
1

Prioritizing Point-Based POMDP Solvers
Guy Shani and Ronen I. Brafman and Solomon E. Shimony
Computer Science Department, Ben Gurion University, Israel

{shanigu,brafman,shimony}@cs.bgu.ac.il

Abstract—Recent scaling up of POMDP solvers towards re-
alistic applications is largely due to point-based methods that
quickly converge to an approximate solution for medium-sized
problems. These algorithms compute a value function for a finite
reachable set of belief points, using backup operations. Point
based algorithms differ on the selection of the set of belief points,
and on the order by which backup operations are executed on
the selected belief points.

We first show how current algorithms execute a large number
of backups that can be removed, without reducing the quality of
the value function. We demonstrate that the ordering of backup
operations on a predefined set of belief points is important.

In the simpler domain of MDP solvers, prioritizing the order
of equivalent backup operations on states is known to speed up
convergence. We generalize the notion of prioritized backups
to the POMDP framework, showing how existing algorithms
can be improved by prioritizing backups. We also present a
new algorithm, Prioritized Value Iteration (PVI), and show
empirically that it outperforms current point-based algorithms.

Finally, a new empirical evaluation measure (in addition to the
standard runtime comparison), based on the number of atomic
operations and the number of belief points, is proposed, in order
to provide more accurate benchmark comparisons.

I. INTRODUCTION

Many interesting reinforcement learning (RL) problems can
be modeled as partially observable Markov decision problems
(POMDPs), yet POMDPs are frequently avoided due to the
difficulty of computing an optimal policy. Research has there-
fore focused on approximate methods for computing a policy
(see e.g. Brafman (1997), Poupart and Boutilier (2004), Pineau
et al. (2003)). A standard way to define a policy is through
a value function that assigns a value to each belief state,
thereby also defining a policy over the same belief space.
Smallwood and Sondik (1973) show that this value function
can be represented by a set of vectors and is hence piecewise
linear and convex.

A promising approach for computing value functions is
the point-based method. Algorithms of this family compute
a value function over a finite subset of the reachable belief
space. An optimal solution for a subset of the belief space
may not be optimal for the entire belief space. However,
point-based methods assume that the solution would generalize
well to other, unobserved belief points. Generalizing to the
entire belief space is possible through the use of the vector
representation of a value function for POMDPs. The main
contribution of this paper is a framework for accelerating
point-based solvers by smartly ordering the sequence of value-
function updates over a set of belief points. We also propose

Partially supported by the Paul Ivanier center for robotics and production
management.

an improved method for finding a “good” finite set of belief
points.

Improving a value function represented by vectors can be
done by performing a backup operation over a single belief
state, resulting in a new vector that can be added to the
representation of the value function. Even though a vector
is computed for a single belief state, it defines a value
over the entire belief space, though this value may not be
optimal for many belief states. A single backup operation
can therefore, and in many cases does, improve the value
function for numerous belief points. Backup operations are
relatively expensive, and POMDP approximation algorithms
can be improved by reducing the number of backup operations
needed to approximate the optimal policy.

For the simpler domain of Markov decision processes
(MDPs), it was previously observed (Moore & Atkeson, 1993;
Bonet & Gefner, 2003; Wingate & Seppi, 2005) that the
order by which backup operations are executed over states
can change the convergence rate of the value function. For
example, as the value for a state is influenced by the values of
its successors it is more useful to execute a backup operation
for a state only after values for its successors are computed. In
an MDP it is easy to find the set of predecessors for a given
state making backward state space traversals possible. Methods
that define a backup sequence can be viewed as performing
backups in an order of decreasing priorities for states.

We have recently introduced the idea of using prioritization
in POMDPs (Shani et al., 2006), demonstrating how similar
ideas can be applied in the more difficult POMDP domain.
A direct implementation of the techniques used for MDPs
is not possible. First, one cannot efficiently find the set of
predecessors for a belief state, which may have unbounded
size. Second, a backup operation for a belief state potentially
improves the value of many other belief states as well,
therefore affecting belief states that are not direct predecessors
of the improved state.

In this extended version of the paper, we initiate a more
disciplined examination of backup operation ordering. We
raise the following issue: suppose that we hold everything
else (such as set of belief points, etc.) constant, what would
be the sequence of backups that would lead the algorithm
to converge most quickly to the correct policy? This poses
a meta-reasoning problem that is hard in and of itself, and
certainly not one we could expect a POMDP algorithm to
solve at runtime. However, we can attempt an approximate
solution to this meta-reasoning post-facto, and examine the
backup performance of various backup schemes in this light,
and these new empirical results are illuminating.

An orthogonal question to the order of backups is the

2

selection of the belief subsets. Previous methods suggested to
cover the belief space as best as possible using a finite number
of reachable points (Pineau et al., 2003), or to use a random
selection of reachable points (Spaan & Vlassis, 2005). These
methods take two extreme views — the first generates very
good belief sets but requires extensive computations, while the
second is extremely fast but produces random sets. We show
here that in complex domains it is unlikely that a random walk
will quickly reach important parts of the domain. We continue
to suggest and evaluate an heuristic method that is very fast
to compute and produces good belief sets.

Another important issue this paper addresses is the scheme
for reporting experimental results evaluating the performance
of point-based algorithms. Previous researchers have imple-
mented their own algorithms and compared its performance
to previous published results, usually reporting Average Dis-
counted Reward (ADR) as a measure of the quality of the
computed policy, and convergence time, over well-known
benchmarks. While the ADR of a policy is identical, although
noisy, over different implementations, the convergence time is
an insufficient measurement. Execution time for an algorithm
is highly sensitive to variations in machines (CPU speed,
memory capacity), selected platform (operating system, pro-
gramming language) and implementation efficiency. Although
we comply with the commonly used result reporting scheme,
additional measures are also reported, designed to help future
publications to provide a fair comparison.

II. BACKGROUND AND RELATED WORK

We begin with an overview of MDPs and POMDPs, the be-
lief space MDP, and how a solution to a POMDP is computed.
We then provide an short introduction to point-based methods
for solving POMDPs, and explain how prioritization has been
used before in the context of MDPs.

A. MDPs, POMDPs and the belief-space MDP

Markov Decision Processes (MDPs) are designed to model
autonomous agents, acting in a stochastic environment. Con-
sider for example a robot traveling through a maze. The robot
starts at some location and can either move forward, turn left,
or turn right. As the robot moves its location may change,
and thus, the environment, which includes the location of
the robot, changes. The assumption is that the environment
changes only as the result of the agent actions. The robot must
reach some goal state, such as the exit door, or alternatively,
collect rewards, such as items that are scattered through the
maze.

Formally, an MDP is a tuple 〈S,A, tr,R〉 where:
• S is the set of all possible world states. In the above

example, the environment state is the location and orien-
tation of the robot.

• A is a set of actions the agent can execute. Our robot can
only turn left, right, or move forward.

• tr(s, a, s′) defines the probability of transitioning from
state s to state s′ using action a. The transition function
models the stochastic nature of the environment, such as

the robot attempting to move forward but failing due to
engine malfunction or because the wheels where slipping.

• R(s, a) defines a reward the agent receives for executing
action a in state s. Action costs can be modeled as
negative rewards. In our example the robot receives a
reward for getting out of the maze or for collecting an
item. The robot may pay a cost each time it moves,
modeling the energy loss incurred by the move.

An MDP models an agent acting in an environment where it
can directly observe the state it is at.

Realistically, a robot does not know where it is located
within a maze. It has sensors that provide observations such as
nearby walls. These sensors are imperfect, meaning that they
sometimes detect a wall where none exist, and sometimes the
sensors fail to detect an existing wall. Now, in order to find its
way through the maze the robot must also gather information
about the environment state — its own location within the
maze.

A Partially Observable Markov Decision Process (POMDP)
is designed to model such agents that do not have direct access
to the current state, but rather observe it through noisy sensors.
A POMDP is a tuple 〈S, A, tr,R, Ω, O, b0〉 where:
• S, A, tr,R compose an MDP, known as the underlying

MDP. This MDP models the behavior of the environment.
• Ω is a set of available observations — the possible

output of the sensors. In the example above the set of
observations consists of all possible wall configurations.

• O(a, s, o) is the probability of observing o after executing
a and reaching state s, i.e. the sensor model, which
incorporates the sensor noise.

As the agent is unaware of its true world state, it must
maintain a belief over its current state — a vector b of
probabilities such that b(s) is the probability that the agent
is at state s. Such a vector is known as a belief state or belief
point. b0 defines the initial belief state — the belief of the
agent over the state space before it has executed or observed
anything.

Given a POMDP it is possible to define the belief-space
MDP — an MDP over the belief states of the POMDP. The
transition from belief state b to belief state b′ using action
a is deterministic given an observation o and defines the τ
transition function. That is, we denote b′ = τ(b, a, o) where:

b′(s′) =
O(a, s′, o)

∑
s b(s)tr(s, a, s′)

pr(o|b, a)
(1)

pr(o|b, a) =
∑

s

b(s)
∑

s′
tr(s, a, s′)O(a, s′, o) (2)

Therefore, τ is computed in O(|S|2).

B. Value Functions for POMDPs

It is well known that the value function V for the belief-
space MDP can be represented as a finite collection of |S|-
dimensional vectors known as α vectors. Thus, V is both
piecewise linear and convex (Smallwood & Sondik, 1973). A
policy over the belief space is defined by associating an action
a to each vector α, so that α · b =

∑
s α(s)b(s) represents the

3

value of doing action a in belief state b and following the
policy afterwards. It is therefore standard practice to compute
a value function — a set V of α vectors. The policy πV is
immediately derivable using:

πV (b) = argmaxa:αa∈V αa · b (3)

We can compute the value function over the belief-space
MDP iteratively:

Vn+1(b) = max
a

[b · ra + γ
∑

o

pr(o|a, b)Vn(τ(b, a, o))] (4)

where ra(s) = R(s, a) is a vector representation of the reward
function. The computation of the next value function Vn+1(b)
out of the current Vn (Equation 4) is known as a backup step.
The backup step can be implemented efficiently (Pineau et al.,
2003; Spaan & Vlassis, 2005) by:

backup(b) = argmaxgb
a:a∈A b · gb

a (5)

gb
a = ra + γ

∑
o

argmaxgα
a,o:α∈V b · gα

a,o (6)

gα
a,o(s) =

∑

s′
O(a, s′, o)tr(s, a, s′)αi(s′) (7)

Note that the gα
a,o computation (Equation 7) does not depend

on the belief state b and can therefore be cached for future
backups. All the algorithms we implemented use caching to
speed up backup operations. Without caching the gα

a,o results,
the backup process takes O(|S|2|V ||Ω||A|).

While it is possible to execute full backups for V over
the entire belief space, hence computing an optimal policy
(Cassandra et al., 1997), the operation is computationally hard.
Various approximation schemes attempt to decrease the com-
plexity of computation, potentially at the cost of optimality.

A value function can be defined using other representation,
such as a direct mapping between belief states and values.
Given such a representation we use the H operator, known as
the Bellman update, to compute a value function update:

QV (b, a) = b · ra + γ
∑

o pr(o|a, b)Vn(τ(b, a, o)) (8)
HV (b) = maxa QV (b, a) (9)

The computation time of the H operator is O(Tv|S|2|O||A|),
where Tv is the time it takes to compute the value of a specific
belief point using the value function V .

C. Point Based Value Iteration

Computing an optimal value function over the entire belief
space does not seem to be a feasible approach. A possible
approximation is to compute an optimal value function over
a finite subset B of the belief space (Lovejoy, 1991). Un-
fortunately, an optimal solution over B does not guarantee
optimality over belief points not in B. It is therefore possible
that for some reachable belief states (which are not included in
B) the resulting value function is sub-optimal. Such a schemes
are based on the (empirically verified) assumption, that the
computed value function will generalize well for other belief
states not included in B.

Point-based algorithms (Pineau et al., 2003; Spaan & Vlas-
sis, 2005; Smith & Simmons, 2005) choose a subset B of

the belief points that is reachable from the initial belief state
through different methods, and compute a value function only
over the belief points in B.

The Point Based Value Iteration (PBVI) algorithm (Pineau
et al., 2003), (Algorithm 1), begins with B = b0, and at each
iteration computes an optimal value function for the current
belief points set. After the value function has converged the
belief points set is expanded with all the most distant imme-
diate successors of the previous set. Following Pineau et al.
we used the L2 distance metric in our reported experiments1.

Given the ever expanding belief space it is clear that at the
limit, the belief set B∞ will cover the entire reachable belief
space. Thus, at the limit, PBVI will compute an optimal value
function over all reachable beliefs. However, at the limit, the
number of α-vectors can also be unbounded, making the point-
based backup intractable.

PBVI has a number of shortcomings, not allowing it to scale
up to larger domains. First, the belief expansion procedure
(Algorithm 3) requires the time consuming computation of
distances. Computing a distance between any two belief points
requires |S| operations. As we have |B| belief points, and each
belief point has |A||O| successors, computing the expanded
belief space requires |B|2|A||O||S| operations. To reduce this
computation cost, Pineau et al. also suggest to randomly select
a successor for each belief-action pair, reducing the computa-
tion to |B|2|A||S| at the cost of missing distant successors. The
value function update phase of PBVI (Algorithm 2) requires
a complete backup of all the belief points in the set B in an
arbitrary order. Such a backup sequence is time consuming
and as we argue later, not all backups are needed.

Algorithm 1 PBVI
1: B ← {b0}
2: while true do
3: Improve(V, B)
4: B ← Expand(B)

Algorithm 2 Improve(V,B)
Input: V — a value function
Input: B — a set of belief points

1: repeat
2: for each b ∈ B do
3: α ← backup(b)
4: add(V, α)
5: until V has converged

Spaan and Vlassis (2005) suggest to explore the world using
a random walk from the initial belief state b0. The points that
were observed during the random walk compose the set B
of belief points. The Perseus algorithm2 (Algorithm 4) then
iterates over these points in a random order. During each
iteration backups are executed over points whose value has
not yet improved in the current iteration.

1We also experimented with L1 and Linf and did not notice any improve-
ment over L2.

2We present here a single value function version of Perseus.

4

Algorithm 3 Expand(B)
Input: B — a set of belief points

1: B′ ← B
2: for each b ∈ B do
3: Successors(b) ← {b′|∃a,∃o b′ = τ(b, a, o)}
4: B′ ← B′ ∪ argmaxb′∈Successors(b)dist(B, b′)
5: return B′

The belief points used by Perseus are very different from
the ones used by PBVI and in many cases most of them are
redundant. The random walk Perseus uses is however much
faster than the belief expansion of PBVI. The value function
update may only execute backups over a small subset of the
beliefs in B and yet ensures that the value for all points in B
improves after each iteration. However, the behavior of Perseus
is very stochastic. The random selections cause high variation
in performance and in more complicated problems may cause
the algorithm to converge very slowly. Nevertheless, the ideas
pointed out by Spaan and Vlassis — eliminating the need
for complete backups, and computing B rapidly — are an
important foundation to our work.

Algorithm 4 Perseus
Input: B — a set of belief points

1: repeat
2: B̃ ← B
3: while B̃ 6= φ do
4: Choose b ∈ B̃
5: α ← backup(b)
6: if α · b ≥ V (b) then
7: B̃ ← {b ∈ B̃ : α · b < V (b)}
8: add(V, α)
9: until V has converged

Smith and Simmons (2004; 2005) present the Heuristic
Search Value Iteration (HSVI - Algorithm 5) that maintains
both an upper bound and lower bound over the value function.
HSVI traverses the belief space following the upper bound
heuristic, greedily selecting successor belief points where the
gap between the bounds is the largest, until some stopping
criteria has been reached. Afterwards HSVI executes backups
and H operator updates over the observed belief points on the
explored path in a reversed order.

HSVI is stopped when the gap between bounds over the
initial belief state b0 is reduced to less than ε thus providing
a guarantee over the quality of the value function. Even
though Simth and Simmons prove that the gap is closed in
a polynomial number of iterations, in most cases, closing this
gap is impractical, especially due to the slow improvement of
the upper bound. In practice HSVI computes good policies
when the gap is still quite large.

Executing backups in a reversed order is important because
the Bellman update uses the values of the successors to update
the value of the current belief. As such, the value of a
successor must be improved before the value of the current
belief can be improved. Indeed, when backups in HSVI are

done in order of detection the performance of HSVI is reduced
drastically.

HSVI differs considerably from other point-based algo-
rithms. First it collects new belief points after each iteration, as
opposed to Perseus that uses a fixed set of points and PBVI that
collects more points only if the current set was insufficient to
produce a good policy. Second, the points that HSVI collects
depend on the computed value function. As such, while it
is possible to combine ideas from Perseus and PBVI, such
as collect B following PBVI expansion and update the value
function using the Perseus method, such combinations with
HSVI are non trivial.

While producing very good trajectories in belief space,
the computation of these trajectories is time consuming as
it requires the complete expansion of all the successors of
every belief state that is visited. Maintaining and updating the
upper bound is also time consuming and provides an additional
burden on HSVI.

Algorithm 5 HSVI
1: Initialize V

¯
and V̄

2: while V̄ (b0)− V
¯
(b0) > ε do

3: Explore(b0, V
¯
, V̄)

Algorithm 6 Explore(b, V
¯
, V̄)

Input: a belief state b, upper and lower bounds on the value
function V

¯
, V̄ .

1: if V̄ (b)− V
¯
(b) > εγ−t then

2: a∗ ← argmaxa QV̄ (b, a′) (see Equation 8)
3: o∗ ← argmaxo(V̄ (τ(b, a, o))− V

¯
(τ(b, a, o))

4: Explore(τ(b, a∗, o∗), V
¯
, V̄)

5: add(V
¯
, backup(b, V

¯
))

6: V̄ ← HV (b)

Recently, Shani et al. (Shani et al., 2007) suggested the
Forward Search Value Iteration (FSVI) algorithm. FSVI uses
ideas from HSVI, such as traversing the belief space following
a heuristic and executing backups in a reversed order. The
FSVI heuristic for traversing the belief space relies on an op-
timal Q function for the underlying MDP. This is a reasonable
assumption as solving the underlying MDP is always easier
than solving the POMDP. The algorithm simulates a traversal
in both the MDP state space and the POMDP belief space,
following always the best action for the MDP. As such, the
traversal is ensured minimize the expected number of steps to
the goal.

FSVI traversals are very fast to compute, requiring only
|A| + |S| + |O| operations for the heuristic computation at
each step, compared to the O(|S|2) operations required just
for the belief update. The downside of following an MDP-
based heuristic is the inability to create traversals that visit
states that may provide important observations, unless these
states lie on some path from a start state to a goal, following
the MDP policy.

As FSVI trajectories do not depend on the value function it
computes, it is possible to break the process into first collecting

5

Algorithm 7 FSVI
1: while Policy quality is insufficient do
2: B ← {b0}
3: b ← b0

4: Choose s from the b0 distribution
5: while s is not a goal state do
6: a∗ ← argmaxa Q(s, a)
7: Choose s′ from the tr(s, a∗, ·) distribution
8: Choose o from the O(a, s′, ·) distribution
9: b′ ← τ(b, a∗, o)

10: Add b′ to B
11: b ← b′

12: s ← s′

13: Execute backups on B in reversed order

a set of belief points B, following a number of trajectories and
maintaining the successor-predecessor relationship between
belief states and after that computing a value function going
over the trajectories in B in reverse order.

While in practice such an implementation is not useful, re-
quiring additional memory for remembering the belief points,
this view of FSVI allows us to better compare FSVI to Perseus,
PBVI and the new algorithms suggested in this paper.

D. Other Related Work

Aside from point-based approaches, a second dominant
method is the computation of a policy directly without a
value function through the use of finite state controllers (see
e.g. Poupart and Boutilier (2003)). A different approach for
scaling up is the use of compression techniques to create
a smaller model and solve the compressed POMDP instead
of the larger one (Poupart & Boutilier, 2002). Yet another
promising alternative is the use of bounded online search in
belief space with heuristic functions to decide which action
to execute in real-time (Paquet et al., 2005; Ross & Chaib-
draa, 2007). Although interesting and useful, none of the above
approaches have direct bearing to our approach, and thus we
will not further discuss them here.

III. ENHANCING POINT BASED VALUE ITERATION

Point based algorithms compute a value function using α
vectors by iterating over some finite set of belief points and
executing a sequence of backup operations over these belief
points. Our goal is to find the best possible policy within the
minimal number of computations. A few factors may affect the
amount of computations that is needed in order to compute a
value function over a given domain:
• The number of belief points that are used for the compu-

tation of the value function. The number of belief points
bounds the number of α-vectors in the value function
which in turn influences the runtime of the backup
process. The number of points is also important when
considering the selection of the next point to improve.

• The number of backup operations. As backup operations
are expensive, reducing the number of backup operations
will reduce the execution time.

• Operations used to compute the belief states or to choose
the next belief point to update. As explained above, the
PBVI method for expanding the belief space and the
HSVI method for selecting the next point in the traversal
require a large number of operations, such as belief
updates.

For both belief point selection and the ordering of backups,
there is a need to balance the amount of operations required
for computation and the gain from the reduction in belief set
size and the number of backups.

In this paper we suggest methods that provide both a good
selection of belief states and a good ordering of backups over
the gathered belief states. We explain how to implement these
methods so that the overall gain, balancing the additional
required computations and the gain proves to be beneficial.

IV. PRIORITIZED POINT BASED VALUE ITERATION

We first discuss the proper ordering of backups over a given
set of belief points B, attempting to find good policies as
quickly as possible through point-based backups. We argue
that many of the backups executed by point based methods
are redundant. It is possible to achieve a policy with the same
quality with a smaller amount of operations.

Given a predefined set of belief points, selecting such a
sequence (or, more generally, a plan) of backup operations
is a meta-reasoning problem. An optimal solution to this
problem should greatly improve the speed of convergence. As
the problem of selecting an optimal backup plan is a very
hard problem, we use heuristics in order to attempt to find
a good, but not necessarily optimal sequence. We will show
empirically that even using a heuristic that results in backup
sequences that are far from optimal, still significant runtime
improvement is achieved over arbitrary orders.

A backup sequence seq1 is better than sequence seq2 if seq1

is shorter than seq2, and produces a policy which is no worse
(we compare policies by measuring their ADR) than the one
produced by seq2. However, a sequence may be better but still
induce an overhead that is intolerable. For example, we could
have tried all the possible backup sequences, and afterwards
selected the one that is shortest. Such an approach would give
us the best possible sequence yet would require an absurdly
large computation time (since this entails solving the POMDP
problem of interest multiple times).

A better sequence, hence, does not always mean that the
algorithm that uses it will be more efficient. It is possible
that an algorithm executes a good sequence, but the time
to compute it is much more that the execution of a worse
sequence. Ideally we would like to obtain a good sequence
rapidly.

We suggest creating better sequences using a heuristic
that predicts useful backups. Clearly, the heuristic must be
efficiently computable, so that the overhead of computing
the heuristic does not outweigh any savings achieved by
performing fewer backups.

Even if we ignore the needed effort for computing the
sequence, the number of backups is still an inaccurate estima-
tion of the actual execution time of the sequence. In practice,

6

backup execution time may differ due to their dependency on
the size of the value function. It is likely that two different
sequences of backups with identical lengths will produce
value functions with different sizes and will therefore require
different execution time. It is therefore better to evaluate the
execution time in terms of g-operations or inner products. Nev-
ertheless, for the clarity of the discussion, we measure high-
level backups rather than the low level atomic g-operations.

A. Prioritizing MDP Solvers

A comparable scheme used for prioritizing in MDP solvers,
suggests performing the next backup on the MDP state that
maximizes the Bellman error:

e(s) = maxa[R(s, a) +
∑

s′
tr(s, a, s′)V (s′)]− V (s). (10)

e(s) measures the change in the value of s from performing
a backup. Wingate and Seppi (2005) present a very simple
version of value iteration for MDPs using prioritization (Al-
gorithm 8).

Algorithm 8 Prioritized Value Iteration for MDPs
1: ∀s ∈ S, V (s) ← 0
2: while V has not converged do
3: s ← argmaxs′∈S e(s′)
4: backup(s′)

A key observation for the efficiency of their algorithm is
that after a backup operation for state s, the Bellman error
recomputation need be performed only for the predecessors
S′ of s, defined as S′ = {s′ : ∃a, tr(s′, a, s) 6= 0}. Hence,
after initially setting e(s) = maxa R(s, a) for each s ∈ S,
we update the priorities only for predecessors, avoiding a
complete iteration through the state space.

B. Prioritizing POMDP Solvers

While the Bellman error generalizes well to POMDPs:

e(b) = maxa[ra ·b+
∑

o

pr(o|a, b)V (τ(b, a, o))]−V (b) (11)

there are two key differences between applying priorities to
MDPs and POMDPs.

First, a backup update affects more than a single state. A
new vector usually improves the local neighborhood of its
witness belief point, but may improve the value for the entire
belief space. As such, both the current value of any belief
state may change following a backup operation, and the value
of any of its successors. Hence, the error e(b) for each belief
state b ∈ B may decrease or increase due to the new vector.

Second, the set of predecessors of a belief state cannot be
efficiently computed, and its size is potentially unbounded.
Consider for example a case where in some state s the agent
receives a unique observation o, such that O(∗, s, o) = 1
and O(∗, s′, o) = 0 for all s′ 6= s. We denote by bs the
deterministic belief state of s s.t. bs(s) = 1.0. Every belief
state b such that pr(b, ∗, o) > 0, is therefore a predecessor of

bs. In the worst case the set of predecessors of a belief point
is the entire belief simplex.

Moreover, even supposing that some similarity metric for
finding the neighborhood of a belief point were defined, and
that computation of the predecessor set were only for the finite
set of belief points we use, directly applying the approach
would still not be worthwhile. In practice, algorithms such
as Perseus, frequently converge to an optimal solution while
computing fewer backups than the number of belief points in
the finite set. Pre-computations such as similarity matrices will
take more time than the original algorithm they are designed
to improve in the first place.

As we cannot find the set of belief states affected by the
backup operation directly, we recompute the Bellman error
for all belief states after every backup from scratch. When
the number of belief points we use is relatively small this
computation can be done without seriously damaging the
performance. As the size of the problem — states, actions,
observations and belief set size — increases, we can no longer
afford the overhead of recomputing the Bellman error for all
belief states.

We therefore take a stochastic approach, sampling a subset
of the belief points set and computing the Bellman error
only for this sampled subset. If the sampled subset does not
contain a point with positive error, we sample again from the
remaining subset (without repetitions) until a belief point with
positive error is found. If there is no belief point with positive
Bellman error then we assume that the value function has
reached a fixed point and cannot be farther improved for the
finite set of belief points.

While the upper bound complexity of both the backup oper-
ation and the error computation is identical, O(|A||Ω||S|2), in
practice, computing belief updates (Equation 1) is much faster
than the computation of gα

a,o (Equation 7). This is because
belief states usually have many zero entries compared to α-
vectors. Using data structures that support maintaining and
iterating only over non-zero entries, all operations above can
be implemented efficiently.

A new α-vector may change the Bellman error of many be-
lief states in B, by changing both the value of any b ∈ B, and
by changing the values of the successors of b. Nevertheless,
when introducing a new α-vector, we do not need to run the
entire computation V (b) = maxα∈V α · b. Given that for each
cached belief state we also cache its latest optimal value, we
can now check only whether the newest α-vector has improved
the cached value.

When we update the Bellman error only over a sample of the
belief states in B, the above approach needs to be generalized.
We record for each α-vector in V the time it was inserted into
V . Each belief state b is caching, aside for its current value
V (b), the timestamp T (b) at which this value was last updated.
When updating the value of a belief state b, only vectors that
were inserted later than T (b) are considered. We hence never
compute the value b · α for any b, α pair more than once.

As we use a finite, predefined set of belief states B,
we can use caching in order to increase the computation
efficiency at the cost of additional memory requirement. For
each belief state in B we maintain a list of successors. As

7

a result, updating the Bellman error of a belief state b takes
O(|A||O||Vnew) where Vnew is the number of α-vectors that
were added after the last update of the Bellman error for b.

In the context of MDPs, the cost of maintaining a priority
queue may induce an additional cost that annuls the benefits
of the good order of backups (?). In our case we do not use a
priority queue anyhow, since the priorities of all beliefs should
be updated after each backup. Any suggested way to update
the priorities of only a constant number of belief points, should
also discuss the priority queue maintenance.

C. Prioritizing Existing Algorithms
We first show how prioritization can be used to enhance

the performance of current algorithms. We suggest to replace
the backup selection mechanism of existing algorithms with a
prioritization scheme.

Prioritizing Perseus is straightforward. The “choose” step
(Algorithm 4, line 4) is implemented in Perseus as a uniform
selection among any of the current belief points inside B̃.
Prioritized Perseus uses instead the Bellman error computation
to choose a belief point whose value can be improved the most.
As a result, backups are executed over belief states in order
of reduced priorities. These priorities are updated after each
backup, but belief points which were already improved in the
current iteration are no longer considered.

PBVI improves its value function (Algorithm 1, line 3) by
arbitrarily passing over all belief points and performing backup
executions. We replace this inefficient computation of the ’Im-
prove’ operation with our PVI algorithm (see Section IV-D).
As the number of points used by PBVI is relatively small, we
did not use sampling when computing the Bellman error.

D. Prioritized Value Iteration
Finally, we present an independent algorithm — Prioritized

Value Iteration (PVI). Like Perseus, PVI computes a value
function over a fixed set of belief points collected before the
algorithm is executed. However, Perseus operates in iterations
over the set of belief points, attempting to improve all belief
points between considering the same belief state twice. PVI
considers at each step every possible belief state for improve-
ment. It is likely, therefore, that some belief states will be
backed up many times, while other belief states will never be
used.

Algorithm 9 presents our PVI algorithm. The algorithm
described here is the clean version of PVI, but in practice we
implement the argmax operation (line 2) using our sampling
technique (Algorithm 10). If the algorithm is unable to find a
belief state b with non-zero error (Choose returns nil), then
we assume that the value function over B has converged.

If the prioritization metric is good, PVI executes a shorter
sequence of backup operations. Indeed, experiments show that
it uses significantly fewer backup operations than Perseus
using our locally greedy Bellman error prioritization metric.

V. GATHERING BELIEF POINTS THROUGH HEURISTIC
SEARCH

PBVI and Perseus use two opposing methods for gathering
the belief point sets B; PBVI attempts to cover the reach-

Algorithm 9 Prioritized Value Iteration
Input: B — a set of belief points

1: while V has not converged do
2: b∗ ← argmaxb∈B e(b)
3: α ← backup(b∗)
4: add(V, α)

Algorithm 10 Choose
Input: B — a set of belief points, k — sample size

1: B′ ← B
2: bmax ← nil
3: while B′ not empty do
4: for i = 0 to k do
5: Select b with uniform distribution from B′ and re-

move it
6: if e(b) > e(bmax) then
7: bmax ← b
8: if e(bmax) > 0 then
9: return bmax

10: return nil

able belief space in a uniform density by always selecting
immediate successors that are as far as possible from the
B. Perseus, on the other hand, simply explores the belief
space by performing random trajectories. While the points
gathered by PBVI generate a good B set (as shown later in
our experiments), the time it takes to compute these points
makes other algorithms more attractive.

The Perseus belief set is gathered very rapidly, and Perseus
was shown to work well over small domains. In such small and
medium sized domains it is possible to reach all interesting
belief points through a random walk. In larger or more
complex domains, however, it is unlikely that a random walk
would visit every location where a reward can be obtained.

In the case where a sequence of actions is required to obtain
a reward, while every deviation from the sequence causes the
system to reset to its original state, it is unlikely that a random
walk will be able to find the sequence. For example, if a robot
is required to carry an object to some location, and place it
there, dropping the object on the way might always force the
robot to start over. It is also unlikely that the robot will know
that it should put down the object it is carrying upon arriving
at the destination.

We suggest to replace the random walk of Perseus and
PVI with a heuristic search, based on the QMDP policy. The
QMDP policy (Cassandra et al., 1994) uses the optimal Q-
function Q∗ of the underlying MDP to define a Q-function
over the POMDP belief space:

QMDP (b, a) =
∑

s

b(s)Q∗(s, a) (12)

The POMDP policy is then defined by:

πQMDP
(b) = argmaxa QMDP (b, a) (13)

A well known problem with MDP based heuristics for
POMDP models is that MDP policies do not execute actions

8

that reduce the uncertainty of the belief. We overcome this
difficulty by using an ε-greedy exploration heuristic — with
probability 1− ε choose the best action and with probability ε
choose a randm action. The heuristic search allows us to use
smaller, more focused sets of belief points, and thus, to reduce
the runtime of our algorithms.

In our implementation we limit the heuristic selection to the
set of actions, selecting observations from the O distribution.
This setting is more appropriate for online algorithms where
the agent actions are controlled, yet the observations are
generated by the environment. However, in an offline setting
it is possible to select the next observation through some
heuristic too, as is done by HSVI. We leave discussion of
good strategies for selecting observations for future research.

VI. EMPIRICAL EVALUATIONS

A. Heuristic Search

We would first like to evaluate the benefits of our heuristic
search method for gathering the belief set B over the random
walk used by Perseus.

The float-reset problem can be used to model a scenario
where a random walk has difficulties in achieving good
performance. Consider n states connected in a chain. The
system has 2 actions: float, which moves the agent with equal
probability either up or down the chain, and reset, which sends
the agent to the initial state. The agent receives a reward
for executing reset at the last state in the chain. In the last
state in the chain the agent receives a special observation. A
good policy would be to float until the special observation is
perceived and then activate the reset action. A random walk
would take a very long time until such a specific sequence of
actions is executed.

Figure 1 shows the number of steps a random walk requires
to find the reward of the float-reset problem. A heuristic search
found very rapidly the reward; with n = 10, all 10 runs of
length 100 found the reward, with n = 5, all 10 runs of length
20 found the reward.

In other domains the agent may receive multiple rewards in
different places. A random walk would need to visit all these
places in order to allow Perseus to include these rewards in the
POMDP value function. We experimented with two instances
of the RockSample (Smith & Simmons, 2005) domain, both
with an 8× 8 board, one with 4 rocks and one with 6 rocks.
Sampling every rock results in a different reward. The belief
set gathering process must pass through the locations of the
rocks on the board. Figure 2 shows how the size of the belief
set influences the number of rocks visited during the gathering
process and hence, the ADR.

B. Reducing Backup Sequences

In addition to showing that our methods achieve significant
runtime improvement (see the coming sections), we would
like to begin addressing the meta-reasoning issue of optimal
backup sequences. In this way, one could examine the potential
gain that could be achieved by methods of prioritizing backup
operations, regardless of whether it is achieved in practice.
This would also give us another yardstick for evaluating the

s0 s1 s2 s3 s4

float

reset

(a) The Float reset problem with n = 5 states.

0

1

2

3

4

5

6

7

8

9

10

10 50 100 200 500 1000

Steps per walk

Su
cc

es
sf

ul
 w

al
ks

(b) Results for float reset with 5 states.

0

1

2

3

4

5

6

7

8

9

10

500 1000 2000 5000 10000 20000

Steps per walk

Su
cc

es
sf

ul
 w

al
ks

(c) Results for float reset with 10 states.

Fig. 1. Number of times, out of 10 runs, a random walk succeeds to find
the goal within the specified number of steps over the float-rest problem with
n = 5 (a) and n = 10 (b).

quality of our prioritization heuristics. Examining prioritiza-
tion heuristics in this light may lead to ideas of how to improve
them in the future.

However, solving this meta-reasoning problem is very hard.
Even knowing the solution to a POMDP, and even in retro-
spect, after observing algorithm executions, it is very hard
to come up with an optimal, or even provably near-optimal
backup sequences. Yet, the retrospective view allows us at
least to look at sequences of backups for a POMDP instance
(and for a specific choice of belief points), and assess which
of the backup operations seem to have moved the algorithm
to convergence faster. We could in principle attempt to re-run
the algorithm for every possible sub-sequence, and examine
the quality of each such sub-sequence w.r.t. length of the sub-
sequence and resulting policy ADR, and treat subsequences
that are optimal in this respect as approximately optimal. (Note
that we could either weight sequence length in with ADR, or
alternately generate an optimal performance profile, i.e. what is
the best ADR reached for subsequences of each given length).

9

4

6

8

10

12

100 300 500 700 900

|B|

A
D

R

Random walk QMDP

(a) Results for RockSample 8× 8 and 4 rocks.

4

6

8

10

12

14

16

100 300 500 700 900

|B|

A
D

R

Random walk QMDP

(b) Results for RockSample 8× 8 and 6 rocks.

Fig. 2. ADR computed by Perseus as a function of the belief set size over
the RockSample problem with an 8× 8 board and 4 rocks (a) or 6 rocks (b).
Belief sets are computed by a random walk or the QMDP heuristic.

Unfortunately, since trying all subsequences, even off-line,
is prohibitively expensive (we also need to try all possible
permutations!), in practice we use the following scheme:
compute a backup sequence by a point-based algorithm over
a fixed set of belief points. Each backup changes the value of
the belief point it was executed upon. We can run the sequence
again, filtering out backups that contributed a value change of
no more than ε, but otherwise maintaining the original order
of backups, and check the resulting ADR. The new sequence
may, once again, contain backups that improved the value by
less than ε. We hence repeat this process until no more backups
can be removed, noting the number of remaining backups and
the ADR after each iteration. Once all backups improve the
value of the updated belief point by at least ε we double ε and
continue the experiment until all backups have been removed.

We evaluate the possible reduction in the sequence of
backups that three methods — PBVI, Perseus, and FSVI —
execute over a finite set B. We therefore gathered a belief set
B of size 100 using our heuristic search and executed for each
method 1000 backups. PBVI backups were executed in the
order the belief states were discovered (fixed, arbitrary order),
Perseus backups were executed using the standard Perseus
procedure. To simulate FSVI we chose from B a belief state
where a heuristic search traversal terminated, and moved back
towards its successors until the initial belief state was reached.
While our heuristic traversal is not identical to the traversal

FSVI uses, it still allows us to estimate the reversed order of
backups.

We used 5 different belief point sets and for each of these
sets we ran 5 value function computation trials of FSVI
and Perseus. PBVI that executes a non random sequence of
backups was executed only once. We then run the backup
pruning procedure explained above and averaged over the
different trials.

Fig. 3. Pruning backups with local value improvement of less than ε on the
Hallway domain.

As Figure 3 clearly show for the Hallway problem, the local
improvement of a belief state update is a good estimator as
to its usability. When pruning backups that added no more
than 0.001, there is no noticeable decrease in value function
update in any of the algorithms we have tested. In fact, in some
cases removing such backups even improves the value function

10

quality. As we start removing backups that contributed higher
value improvements, the value function slowly begins to
degrade. Our experiments provide farther evidence that a value
function of equal quality can be computed using much fewer
backups than the algorithms use in practice.

Another interesting aspect that is demonstrated in Figure 3
is that all the algorithms present similar sensitivity to the
Bellman error. Even though the algorithms produce very
different sequences of backups, in all cases removing backups
with small Bellman error has little effect over the quality of the
value function. This farther supports our claim that there is a
high correlation between the Bellman error and the importance
of a backup. While this might seem obvious at first, this is
not so. A backup produces an α-vector that may define a new
value for many belief points. It is theoretically possible that a
backup may only slightly improve the value for the updated
belief point, but will contribute much to many other belief
points. However, as our results seem to indicate, in practice
this is not the case.

Note that this type of empirical examination, which is very
informative, cannot, obviously, be done during the run of
the algorithm. However, it does seem that the direction we
took, avoiding backups that have a low local impact is useful,
and that farther effort should be made to discover ways to
rapidly provide estimation as to the effect of a value update
over a specific belief point. Although the above retrospective,
“clairvoyant” backup-sequence optimization scheme is not a
reasonable runtime meta-reasoning scheme, we can still check
how our algorithms perform against this idealized yardstick.

We have done so only for the Hallway domain, due to the
excessive runtime involved for each data point, with results
shown in Figure 4. For this small problem, it seems that our
PVI algorithm selected a backup sequence that was very near
to the optimal, except when only allowed fewer than 25 backup
operations. However, despite the fact that our algorithms did
better than competing algorithms (see below), the backup
sequences used were not so close to optimal for the more
complicated problem instances.

�������������
���������� � �� ��� ��� ��� �����	
 ��	
 ����� �	
 �������

Fig. 4. Convergence of various algorithms, compared to the omnipotent
clairvoyant backup pruning method

C. Improved Evaluation Metrics
Previous researchers (Brafman, 1997; Pineau et al., 2003;

Smith & Simmons, 2005; Spaan & Vlassis, 2005; Paquet et al.,

2005) limit their reported results to execution time, average
discounted reward and in some cases the number of vectors
in the resulting value function.

Value function evaluation — Average discounted reward
(ADR) is computed by simulating the agent interaction with
the environment over a number of steps (called a trial) and
averaging over a number of different trials:

∑#trials
i=0

∑#steps
j=0 γjrj

#trials
(14)

ADR is widely agreed as a good evaluation of the quality of
a value function.

ADR is however very noisy when the number of trials or
the number of steps is too small. For example, on the Hallway
example, with 250 trials per ADR, we observed a noise of
about 0.5 (about 10% of the optimal performance) while with
10, 000 trial the noise dropped to around 0.0015.

In our experiments we interrupted the executed algorithms
occasionally to check the ADR of the current value function.
We have observed that in some cases, an algorithm managed
to produce a value function providing surprisingly good ADR,
but additional backups caused a degradation in ADR. We treat
such cases as a noise in the convergence of the value function.
To decrease this noise we used a filter.

The actual filter used in order to decide on the convergence
threshold for results shown in the table was the first order filter
with weight 0.5 —

FADRi = 0.5×ADR + 0.5× FADRi−1 (15)

where FADR0 = 0. This filter does not provide any guar-
antee for the accuracy of the result, and as such it is not
optimal. Nevertheless it is a (minor) improvement over related
research that used only a single noisy ADR measurement. The
algorithm was stopped once the filtered ADR has exceeded a
predefined target.

Execution time — It was observed before that execution
time is a poor estimate of the performance of the algorithm.
Execution time is subject to many parameters irrelevant to the
algorithm itself, such as the machine and platform used to
execute it, the programming language, the level of implemen-
tation and so forth. It is also important to report CPU time
rather than wall-clock time.

As all algorithms discussed in this paper compute a value
function using identical operations such as backups, τ function
computations, and inner products (α·b), it seems that recording
the number of executions of those basic building blocks of the
algorithm is more informative.

Backup operations themselves do not make a good esti-
mator because they depend on the number of vectors in the
current value function. A better estimation is hence the gα

a,o

computation (Equation 7), which depends only on the system
dynamics.

Memory — While the size of the computed value function
is a good estimate for the execution time of the resulting
policy. It can also be used to estimate the memory capacity
required for the computation of the algorithm.

A second indication for the amount of required memory
is the number of maintained belief points throughout the

11

execution of the algorithm. As some operations (e.g. the
Bellman error computation) can be highly improved when
caching more belief states, we also report the number of belief
states an algorithm caches.

D. Experimental Setup

In order to test our prioritized approach, we tested all algo-
rithms on the full set of standard benchmarks from the point-
based literature: Hallway, Hallway2 (Littman et al., 1995),
TagAvoid (Pineau et al., 2003) and RockSample (Smith &
Simmons, 2004). Table I contains the problem measurements
for the benchmarks including the size of the state space, action
space and observation space, the number of belief points in
the set |B| used for Perseus, Prioritized Perseus and PVI, and
the error in measuring the ADR over 10, 000 trials for each
problem.

Problem |S| |A| |O| |B| ADR Error
Hallway 61 5 21 250 ±0.0015
Hallway2 93 5 17 300 ±0.004
Tag Avoid 870 5 30 350 ±0.045
Rock Sample 4,4 257 9 2 500 ±0.075
Rock Sample 5,5 801 10 2 500 ±0.3
Rock Sample 5,7 3201 12 2 500 ±0.25

TABLE I
BENCHMARK PROBLEM PARAMETERS

We implemented in Java a standard framework that incor-
porated all the basic operators used by all algorithms such
as vector inner products, backup operations, τ function and
so forth. All reported results were gathered by executing the
algorithms on identical machines —- x86 64-bit machines,
dual-proc, processor speed 2.6Ghz, 4Gb memory, 2Mb cache,
running Linux and JRE 1.5.

As previous researchers have already shown the maximal
ADR achievable by their methods, we focus our attention on
convergence speed of the value function to the reported ADR.
We executed all algorithms, interrupting them from time to
time in order to compute the efficiency of the current value
function using ADR over 5000 trials. Once the filtered ADR
has reached the maximal value reported in past publications
execution was stopped. The reported ADR was then measured
over additional 10, 000 trials (error in measurement is reported
in Table I).

For algorithms that require a given set of belief states B
— Perseus, Prioritized Perseus and PVI — we pre-computed
5 different sets of belief points for each problem. Each belief
points set was computed by simulating an interaction with
the system following the QMDP policy with an ε-greedy
exploration factor (ε = 0.1). For each such belief points set we
ran 5 different executions with different random seeds resulting
in 25 different runs for each stochastic method. The number
of belief points used for each problem is specified in Table I.
Using the QMDP heuristic for gathering belief points allowed
us to use a considerably smaller belief set than the original
Perseus algorithm (Spaan & Vlassis, 2005).

Algorithms that are deterministic by nature — PBVI, Pri-
oritized PBVI and HSVI — were executed once per problem.

10

11

12

13

14

15

16

17

18

19

20

10 110 210 310 410 510 610

PPerseus PPBVI PVI Perseus HSVI

(a) Rock Sample 5,5

-20

-18

-16

-14

-12

-10

-8

-6

0 50 100 150 200 250 300 350 400 450 500

PPerseus PPBVI PVI Perseus HSVI PBVI

(b) Tag Avoid

Fig. 5. Convergence of various algorithms on the Rock Sample 5,5 problem
(a) and the Tag Avoid problem (b). The X axis shows the number of backups
while the Y axis shows the ADR.

E. Results

Table II presents our experimental results. For each problem
and method we report:

1) Resulting ADR
2) Size of the final value function (|V |)
3) CPU time until convergence
4) The number of backups
5) The number of gα

a,o operations
6) The number of computed belief states
7) the number of τ function computations
8) The number of inner product operations.

The reported numbers do not include the repeated expensive
computation of the ADR, or the initialization time (identical
for all algorithms). Results for algorithms that require a pre-
computed belief space do not include the effort needed for
this pre-computation. We note, however, that it took only a
few seconds (less than 3) to compute the belief subset B over
all problems.

To better illustrate the convergence of the algorithms we
have also plotted the convergence of the ADR vs. the number

12

Method ADR |V | Time (secs) #Backups #gα
a,o×106 #belief states×104 #τ×103 #α · b×106

Hallway
PVI 0.517±0.0027 144±32 75±32 504±107 3.87±1.75 1.99±0.04 4.8±9.8 13.11±5.19
PPerseus 0.517±0.0025 173±43 126±47 607±166 5.52±2.95 1.99±0.04 4.8±9.8 26.87±9.2
Perseus 0.517±0.0024 466±164 125±110 1456±388 31.56±27.03 0.03±0 0±0 32.07±27.16
PPBVI 0.519 235 95 725 9.09 1.49 13.45 25.72
PBVI 0.517 253 118 3959 31.49 1.49 15.79 31.69
HSVI 0.516 182 314 634 5.85 3.4 34.52 6.67
Hallway2
PVI 0.344±0.0037 234±32 75±20 262±43 2.59±0.84 2.49±0.11 5.47±9.99 6.96±2.01
Pperseus 0.346±0.0036 273±116 219±155 343±173 4.76±5.48 2.49±0.11 5.25±9.99 18.97±12.79
Perseus 0.344±0.0034 578±95 134±48 703±120 17.03±6.08 0.03±0 0±0 17.31±6.13
PPBVI 0.347 109 59 137 0.61 2.03 10.77 4.22
PBVI 0.345 128 76 1279 7.96 1.52 5.59 8.02
HSVI 0.341 172 99 217 1.56 2.11 11.07 1.81
Tag Avoid
PVI -6.467±0.19 204±38 40±12 211±38 0.42±0.19 0.16±0 0.5±1.02 0.95±0.25
PPerseus -6.387±0.18 260±43 105±26 265±44 5.27±1.8 1.73±0.02 5.68±11.59 12.82±3.01
Perseus -6.525±0.20 365±69 212±174 11242±10433 28.69±32.09 0.04±0 0±0 30.78±33.96
PPBVI -6.271 167 50 168 2.09 0.41 32.11 2.45
PBVI -6.6 179 1075 21708 407.04 0.41 56.53 409.5
HSVI -6.418 100 52 304 0.5 0.29 1.74 0.53
Rock Sample 4,4
PVI 17.725±0.32 231±41 4±2 232±42 0.36±0.14 0.41±0.01 1.17±2.38 1.74±0.42
PPerseus 17.574±0.35 229±26 5±2 228±27 0.34±0.08 0.41±0.01 1.17±2.38 1.91±0.29
Perseus 16.843±0.18 193±24 158±33 24772±5133 59.96±13.06 0.05±0 0±0 66.52±14.25
PPBVI 18.036 256 229 265 0.62 2.43 55.31 9.46
PBVI 18.036 179 442 52190 113.16 1.24 35.47 119.8
HSVI 18.036 123 4 207 1.08 0.1 1.17 1.09
Rock Sample 5,5
PVI 19.238±0.07 357±56 21±7 362±63 0.99±0.36 0.46±0.01 1.37±2.79 3.39±0.87
PPerseus 19.151±0.33 340±53 20±6 339±53 0.88±0.28 0.46±0.01 1.37±2.79 3.5±0.73
Perseus 19.08±0.36 413±56 228±252 10333±9777 60.34±66.62 0.05±0 0±0 63.17±69.21
PPBVI* 17.97 694 233 710 4.95 0.95 17.97 18.12
PBVI* 17.985 353 427 20616 72.01 0.49 11.28 75.64
HSVI 18.74 348 85 2309 10.39 0.26 2.34 10.5
Rock Sample 5,7
PVI 22.945±0.41 358±88 89±34 359±89 1.28±0.64 0.29±0.01 0.73±1.49 2.98±1.16
Pperseus 22.937±0.70 408±77 118±37 407±77 1.61±0.59 0.29±0.01 0.73±1.49 4.09±0.98
Perseus 23.014±0.77 462±70 116±31 1002±195 5.18±1.9 0.02±0 0±0 5.36±1.93
PPBVI* 21.758 255 117 254 0.61 0.23 2.71 1.59
PBVI* 22.038 99 167 2620 3.05 0.15 1.66 3.23
HSVI 23.245 207 156 314 0.83 0.71 4.2 0.88

TABLE II
PERFORMANCE MEASUREMENTS. THE ALGORITHMS THAT EXECUTED FEWER BACKUPS AND CONVERGED FASTER ARE BOLDED .

of backups an algorithm performs in Figure 53. The graphs
contain data collected over separate executions with fewer
trials (500 instead of 10000) so Table II has more accurate
results.

HSVI is the only method that also maintains an upper bound
over the value function (V̄). Table III contains additional
measurements for the computation of the upper bound: the
number of points in V̄ , the number of projections of other
points onto the upper bound, and the number of upper bound
updates (HV (b) — Equation 9).

For the stochastic methods we show standard deviations
over the 25 runs for all categories.

PBVI and PPBVI failed in two cases (Rock Sample 5,5 and
Rock Sample 5,7) to improve the reported ADR even when
allowed more time to converge. These rows are marked with
an asterix.

As our PVI must update the Bellman errors for the belief
states after each new α vector is computed, it is highly affected

3In Figure 5a, PBVI was removed as its ADR was below the minimal value
displayed in the graph.

Upper
Problem |V̄ | bound #HV(b) |B|

projections
Hallway 423 106132 1268 523
Hallway2 232 37200 434 171
Tag Avoid 1101 29316 1635 248
Rock Sample 4,4 344 6065 414 176
Rock Sample 5,5 801 101093 6385 1883
Rock Sample 5,7 3426 9532 628 268

TABLE III
UPPER BOUND MEASUREMENTS FOR HSVI

by the size of the belief set B. Table IV shows the effect of
the size of the B over the time it takes for the algorithm to
run and over the ADR in the Hallway and Hallway2 domains.
We ran PVI for 200 backups, stopping after each 50 backups
to evaluate the execution time and ADR4. We report results
both without sampling and with sampling of 25 belief points

4Time was measured on a different machine than the results in Table II.
ADR was computed over 1000 trials.

13

|B| = 25 |B| = 50 |B| = 100 |B| = 250 |B| = 500
Backups ADR Time ADR Time ADR Time ADR Time ADR Time
Hallway - no sampling
50 0.491 3.6 0.498 6.8 0.497 18.8 0.498 78.6 0.498 78.6
100 0.482 7.6 0.502 13 0.509 35 0.51 144 0.51 144
150 0.49 11.8 0.508 20.4 0.504 53 0.517 212.4 0.517 212.4
200 0.491 16 0.511 27.4 0.509 74.8 0.514 283.6 0.514 283.6
Hallway - sampling 25 points
50 × × 0.49 4.6 0.482 6.2 0.497 9.6 0.505 15.8
100 × × 0.505 8.6 0.505 11.6 0.508 18.2 0.505 29
150 × × 0.508 13.6 0.502 18.2 0.516 27.2 0.514 42
200 × × 0.509 18.2 0.515 24.4 0.51 36.4 0.515 55.4
Hallway2 - no sampling
50 0.286 5.6 0.286 10.8 0.311 23.8 0.314 63 0.308 127.6
100 0.3 12.6 0.299 23.6 0.316 49.8 0.323 140.2 0.318 274.2
150 0.309 21.4 0.307 38.2 0.326 77.4 0.326 224.6 0.331 447.4
200 0.309 31 0.298 54.8 0.332 108.4 0.33 320.6 0.32 638
Hallway2 - sampling 25 points
50 × × 0.294 7.4 0.308 10.4 0.304 18.2 0.314 27.4
100 × × 0.3 15.4 0.325 21 0.319 37.2 0.319 56.4
150 × × 0.311 24.6 0.324 33 0.321 58.4 0.323 88.6
250 × × 0.298 35.2 0.323 45.8 0.327 80 0.321 121.2

TABLE IV
INFLUENCE OF THE BELIEF SET SIZE OVER THE EXECUTION TIME (SECONDS) OF PVI

at each step.

F. Discussion

Our results clearly show how selecting the order by which
backups are performed over a predefined set of points im-
proves the convergence speed. When comparing PBVI to
Prioritized PBVI and Perseus to Prioritized Perseus, we see
that our heuristic selection of backups leads to considerable
improvement in runtime. This is farther demonstrated by the
new PVI algorithm. In all these cases, there is an order of
magnitude reduction in the number of backup operations when
the next backup to perform is chosen in an informed manner.
However, we also see that there is a penalty we pay for
computing the Bellman error, so that the saving in backups
does not fully manifest in execution time. Nevertheless, this
investment is well worth it, as the overall performance im-
provement is clear. Although the ADR to which the different
algorithms converge is not identical, the differences are minor,
never exceeding 2%, making their ultimate ADR equivalent,
for all practical purposes.

Examining Table II, we see that our PVI algorithm results in
convergence time that is at least comparable, if not better, than
existing point based methods (PBVI, Perseus and HSVI). The
efficiency of its backup choices shows up nicely in Figure 5,
where we see the steep improvement curve of PVI.

In many case, HSVI also executes a smaller number of back-
ups than other algorithms. Indeed, one may consider HSVI’s
selection of belief space trajectories as a method for backup
sequence computation and hence, as a prioritization metric.
Nevertheless, in most cases our form of backup selection
exhibits superior runtime to HSVI, even when the number
of backups HSVI uses is smaller. This is due to the costly
maintenance of the upper bound over the value function.

The good performance of HSVI is due to two factors —
the heuristic selection of belief space trajectories, and the
ordering of backups over the belief states in the trajectory. To

test this claim, we have modified HSVI, executing backups
before computing the next belief point in the trajectory. As
expected, this caused HSVI to slow down considerably and
made it unsuitable to solving even medium sized problems.
HSVI also suffers from the same problem as our PVI — the
computation time of the order of backups is time consuming.
Indeed, FSVI (Shani et al., 2007) is a trial based algorithm
similar to HSVI. FSVI uses more backups due to a less focused
heuristic search, yet requires almost no time to compute this
heuristic. As a result, in most cases FSVI computes policies
much faster than HSVI. As FSVI uses the underlying MDP
to guide its exploration, it is not guaranteed to find a good
solution. Specifically, in tasks that require multiple actions to
reduce the partial observability, FSVI cannot compute good
policies.

A new approach within the PVI framework suggested in
this paper was recently introduced as the SCVI algorithm
(Virin et al., 2007). SCVI uses a less focused heuristic than
the Bellman error, but allows the rapid computation of the
order of backups. This algorithm also uses a fixed set of belief
points B. SCVI clusters B using optimal MDP state values
and iterates over clusters by decreasing values. As such, SCVI
captures the successor-predecessor relationship of belief points
without explicitly computing it for each pair of beliefs.

SCVI executes in most cases more backups than PVI,
but computes good value functions much faster. This farther
supports the main claim of this paper, that the order of backups
is crucial to the speed of convergence. Other such heuristics
probably exist that lie, as SCVI does, in the range between
the arbitrary backup sequence of PBVI which requires no
computations but is extremely inefficient, and the Bellman
error proposed by PVI that provides short backup sequences
but demands extensive computations.

Our heuristic belief states gathering process is suitable for
algorithms, such as Perseus and PVI, that first compute a belief
subset B and then compute a value function over B. PBVI,

14

HSVI and FSVI take a different approach. These algorithms
interleave belief selection and value function updates. Such
an iterative process can allow the algorithm to select points
based on the current value function, an approach that is indeed
implemented by HSVI. Interleaving belief space sampling and
value function updates can lead to superior results to the fixed
belief set we use in this paper, but we leave such discussion
to future research.

VII. CONCLUSIONS

This paper demonstrates how point-based POMDP solvers
such as PBVI and Perseus can greatly benefit from intelligent
selection of the order of backup operations, and that such
selection can be performed efficiently, so that the overall
performance of the algorithms improves. It also presents an
independent algorithm — Prioritized Value Iteration (PVI)
— that outperforms all previous point-based algorithms on a
large set of benchmarks converging faster toward comparable
values of ADR. The extensive experimental results reported
here provide a clearer picture of different aspects of the
performance of PVI and current point-based algorithms on
popular domains from the literature.

All the prioritized algorithms described in this paper use the
same heuristic measure, the Bellman error, to decide on the
sequence of backups. The method for selecting the order of
backups using the Bellman error is pointwise greedy. While
this choice may be optimal in the context of MDPs, in the
context of POMDPs it does not take into account the possible
improvement of a backup over other belief points as well.
It is quite likely that executing a backup that improves a
region of the belief space rather than a single belief point
may have better influence over the convergence of the value
function. Thus, future work should examine other possible
heuristic functions that take this into account. The Bellman
error is also expensive to compute, forcing us to estimate only
a sampled subset of the belief points. This implies that cheaper
alternatives that lead to similar quality of backup selection may
lead to algorithms that are an order of magnitude faster than
current algorithms.

We have also presented a new method for belief state
selection for algorithms such as Perseus and PVI that first
select a set of belief points and then compute a value function
only for this fixed set. We show our QMDP based heuristic to
provide belief points that are smaller and more focused and
thus, to increase the execution time of the algorithms.

REFERENCES

Bonet, B., & Gefner, H. (2003). Labeled RTDP: Improving
the convergence of real-time dynamic programming. ICAPS
(pp. 12–31).

Brafman, R. I. (1997). A heuristic variable grid solution
method for pomdps. AAAI’97.

Cassandra, A. R., Kaelbling, L. P., & Littman, M. L. (1994).
Acting optimally in partially observable stochastic domains.
AAAI’94 (pp. 1023–1028).

Cassandra, A. R., Littman, M. L., & Zhang, N. (1997). Incre-
mental pruning: A simple, fast, exact method for partially
observable markov decision processes. UAI’97 (pp. 54–61).

Littman, M. L., Cassandra, A. R., & Kaelbling, L. P. (1995).
Learning policies for partially observable environments:
Scaling up. ICML’95.

Lovejoy, W. S. (1991). Computationally feasible bounds for
partially observable markov decison processes. Operations
Research, 39, 175–192.

Moore, A. W., & Atkeson, C. G. (1993). Prioritized sweeping:
Reinforcement learning with less data and less time. Journal
of Machine Learning, 13, 103–130.

Paquet, S., Tobin, L., & Chaib-draa, B. (2005). Real-time
decision making for large pomdps. AI’2005.

Pineau, J., Gordon, G., & Thrun, S. (2003). Point-based value
iteration: An anytime algorithm for POMDPs. IJCAI.

Poupart, P., & Boutilier, C. (2002). Value-directed compres-
sion of POMDPs. NIPS 15. MIT Press.

Poupart, P., & Boutilier, C. (2003). Bounded finite state
controllers. NIPS 16.

Poupart, P., & Boutilier, C. (2004). VDCBPI: an approximate
scalable algorithm for large POMDPs. NIPS 17.

Ross, S., & Chaib-draa, B. (2007). Aems : An anytime
online search algorithm for approximate policy refinement
in large pomdps. Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI’07).

Shani, G., Brafman, R., & Shimony, S. (2006). Prioritizing
point-based pomdp solvers. ECML.

Shani, G., Brafman, R., & Shimony, S. (2007). Forward search
value iteration for pomdps. IJCAI-07.

Smallwood, R., & Sondik, E. (1973). The optimal control of
partially observable processes over a finite horizon. OR, 21.

Smith, T., & Simmons, R. (2004). Heuristic search value
iteration for pomdps. UAI 2004.

Smith, T., & Simmons, R. (2005). Point-based pomdp algo-
rithms: Improved analysis and implementation. UAI 2005.

Spaan, M. T. J., & Vlassis, N. (2005). Perseus: Randomized
point-based value iteration for POMDPs. JAIR, 24, 195–
220.

Virin, Y., Shani, G., Shimony, S., & Brafman, R. (2007).
Scaling up: Solving pomdps through value based clustering.
AAAI.

Wingate, D., & Seppi, K. D. (2005). Prioritization methods
for accelerating mdp solvers. JMLR, 6, 851–881.

