the analysis of
user-driven software applications. Examples of such applica-
tions are word processors and spreadsheets. In this scenario,
the software is instrumented to capture sequences of user
actions. Understanding these sequences of actions can (e.g.)
help us to construct better user interfaces. In both these
examples we do not have access to the high level process —
the human user or the client application — that generated
the sequences, and therefore we do not know the high level
task and subtasks.

In our Hierarchical Multigram approach to segmentation
we consider the segmentation task as having two sub-tasks:
(i) lexicon identification in which we identify meaningful
segments, or chunks and (ii) sequence segmentation in which
the sequence is segmented given a current lexicon. In the
Hierarchical Multigram approach developed in this paper,
we iteratively interleave these two tasks. Given a lexicon,
we segment the sequences. We use the new segmentation to
identify a new lexicon by selectively concatinating chunks.
We continue this process until we have a hierarcy of chunks.
We then choose between alternative segmentations (i.e.,
the level of the hierarchy) by using the likelihood of the
observed data.

We compare the performance of our method to two
previous algorithms, Sequitur [1] and Voting Experts [2],
over standard benchmarks from the literature — an English
and Chinese word identification tasks. In both cases our
method outperform both Sequitur and Voting Experts.

Finally, we present some results on lexicon acquisition
and segmentation over a real data set of service requests
from different clients accessing a Microsoft Exchange server.
Even though we do not have labeled data for this domain, we
show that our hierarchical lexicon acquisition method gen-
erates segments that capture much of the structure present
in the logs. We measure this by estimating the Shannon
entropy of the service request sequences that is captured
by the segmentations generated by our algorithm.

2009 Ninth IEEE International Conference on Data Mining

1550-4786/09 $26.00 © 2009 IEEE

DOI 10.1109/ICDM.2009.87

974

Authorized licensed use limited to: MICROSOFT. Downloaded on January 13, 2010 at 16:43 from IEEE Xplore. Restrictions apply.

II. MOTIVATING EXAMPLES

We begin by an overview of two motivating examples
of real world domains where event sequences exist, but
are currently analyzed only using statistics over the low
level events. We explain for both domains why a better
understanding of the high level process is needed.

A. Microsoft Exchange Server

The Microsoft Exchange Server is a messaging product,
supporting e-mail, calendaring, contacts and tasks, and are
accessed by many different software clients. An Exchange
server keeps a log of all the requests issued by the clients.
These logs contain information such as user id, client
application id and requested operation. We hence obtain
sequences of operations corresponding to a single user
interaction with a specific client application.

These sequences contain only low level operations. A
server administrator can use these low level operations to
compute statistics, such as the frequency of an operation,
or the average number of operations per session. After-
wards, these statistics can be used, for example, to execute
simulation interactions with the server to test the server
performance in extreme conditions.

However, it was noticed by Exchange administrators that
these simulations poorly imitate true user sessions. This
is because in a true user session low level operations
occur within the context of the high level process of the
client application. Therefore, understanding the high level
behavior of a client can improve these simulations, and allow
Exchange administrators to better optimize server responses.

B. User Interface Driven Applications

In many cases user application, such as Microsoft Word
or Excel, are instrumented to capture user behavior, such as
clicks on toolbars or menus. These low level events can be
later collected and sent to the application producer through
tools such as Microsoft Customer Experience Improvement
Program (CEIP)1. For example, when a Microsoft Office
product experiences a failure, a user can allow a report to
be sent back to Microsoft for analysis.

Using these traces, software engineers can reproduce
problems locally, thus making it possible to better un-
derstand and fix the problem. However, Microsoft, like
other producers of widely used software, receive many such
reports. Each report then needs to be transferred to a specific
group that handles a specific failure. This classification
process is very difficult when the only available data is
statistics over the low level operations.

Inferring the high level process that generated a trace can
help both the classification process of reports, as well as the
reproduction of problems in a controlled environment.

1http://www.microsoft.com/products/ceip/EN-US/default.mspx

III. BACKGROUND AND PREVIOUS APPROACHES

Let ~e =< e0, .., en > be a sequence of discrete low level
events where each ei belongs to a finite, known, alphabet
Σ. Let η = {~e0, ..., ~em} be a set of m such sequences.

Let ~i be a segmentation of ~e — a sequence of indexes
i0, ..., ik s.t. i0 = 0, ik = |~e| + 1 and ij < ij+1. We say
that s is a segment in the sequence ~e with segmentation ~i if
there exists j such that s = eij , . . . , eij+1−1. By extension,
we say that s is a segment in η if there exists ~e ∈ η
with segmentation ~i such that s is a segment in ~e with
segmentation ~i. The set of all segments found in η will be
called the lexicon, denoted by S.

A lexicon S is hierarchical if for every s ∈ S containing
more than a single event, there exist segments s1, .., sk ∈ S
such that s = s1 + ... + sk, where + is the concatenation
operator. s1, ..., sk are the sub-segments of s.

A natural application where such sequences arise is in
the natural language research community, where chunks of
characters are concatenated into words, and word boundaries
must be identified. Motivated by this domain, the Sequitur
algorithm [1] builds a context free grammar — a set of
a rules of the form Xi → Xi1, ..., Xik, where Xij is
either a rule or a symbol. An expansion of a rule is the
replacement of the left hand side of the rule with the right
hand side repeatedly, until all rules have been replaced by
symbols. These rules can be thought of as an hierarchical
lexicon. Now, we can segment a sequence, by applying these
rules such that each segment correspond to an expansion
of a single rule. For example, we can decide that segment
boundaries are placed after the expansion of rules of a fixed
depth d.

A second, probabilistic approach, is the Voting Experts
algorithm suggested by Cohen et al [2], where a set of
independent criterions (experts) decide on segment bound-
aries. This algorithm uses a sliding window of a fixed length
over the sequence. At each position of the window, each
‘expert’ votes on the most likely segment boundary within
the current window. Then, we traverse the sequence of votes,
and introduce segment boundaries where the sum of votes
for the next position is smaller than the sum of votes for the
current position.

Specifically, Cohen et al. use two experts — one that
minimizes the internal entropy of the chunk, and one that
maximizes the frequency of the chunk among chunks of the
same length. Voting Experts was demonstrated to outper-
form Sequitur on a word boundary discovery from different
languages, and in identifying robot motion sequences.

IV. MULTIGRAM

A multigram [3], [4] is a model originating from the
language modeling community, designed to estimate the
probabilities of sentences, given a lexicon of words. A
sentence is modeled as a concatenation of independently
drawn words. Here, we will model event sequences as

975

Authorized licensed use limited to: MICROSOFT. Downloaded on January 13, 2010 at 16:43 from IEEE Xplore. Restrictions apply.

“sentences” which are the concatenation of independently
drawn segments (“words”). A multigram Θ defines a distri-
bution over a lexicon of segments S = {s1, s2, ..., sm} as
Θ = {θi} : θi = p(si).

The likelihood of a sequence of segments ~s = sj1 , . . . , sjk
where each sji ∈ S is defined by

∏
i=1..k p(sji) =∏

i=1..k θji . The likelihood of all possible segment se-
quences {~s} consistent with a sequence of events ~e is
computed by summing the probabilities of the different
segment sequences.

Given a lexicon and a sequence we can learn the segment
probabilities using the a dynamic programming procedure
derived by specializing the Forward Backward algorithm for
HMMs [5] to the case of multigrams. We can use the model
obtain a segmentation by using the Viterbi algorithm for
HMMs.

V. LEXICON ACQUISITION

As we will later show in our experiments, the lexicon
given to the multigram has a significant impact on the
multigram accuracy. A lexicon can be defined by selecting
a maximal length n and adding each sequence of length
n or less that was observed in the data [4]. However, this
approach can result in a huge lexicon, a long training time,
and possible loss of accuracy due to local minima.

It is therefore better to filter out some of the observed
sequences using some function of the sequence probability
such as its mutual information [6], as described below.

A. Hierarchical Lexicon Acquisition

We suggest here an iterative method for hierarchical lexi-
con acquisition. We begin with a lexicon containing all low
level events (Σ), and the trivial single event segmentation.

During each iteration we add concatenations of existing
segments, where pairs of segments are chosen for concatena-
tion using their mutual information. The mutual information
of the concatenation xy of segments x and y is estimated
by:

I(x; y) = p(xy) log
p(xy)
p(x)p(y)

(1)

where probabilities are estimated over the observed data.
For each concatenation whose mutual information exceeds

a predefined threshold, we create a new segment, and add it
to the lexicon. Then we train a multigram over the expanded
lexicon, produce a new segmentation and a new iteration be-
gins. If no sequence passes the mutual information threshold,
the threshold is reduced.

The process is stopped when the threshold is less than
ε and we can then select the lexicon that maximized the
likelihood of the data. As this lexicon is created by always
joining together sequences of segments from the lexicon, it
is hierarchical.

When creating a new segment to augment the lexicon, we
remember the segments that were concatenated to create it.

We hence maintain for each segment s an ordered list of
segments Ls = s1, ..., sk such that s = s1 + ... + sk, and
each si is in the lexicon. Each segment can participate in
the creation of many longer segments.

Our implementation uses mutual information as the cri-
terion for creating new words, but other measurements
such as the conditional probability or the joint probability
can also be used. The power of the method comes from
collecting term frequencies from already segmented data.
Term frequencies are thus more accurate than frequencies
that were computed over the raw data.

Consider for example the input string abcdbcdab, seg-
mented into ab|cd|b|cd|ab. In the raw data, the term bc
appears twice, while in the segmented data the term does
not appear at all. The term bcd appears twice in the raw
data but only once in the segmented data.

Algorithm 1 Hierarchical Multigram Learning
input η = {~e0, ..., ~em}
input δ — MI threshold
i← 0
η1 ← η
S0 = Ση
while δ > ε do
i← i+ 1
Si ← Si−1

for each consecutive pair of segments s1, s2 in ηi do
if MI(s1s2) > δ then

Add s1s2 to Si
end if

end for
Initialize a multigram M using Si
Train M on ηi
ηi+1 ← φ
for j = 0 to m do

Add the most likely segmentation of ~ej given M to ηi+1

end for
δ ← δ

2
end while

output ηi−1

VI. EVALUATING UNSUPERVISED SEGMENTATION

In this paper we focus on unsupervised segmentation of
discrete event sequences. The typical method for evaluating
the quality of a segmentation is to use a labeled data set,
such as a set of sequences that were already segmented
by an expert, and see whether the unsupervised algorithm
recovers those segments. Alternatively, an expert can observe
the resulting segmentation of several algorithms and decide
which algorithm produced the best segmentation.

However, in many cases obtaining even a relatively small
labeled data set, or manually analyzing the output of an
algorithm, can be very expensive. In such cases, we cannot
evaluate the accuracy of a segmentation algorithm with
respect to a true segmentation. We therefore suggest in
the lack of labeled data to evaluate how well does the

976

Authorized licensed use limited to: MICROSOFT. Downloaded on January 13, 2010 at 16:43 from IEEE Xplore. Restrictions apply.

segmentation algorithm capture the underlying statistical
structure of the low level event sequences ~e.

A natural candidate for estimating the captured structure
is the mutual information I(~E; ~I) which is an information
theoretic measurement of how much information a seg-
mentation ~i provides about the event sequence ~e [7]. We
suggest that a segmentation algorithm whose output contains
as much information about the event sequence, and hence
the highest mutual information with respect to the event
sequence should be preferred among the candidate segmen-
tations. We note that this mutual information between the
event sequence and its segmentation should not be confused
with the mutual information between adjacent segments that
was used in constructing the hierarchical lexicon.

The mutual information can be written as

I(~E; ~I) = H(~E)−H(~E|~I)

where H(~E) is the entropy of the event sequence and
H(~E|~I) is the entropy of the event sequence given the
segmentation [7]. Since only the second term depends on
the segmentation, choosing the segmentation algorithm with
the highest mutual information is equivalent to choosing
the one with the lowest conditional entropy. The per-event
conditional entropy can be estimated as:

Ĥ(~E|~I) = − 1
|η|

∑
~e∈η

log p(~e|~i(e))
|~e|

(2)

p(~e|~i) =
∏

(ij ,ij+1)∈~i

p(eij , ..., eij+1)∑
w∈D,|w|=ij+1−ij p(w)

(3)

where p(w) is estimated probability of a word w in the
lexicon D.

In order to estimate the conditional entropy of a segmen-
tation, we divide the set of event sequences into a train and
test set. We train a multigram over the train set learn the
lexicon probabilities, initializing the lexicon to the words
(segments) that were observed in the segmentation. Then, we
estimate the conditional entropy of the given segmentation
on the test set. It is important that the conditional entropy
be estimated on a test set distinct from the lexicon training
set in order to measure how well a segmentation captures
the underlying structure of the event sequences, rather than
measuring how close a segmentation comes to memorizing
the training event sequences.

A. Datasets and Algorithms

In this section we provide an empirical comparison of
three unsupervised algorithms for segmentation — our hier-
archical multigram approach, Sequitur [1], and Voting Ex-
perts [2]. Our results demonstrate the superiority of the seg-
mentation that we produce both over previous approaches.

We experiment here with two types of datasets; Much
research is dedicated to the identification of word boundaries

in Chinese text [8]. While this is an important task, and was
previously used to demonstrate segmentation algorithms [2],
it is not truly an unsupervised task, as many pre-segmented
datasets of this type are available. Still, results for datasets
that were segmented by experts can shed much light on
the power of various approaches. As such, we use Chinese
and English text here mainly to provide information about
the properties of the various unsupervised segmentation
algorithms. For these datasets we can use the annotated
dataset to compute precision-recall curves.

A task that is more interesting for us is the segmentation
of event sequences from an Exchange server. This is a real
world task, for which there is no existing annotated dataset.
Indeed, this is the type of task for which unsupervised
algorithms are constructed. In evaluating the segmentation
of Exchange events, we use the mutual information criteria
defined above.

B. Segmenting Text

We begin by a traditional evaluation of the quality of
the segmentation produced by the algorithms on a pre-
segmented data set, as done by most researchers. The re-
sulting scores may be somewhat misleading, as a supervised
algorithm that is trained on the segmented data set can pro-
duce much better results. Still, such an evaluation is useful
in providing an understanding of the relative performance
of the unsupervised algorithms.

We evaluate the three algorithms over two tasks — the
identification of word boundaries in English and in Chinese
texts [9], [2], [8]. For the English text, we took the first
10 chapters of “Moby Dick”2 and transformed the text into
unlabeled data by removing all the characters that are not
letters (spaces, punctuation marks, etc.) and transformed all
letters to lower case. For the Chinese text we used the labeled
Academia Sinica corpus3.

Each of the algorithms has a tunable parameter for the
decision on segment boundaries. Voting Expert has a sliding
window, whose length affects the segment boundary iden-
tification. Sequitur identifies a set of rules, and in order to
generate a segmentation from these rules, we place word
boundaries after expanding rules up to a finite depth, after
which rules are expanded into words. Our lexicon creation
procedure is affected by the threshold on the required mutual
information for concatenating chunks. We evaluate each
algorithm at various settings of its tunable parameter.

In order to compare the accuracy of the algorithms at
various settings of their tunable parameters, we employ
precision-recall curves, which are a typical measurement
for the success of a segmentation algorithm. When identi-
fying segment (or word) boundaries we can either correctly
identify a boundary (TP — true positive), fail to identify

2www.physics.rockefeller.edu/∼siggia/projects/mobydick novel
3www.sighan.org/bakeoff2003/bakeoff instr.html

977

Authorized licensed use limited to: MICROSOFT. Downloaded on January 13, 2010 at 16:43 from IEEE Xplore. Restrictions apply.

a segment boundary (FN — false negative), or predict a
boundary within a segment (FP — false positive). Precision
is defined as the portion of true positives among the guessed
boundaries — #TP

#TP+#FP , while recall is the portion of true
positives among all the segment boundaries — #TP

#TP+#FN .
There is a clear trade-off between precision and recall. At the
extreme we can predict no boundary, making no mistake and
getting a precision of 1, but identifying no boundaries and
getting a recall of 0. At the other extreme we can identify
a boundary after each symbol, getting a recall of 1 but a
relatively low precision.

Figure 1 shows the precision recall curves resulting from
tuning the parameters. As we can see, our method dominates
the two other on both data sets. These tasks have some
hierarchical structure. For example, we can identify chunks
of English words that occur repeatedly, such as “th”, “ing”,
and “tion”. Identifying these chunks early in the process can
help us to construct the words afterwards.

(a) Moby Dick (English text)

(b) 1998-01-qiefen (Chinese text)

Figure 1. Precision-Recall curves on the two word segmentation problems.

Figure 2 shows some sample output from the hierarchical
segmentations yielded by our algorithm on the Moby Dick
task. The algorithm does find the correct word boundaries
in most cases, and also finds higher level structures such as
“more than” and “have been.”

Figure 2. Hierarchical segmentation of the Moby Dick text. Showing the
first two sentences (left side) and another random sentence (right side).
Correctly identified words are annotated by a star.

Our metric for comparing performance of methods for
segmentation over an unlabeled data set is conditional
entropy. To validate that this metric correlates with our
intuitive notion of segmentation we compute the conditional
entropies of the three algorithms for the text segmentation
problem. Table I shows the conditional entropies of our
approach, and the Sequitur and Voting Experts algorithms on
the English and Chinese word segmentation tasks. For each
algorithm we picked the segmentation that provided the best
F score, defined as F = 2·precision·recall

precision+recall . We then trained
a multigram using the lexicon derived by the segmentation
on a train set (0.8 of the data) and computed the conditional
entropy of the given segmentation over the test set (0.2 of the
data). In addition, we also evaluated the conditional entropy
of the true segmentation using the same procedure.

Algorithm English Chinese
True 1.56 5.73
HM 2.01 6.01
Voting Experts 3.38 6.87
Sequitur 3.00 9.25

Table I
CONDITIONAL ENTROPY OF THE VARIOUS SEGMENTATIONS OF THE

THREE ALGORITHMS AND THE TRUE SEGMENTATION ON THE TWO TEXT
SEGMENTATION TASKS.

Looking at Table I, we see that the true segmentation gives
the most information about the text. This provides evidence
that the structure captured by words is highly useful. The
true segmentation is followed by our approach, Sequitur,
and then Voting Experts for the English text. On the Chinese
text Voting Expert outperformed the Sequitur approach. This

978

Authorized licensed use limited to: MICROSOFT. Downloaded on January 13, 2010 at 16:43 from IEEE Xplore. Restrictions apply.

corresponds well with the precision-recall curves in Figure 1.
The ability of Sequitur to achieve higher precision at the
expanse of lower recall, resulted in a higher conditional
entropy.

Shannon estimated that English had an entropy of about
2.3 bits per letter when only effects spanning 8 or fewer
letters are considered, and on the order of a bit per letter
when longer range effects spanning up to 100 letters are
considered [10]. We estimate the conditional entropy given
word segmentations but not taking into account long range
effects. Thus, we would expect the conditional entropy to
be lower than the entropy taking into account only short
range effects, though perhaps not as low as the entropy given
longer range effects. Our results using the true segmentations
as well as our results using the hierarchical multigram are
consistent with this expectation.

C. Segmenting Exchange Sequences
We now move to evaluating the performance of the three

algorithms over event sequences gathered from a Microsoft
Exchange server. We obtained logs from the interactions of
the server with 5 different clients. As we can see in Table II
the properties of the clients differ significantly in terms of
the functionality that they require from the server (Σ) and
the length of a single interaction.

We segmented all the domains using Voting Experts and
the hierarchical multigram algorithms, varying the tunable
parameters. Note that the Sequitur algorithm failed provide
results on these data sets. We report in Table III the con-
ditional entropy of the best segmentation that was achieved
by each algorithm.

Client |Σ| Sessions Avg. Session Length
AS 22 24,630 19.5
ASOOF 21 17,833 17
OWA 56 9,689 14.7
Airsync 54 27,115 25.9

Table II
PROPERTIES OF THE EXCHANGE CLIENT APPLICATIONS.

Client HM Voting Experts
AS 0.11 0.66
ASOOF 0.069 0.067
OWA 0.42 1.22
Airsync 0.48 1.36

Table III
COMPARING THE CONDITIONAL ENTROPY OF THE HIERARCHICAL

MULTIGRAM AND THE VOTING EXPERTS OVER THE VARIOUS
EXCHANGE CLIENT APPLICATIONS.

The hierarchical multigram generated segmentations with
considerably better conditional entropy in all domains, ex-
cept for the ASOOF client, which is by far the simplest and
most structured domain, as we can see from the very low
conditional entropy of both segmentations.

VII. CONCLUSIONS

In this paper we proposed an hierarchical probabilistic
segmentation method based on a multigram. Multigram
performance is highly dependent on the input lexicon that
is provided. We propose a method for iteratively building
an hierarchical lexicon. Our method computes the criteria
for joining segments based on the current segmentation of
the data. As such, the generated term frequencies are more
accurate.

We experimented with a text segmentation problem, show-
ing our method to produce superior accuracy, and over real
data sets gathered from an Exchange server, showing our
method to provide models with lower conditional entropy
than a previous algorithms.

Our hierarchical segmentation results in a tree of seg-
ments. In the future we would investigate further properties
of this tree, such as the best cut through the tree that would
produce the best segmentation of the data. We also intend to
apply our techniques to the segmentation of user interactions
with applications, allowing us to understand the behavior of
users when accomplishing complicated tasks.

REFERENCES

[1] C. Nevill-Manning, , and I. Witten, “Identifying hierarchical
structure in sequences: A linear-time algorithm,” Journal of
Artificial Intelligence Research, vol. 7, pp. 67–82, 1997.

[2] P. Cohen, N. Adams, and B. Heeringa, “Voting experts: An
unsupervised algorithm for segmenting sequences,” Intell.
Data Anal., vol. 11, no. 6, pp. 607–625, 2007.

[3] S. Deligne and F. Bimbot, “Language modeling by variable
length sequences: Theoretical formulation and evaluation of
multigrams,” in Proc. ICASSP ’95, 1995, pp. 169–172.

[4] ——, “Inference of variable-length linguistic and acoustic
units by multigrams,” Speech Commun., vol. 23, no. 3, pp.
223–241, 1997.

[5] L. E. Baum, , T. Petrie, G. Soules, and N. Weiss, “A
maximization technique occurring in the statistical analysis of
probabilistic functions of markov chains,” Ann. Math. Statist.,
vol. 41, no. 1, pp. 164–171, 1970.

[6] M. Yamamoto and K. Church, “Using suffix arrays to com-
pute term frequency and document frequency for all sub-
strings in a corpus,” Computational Linguistics, vol. 27, no. 1,
pp. 1–30, 2001.

[7] T. M. Cover and J. A. Thomas, Elements of information
theory. John Wiley and Sons, Inc., 1991.

[8] R. Sproat and T. Emerson, “The first international chinese
word segmentation bakeoff,” in The Second SIGHAN Work-
shop on Chinese Language Processing, 2003.

[9] H. J. Bussemaker, H. Li, and E. D. Siggia, “Regulatory
element detection using a probabilistic segmentation model,”
in ISMB, 2000, pp. 67–74.

[10] C. E. Shannon, “Prediction and entropy of printed english.”
The Bell System Technical Journal, pp. 50–64, January 1951.

979

Authorized licensed use limited to: MICROSOFT. Downloaded on January 13, 2010 at 16:43 from IEEE Xplore. Restrictions apply.

