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Abstract Recommender systems are now popular both commercially and in the
research community, where many approaches have been suggested for providing
recommendations. In many cases a system designer that wishes to employ a rec-
ommendation system must choose between a set of candidate approaches. A first
step towards selecting an appropriate algorithm is to decide which properties of the
application to focus upon when making this choice. Indeed, recommendation sys-
tems have a variety of properties that may affect user experience, such as accuracy,
robustness, scalability, and so forth. In this paper we discuss how to compare recom-
menders based on a set of properties that are relevant for the application. We focus
on comparative studies, where a few algorithms are compared using some evaluation
metric, rather than absolute benchmarking of algorithms. We describe experimental
settings appropriate for making choices between algorithms. We review three types
of experiments, starting with an offline setting, where recommendation approaches
are compared without user interaction, then reviewing user studies, where a small
group of subjects experiment with the system and report on the experience, and fi-
nally describe large scale online experiments, where real user populations interact
with the system. In each of these cases we describe types of questions that can be
answered, and suggest protocols for experimentation. We also discuss how to draw
trustworthy conclusions from the conducted experiments. We then review a large
set of properties, and explain how to evaluate systems given relevant properties. We
also survey a large set of evaluation metrics in the context of the property that they
evaluate.
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1 Introduction

Recommender systems can now be found in many modern applications that expose
the user to a huge collections of items. Such systems typically provide the user with
a list of recommended items they might prefer, or predict how much they might
prefer each item. These systems help users to decide on appropriate items, and ease
the task of finding preferred items in the collection.

For example, the DVD rental provider Netflix1 displays predicted ratings for ev-
ery displayed movie in order to help the user decide which movie to rent. The online
book retailer Amazon2 provides average user ratings for displayed books, and a list
of other books that are bought by users who buy a specific book. Microsoft provides
many free downloads for users, such as bug fixes, products and so forth. When a
user downloads some software, the system presents a list of additional items that are
downloaded together. All these systems are typically categorized as recommender
systems, even though they provide diverse services.

In the past decade, there has been a vast amount of research in the field of rec-
ommender systems, mostly focusing on designing new algorithms for recommenda-
tions. An application designer who wishes to add a recommendation system to her
application has a large variety of algorithms at her disposal, and must make a deci-
sion about the most appropriate algorithm for her goals. Typically, such decisions
are based on experiments, comparing the performance of a number of candidate
recommenders. The designer can then select the best performing algorithm, given
structural constraints such as the type, timeliness and reliability of availability data,
allowable memory and CPU footprints. Furthermore, most researchers who suggest
new recommendation algorithms also compare the performance of their new algo-
rithm to a set of existing approaches. Such evaluations are typically performed by
applying some evaluation metric that provides a ranking of the candidate algorithms
(usually using numeric scores).

Initially most recommenders have been evaluated and ranked on their predic-
tion power — their ability to accurately predict the user’s choices. However, it is
now widely agreed that accurate predictions are crucial but insufficient to deploy
a good recommendation engine. In many applications people use a recommenda-
tion system for more than an exact anticipation of their tastes. Users may also be
interested in discovering new items, in rapidly exploring diverse items, in preserv-
ing their privacy, in the fast responses of the system, and many more properties of
the interaction with the recommendation engine. We must hence identify the set of
properties that may influence the success of a recommender system in the context
of a specific application. Then, we can evaluate how the system preforms on these
relevant properties.

In this paper we review the process of evaluating a recommendation system.
We discuss three different types of experiments; offline, user studies and online
experiments.

1 www.Netflix.com
2 www.amazon.com
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Often it is easiest to perform offline experiments using existing data sets and a
protocol that models user behavior to estimate recommender performance measures
such as prediction accuracy. A more expensive option is a user study, where a small
set of users is asked to perform a set of tasks using the system, typically answering
questions afterwards about their experience. Finally, we can run large scale experi-
ments on a deployed system, which we call online experiments. Such experiments
evaluate the performance of the recommenders on real users which are oblivious to
the conducted experiment. We discuss what can and cannot be evaluated for each of
these types of experiments.

We can sometimes evaluate how well the recommender achieves its overall goals.
For example, we can check an e-commerce website revenue with and without the
recommender system and make an estimation of the value of the system to the web-
site. In other cases, it can also be useful to evaluate how recommenders perform
in terms of some specific properties, allowing us to focus on improving proper-
ties where they fall short. First, one must show that a property is indeed relevant to
users and affect their experience. Then, we can design algorithms that improve upon
these properties. In improving one property we may reduce the quality of another
property, creating a a trade-off between a set of properties. In many cases it is also
difficult to say how these trade-offs affect the overall performance of the system,
and we have to either run additional experiments to understand this aspect, or use
the opinions of domain experts.

This paper focuses on property-directed evaluation of recommender algorithms.
We provide an overview of a large set of properties that can be relevant for sys-
tem success, explaining how candidate recommenders can be ranked with respect
to these properties. For each property we discuss the relevant experiment types—
offline, user study, and online experiments—and explain how an evaluation can be
conducted in each case. We explain the difficulties and outline the pitfalls in evalu-
ating each property. For all these properties we focus on ranking recommenders on
that property, assuming that better handling the property will improve user experi-
ence.

We also review a set of previous suggestions for evaluating recommendation sys-
tems, describing a large set of popular methods and placing them in the context
of the properties that they measure. We especially focus on the widely researched
accuracy and ranking measurements, describing a large set of evaluation metrics
for these properties. For other, less studied properties, we suggest guidelines from
which specific measures can be derived. We provide examples of such specific im-
plementations where appropriate.

The rest of the paper is structured as follows. In Section 2 we discuss the different
experimental settings in which recommender systems can be evaluated, discussing
the appropriate use of offline experiments, user studies, and online trials. We also
outline considerations that go into making reliable decisions based on these exper-
iments, including generalization and statistical significance of results. In Section 3
we describe a large variety of properties of recommendation systems that may im-
pact their performance, as well as metrics for measuring these properties. Finally,
we conclude in Section 4.
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2 Experimental Settings

In this section we describe three levels of experiments that can be used in order
to compare several recommenders. The discussion below is motivated by evalua-
tion protocols in related areas such as machine learning and information retrieval,
highlighting practices relevant to evaluating recommendation systems. The reader
is referred to publications in these fields for more detailed discussions [Salzberg,
1997, Demšar, 2006, Voorhees, 2002a].

We begin with offline experiments, which are typically the easiest to conduct,
as they require no interaction with real users. We then describe user studies, where
we ask a small group of subjects to use the system in a controlled environment, and
then report on their experience. In such experiments we can collect both quantitative
and qualitative information about the systems, but care must be taken to consider
various biases in the experimental design. Finally, perhaps the most trustworthy
experiment is when the system is used by a pool of real users, typically unaware
of the experiment. While in such an experiment we are able to collect only certain
types of data, this experimental design is closest to reality.

In all experimental scenarios, it is important to follow a few basic guidelines in
general experimental studies:

• Hypothesis: before running the experiment we must form an hypothesis. It is
important to be concise and restrictive about this hypothesis, and design an ex-
periment that tests the hypothesis. For example, an hypothesis can be that algo-
rithm A better predicts user ratings than algorithm B. In that case, the experiment
should test the prediction accuracy, and not other factors.

• Controlling variables: when comparing a few candidate algorithms on a certain
hypothesis, it is important that all variables that are not tested will stay fixed.
For example, suppose that we wish to compare the prediction accuracy of movie
ratings of algorithm A and algorithm B, that both use different collaborative fil-
tering models. If we train A on the MovieLens data set, and B on the Netflix data
set, and algorithm A presents superior performance, we can not tell whether the
performance was due to the superior CF model, or due to the better input data, or
both. We therefore must train the algorithms on the same data set (or over unbi-
ased samples from the same data set), or train the same algorithms over the two
different data sets, in order to understand the cause of the superior performance.

• Generalization power: when drawing conclusions from experiments, we may
desire that our conclusions generalize beyond the immediate context of the ex-
periments. When choosing an algorithm for a real application, we may want our
conclusions to hold on the deployed system, and generalize beyond our experi-
mental data set. Similarly, when developing new algorithms, we want our con-
clusions to hold beyond the scope of the specific application or data set that we
experimented with. To increase the probability of generalization of the results
we must typically experiment with several data sets or applications. It is impor-
tant to understand the properties of the various data sets that are used. Generally
speaking, the more diverse the data used, the more we can generalize the results.
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2.1 Offline Experiments

An offline experiment is performed by using a pre-collected data set of users choos-
ing or rating items. Using this data set we can try to simulate the behavior of users
that interact with a recommendation system. In doing so, we assume that the user
behavior when the data was collected will be similar enough to the user behavior
when the recommender system is deployed, so that we can make reliable decisions
based on the simulation. Offline experiments are attractive because they require no
interaction with real users, and thus allow us to compare a wide range of candidate
algorithms at a low cost. The downside of offline experiments is that they can an-
swer a very narrow set of questions, typically questions about the prediction power
of an algorithm. In particular, we must assume that users’ behavior when interact-
ing with a system including the recommender system chosen will be modeled well
by the users’ behavior prior to that system’s deployment. Thus we cannot directly
measure the recommender’s influence on user behavior in this setting.

Therefore, the goal of the offline experiments is to filter out inappropriate ap-
proaches, leaving a relatively small set of candidate algorithms to be tested by the
more costly user studies or online experiments. A typical example of this process is
when the parameters of the algorithms are tuned in an offline experiment, and then
the algorithm with the best tuned parameters continues to the next phase.

2.1.1 Data sets for offline experiments

As the goal of the offline evaluation is to filter algorithms, the data used for the
offline evaluation should match as closely as possible the data the designer expects
the recommender system to face when deployed online. Care must be exercised to
ensure that there is no bias in the distributions of users, items and ratings selected.
For example, in cases where data from an existing system (perhaps a system with-
out a recommender) is available, the experimenter may be tempted to pre-filter the
data by excluding items or users with low counts, in order to reduce the costs of ex-
perimentation. In doing so, the experimenter should be mindful that this involves a
trade-off, since this introduces a systematic bias in the data. If necessary, randomly
sampling users and items may be a preferable method for reducing data, although
this can also introduce other biases into the experiment (e.g. this could tend to favor
algorithms that work better with more sparse data). Sometimes, known biases in
the data can be corrected for by techniques such as reweighing data, but correcting
biases in the data is often difficult.

Another source of bias may be the data collection itself. For example, users may
be more likely to rate items that they have strong opinions on, and some users may
provide many more ratings than others. Thus, the set of items on which explicit
ratings are available may be biased by the ratings themselves Marlin et al. [2007].
Once again, techniques such as resampling or reweighting the test data may be used
to attempt to correct such biases.
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2.1.2 Simulating user behavior

In order to evaluate algorithms offline, it is necessary to simulate the online process
where the system makes predictions or recommendations, and the user corrects the
predictions or uses the recommendations. This is usually done by recording histor-
ical user data, and then hiding some of these interactions in order to simulate the
knowledge of how a user will rate an item, or which recommendations a user will
act upon. There are a number of ways to choose the ratings/selected items to be hid-
den. Once again, it is preferable that this choice be done in a manner that simulates
the target application as closely as possible. In many cases, though, we are restricted
by the computational cost of an evaluation protocol, and must make compromises
in order to execute the experiment over large data sets.

Ideally, if we have access to time-stamps for user selections, we can simulate
what the systems predictions would have been, had it been running at the time the
data set was collected. We can begin with no available prior data for computing
predictions, and step through user selections in temporal order, attempting to predict
each selection and then making that selection available for use in future predictions.
For large data sets, a simpler approach is to randomly sample test users, randomly
sample a time just prior to a user action, hide all selections (of all users) after that
instant, and then attempt to recommend items to that user. This protocol requires
changing the set of given information prior to each recommendation, which can still
be computationally quite expensive.

An even cheaper alternative is to sample a set of test users, then sample a single
test time, and hide all items after the sampled test time for each test user. This
simulates a situation where the recommender system is built as of the test time, and
then makes recommendations without taking into account any new data that arrives
after the test time. Another alternative is to sample a test time for each test user,
and hide the test user’s items after that time, without maintaining time consistency
across users. This effectively assumes that the sequence in which items are selected
is important, not the absolute times when the selections are made. A final alternative
is to ignore time. We would first sample a set of test users, then sample the number
na of items to hide for each user a, and finally sample na items to hide. This assumes
that the temporal aspects of user selections are unimportant. We may be forced to
make this assumption if the timestamps of user actions are not known. All three of
the latter alternatives partition the data into a single training set and single test set. It
is important to select an alternative that is most appropriate for the domain and task
of interest ??, given the constraints, rather than the most convenient one.

A common protocol used in many research papers is to use a fixed number of
known items or a fixed number of hidden items per test user (so called “given n” or
“all but n” protocols). This protocol is useful for diagnosing algorithms and identi-
fying in which cases they work best. However, when we wish to make decisions on
the algorithm that we will use in our application, we must ask ourselves whether we
are truly interested in presenting recommendations only for users who have rated
exactly n items, or are expected to rate exactly n items more. If that is not the case,
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then results computed using these protocols have biases that make them unreliable
in predicting the performance of the algorithms online.

2.1.3 More complex user modeling

All the protocols that we discuss above make some assumptions concerning the
behavior of users, which could be regarded as a user-model for the specific applica-
tion. While we discuss only very simple user-models it is possible to suggest more
complicated models for user behavior [Mahmood and Ricci, 2007]. Using advanced
user models we can execute simulations of users interactions with the system, thus
reducing the need for expensive user studies and online testing. However, care must
be made when designing user-models; First, user-modeling is a difficult task, and
there is a vast amount of research on the subject (see, e.g. Fischer [2001]). Second,
when the user model is inaccurate, we may optimize a system whose performance in
simulation has no correlation with its performance in practice. While it is reasonable
to design an algorithm that uses complex user-models to provide recommendations,
we should be careful in trusting experiments where algorithms are verified using
such complex, difficult to verify user models.

2.2 User Studies

Many recommendation approaches rely on the interaction of users with the system
(see, e.g., ??, ??, ??). It is very difficult to create a reliable simulation of users
interactions with the system, and thus, offline testing are difficult to conduct. In
order to properly evaluate such systems, real user interactions with the system must
be collected. Even when offline testing is possible, interactions with real users can
still provide additional information about the system performance. In these cases we
typically conduct user studies.

A user study is conducted by recruiting a set of test subject, and asking them
to perform several tasks requiring an interaction with the recommendation system.
While the subjects perform the tasks, we observe and record their behavior, collect-
ing any number of quantitative measurements, such as what portion of the task was
completed, the accuracy of the task results, or the time taken to perform the task.
In many cases we can ask qualitative questions, before, during, and after the task
is completed. Such questions can collect data that is not directly observable, such
as whether the subject enjoyed the user interface, or whether the user perceived the
task as easy to complete.

A typical example of such an experiment is to test the influence of a recom-
mendation algorithm on the browsing behavior of news stories. In this example, the
subjects are asked to read a set of stories that are interesting to them, in some cases
including related story recommendations and in some cases without recommenda-
tions. We can then check whether the recommendations are used, and whether peo-
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ple read different stories with and without recommendations. We can collect data
such as how many times a recommendation was clicked, and even, in certain cases,
track eye movement to see whether a subject looked at a recommendation. Finally,
we can ask quantitative questions such as whether the subject thought the recom-
mendations were relevant.

Of course, in many other research areas user studies are a central tool, and thus
there is much literature on the proper design of user studies. This section only
overviews the basic considerations that should be taken when evaluating a recom-
mender system through a user study, and the interested reader can find much deeper
discussions elsewhere (see. e.g. Box et al. [1978]).

2.2.1 Advantages and Disadvantages

User studies can perhaps answer the widest set of questions of all three experimental
settings that we survey here. Unlike offline experiments this setting allows us to test
the behavior of users when interacting with the recommendation system, and the
influence of the recommendations on user behavior. In the offline case we typically
make assumptions such as “given a relevant recommendation the user is likely to use
it” which are tested in the user study. Second, this is the only setting that allows us to
collect qualitative data that is often crucial for interpreting the quantitative results.
Also, we can typically collect in this setting a large set of quantitative measurements
because the users can be closely monitored while performing the tasks.

User studies however have some disadvantages. Primarily, user studies are very
expensive to conduct; collecting a large set of subjects and asking them to perform
a large enough set of tasks is costly in terms of either user time, if the subjects are
volunteers, or in terms of compensation if paid subjects are employed. Therefore,
we must typically restrict ourselves to a small set of subjects and a relatively small
set of tasks, and cannot test all possible scenarios. Furthermore, each scenario has
to be repeated several time in order to make reliable conclusions, further limiting
the range of distinct tasks that can be tested.

As these experiments are expensive to conduct we should collect as much data
about the user interactions, in the lowest possible granularity. This will allow us
later to study the results of the experiment in detail, analyzing considerations that
were not obvious prior to the trial. This guideline can help us to reduce the need for
successive trials to collect overlooked measurements.

Furthermore, in order to avoid failed experiments, such as applications that mal-
function under certain user actions, researchers often execute pilot user studies.
These are small scale experiments, designed not to collect statistical data, but to test
the systems for bugs and malfunctions. In some cases, the results of these pilot stud-
ies are then used to improve the recommender. If this is the case, then the results of
the pilot become “tainted”, and should not be used when computing measurements
in the final user study.

Another important consideration is that the test subjects must represent as closely
as possible the population of users of the real system. For example, if the system is
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designed to recommend movies, the results of a user study over avid movie fans
may not carry to the entire population. This problem is most persistent when the
participants of the study are volunteers, as in this case people who are originally
more interested in the application may tend to volunteer more readily.

However, even when the subjects represent properly the true population of users,
the results can still be biased because they are aware that they are participating in an
experiment. For example, it is well known that paid subjects tend to try and satisfy
the person or company conducting the experiment. If the subjects are aware of the
hypothesis that is tested they may unconsciously provide evidence that supports it.
To accommodate that, it is typically better not to disclose the goal of the experiment
prior to collecting data. Another, more subtle effect occurs when the payment to sub-
jects takes the form of a complete or partial subsidy of items they select. This may
bias the data in cases where final users of the system are not similarly subsidized, as
users’ choices and preferences may be different when they pay full price.

2.2.2 Between vs. Within Subjects

As typically a user study compares a few candidate approaches, each candidate must
be tested over the same tasks. To test all candidates we can either compare the can-
didates between subjects, where each subject is assigned to a candidate method and
experiments with it, or within subjects, where each subject tests a set of candidates
on different tasks Greenwald [1976].

Typically, within subjects experiments are more informative, as the superiority of
one method cannot be explained by a biased split of users between candidate meth-
ods. It is also possible in this setting to ask comparative questions about the different
candidates, such as which candidate the subject preferred. However, in these types
of tests users are more conscious of the experiment, and hiding the distinctions be-
tween candidates is more difficult.

Between subjects experiments, also known as A-B testing (All Between), provide
a setting that is closer to the real system, as each user experiments with a single sys-
tem. Such experiments can also test long term effects of using the system, because
the user is not required to switch systems. Thus we can test how the user becomes
accustomed to the system, and estimate a learning curve of expertise.

2.2.3 Variable Counter Balance

As we have noted above, it is important to control all variables that are not specif-
ically tested. However, when a subject is presented with the output of several can-
didates, as is done in within subject experiments, we must counter balance several
variables.

When presenting several results to the subject, the results can be displayed ei-
ther sequentially, or together. In both cases there are certain biases that we need to
correct for. When presenting the results sequentially the previously observed results
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influence the user opinion of the current results. For example, if the results that were
displayed first seem inappropriate, the results displayed afterwards may seem better
than they actually are. When presenting two sets of results, there can be certain bi-
ases due to location. For example, users from many cultures tend to observe results
left to right and top to bottom. Thus, the user may observe the results displayed on
top as superior.

A common approach to correct for such untested variables is by using the Latin
square [Box et al., 1978] procedure. This procedure randomizes the order or location
of the various results each time, thus canceling out biases due to these untested
variables.

2.2.4 Questionnaires

User studies allow us to use the powerful questionnaire tool. Prior, during, and after
subjects perform their tasks we can ask them questions about their experience. These
questions can provide information about properties that are difficult to measure,
such as the subject’s state of mind, or whether the subject enjoyed the system.

While these questions can provide valuable information, they can also provide
misleading information. It is important to ask neutral questions, that do not suggest
a “correct” answer. People may also answer untruthfully, for example when they
perceive the answer as private, or if they think the true answer may put them in an
unflattering position.

Indeed, vast amount of research was conducted in other areas about the art of
questionnaire writing, and we refer the readers to that literature (e.g. [Pfleeger and
Kitchenham, 2001]) for more details.

2.3 Online Evaluation

In many realistic recommendation applications the designer of the system wishes to
influence the behavior of users. We are therefore interested in measuring the change
in user behavior when interacting with different recommendation systems. For ex-
ample, if users of one system follow the recommendations more often, or if some
utility gathered from users of one system exceeds utility gathered from users of the
other system, then we can conclude that one system is superior to the other, all else
being equal.

The real effect of the recommendation system depends on a variety of factors
such as the user’s intent (e.g. how specific their information needs are, how much
novelty vs. how much risk they are seeking), the user’s context (e.g. what items they
are already familiar with, how much they trust the system) ??, and the interface
through which the recommendations are presented.

Thus, the experiment that provides the strongest evidence as to the true value
of the system is an online evaluation, where the system is used by real users that
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perform real tasks. It is most trustworthy to compare a few systems online, obtaining
a ranking of alternatives, rather than absolute numbers that are more difficult to
interpret.

For this reason, many real world systems employ an online testing system [Ko-
havi et al., 2009], where multiple algorithms can be compared. Typically, such sys-
tems redirect a small percentage of the traffic to different alternative recommenda-
tion engine, and record the users interactions with the different systems.

There are a few considerations that must be made when running such tests. For
example, it is important to sample (redirect) users randomly, so that the comparisons
between alternatives are fair. It is also important to single out the different aspects
of the recommenders. For example, if we care about algorithmic accuracy, it is im-
portant to keep the user interface fixed. On the other hand, if we wish to focus on a
better user interface, it is best to keep the underlying algorithm fixed.

In some cases, such experiments are risky. For example, a test system that pro-
vides irrelevant recommendations, may discourage the test users from using the real
system ever again. Thus, the experiment can have a negative effect on the system,
which may be unacceptable in commercial applications.

For these reasons, it is best to run an online evaluation last, after an extensive
offline study provides evidence that the candidate approaches are reasonable, and
perhaps after a user study that measures the user’s attitude towards the system. This
gradual process reduces the risk in causing significant user dissatisfaction.

Online evaluations are unique in that they allow direct measurement of overall
system goals, such as long-term profit or user retention. As such, they can be used to
understand how these overall goals are affected by system properties such as recom-
mendation accuracy and diversity of recommendations, and to understand the trade-
offs between these properties. However, since varying such properties independently
is difficult, and comparing many algorithms through online trials is expensive, it can
be difficult to gain a complete understanding of these relationships.

2.4 Drawing Reliable Conclusions

In any type of experiment it is important that we can be confidant that the candidate
recommender that we choose will also be a good choice for the yet unseen data the
system will be faced with in the future. As we explain above, we should exercise
caution in choosing the data in an offline experiments, and the subjects in a user
study, to best resemble the online application. Still, there is a possibility that the
algorithm that performed best on this test set did so because the experiment was
fortuitously suitable for that algorithm. To reduce the possibility of such statistical
mishaps, we must perform significance testing on the results.
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2.4.1 Confidence and p-values

A standard tool for significance testing is a significance level or p-value — the prob-
ability that the obtained results were due to luck. Generally, we will reject the null
hypothesis that algorithm A is no better than algorithm B if the p-value is above
some threshold. That is, if the probability that the observed ranking is achieved by
chance exceeds the threshold, then the results of the experiment are not deemed
significant. Traditionally, people choose p = 0.05 as their threshold, which indi-
cates less than 95% confidence. More stringent significance levels (e.g. 0.01 or even
lower) can be used in cases where the cost of making the wrong choice is higher.

2.4.2 Paired Results

In order to perform a significance test that algorithm A is indeed better than algo-
rithm B, we often use the results of several independent experiments comparing A
and B. Indeed, the protocol we have suggested for generating our test data (Sec-
tion 2.1.2) allows us to obtain such a set of results. Assuming that test users are
drawn independently from some population, the performance measures of the algo-
rithms for each test user give us the independent comparisons we need. However,
when recommendations or predictions of multiple items are made to the same user,
it is unlikely that the resulting per-item performance metrics are independent. There-
fore, it is better to compare algorithms on a per-user case.

Given such paired per-user performance measures for algorithms A and B a sim-
ple test of significance is the sign test [Demšar, 2006]. We count the number of
users for whom algorithm A outperforms algorithm B (nA) and the number of users
for whom algorithm B outperforms algorithm A (nB). The significance level is the
probability that A is not truly better than B, and is estimated as the probability of at
least nA out of n = nA +nB 0.5-probability Binomial trials succeeding (i.e. nA out of
nA +nB fair coin-flips coming up “heads”), and is given by

p = (0.5)n
n

∑
i=nA

n!
i!(n− i)!

(1)

The sign test is an attractive choice due to its simplicity, and lack of assumptions
over the distribution of cases. While tied results are traditionally ignored, Demšar
[2006] recommends splitting them between A and B, since they provide evidence for
the null hypothesis that the algorithms are no different. When nA + nB is large, we
can take advantage of large sample theory to approximate (1) by a normal distribu-
tion. However, this is usually unnecessary with powerful modern computers. Some
authors (e.g. Salzberg [1997]) use the term McNemar’s test to refer to the use of a
χ2 approximation to the two-sided sign test.

Note that sometimes, the sign test may indicate that system A outperforms system
B with high probability, even though the average performance of system B is higher
than that of system A. This happens in cases where system B occasionally outper-
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forms system A overwhelmingly. Thus, the reason for this seemingly inconsistent
result is that the test only examines the probability of one system outperforming the
other, without regard to the magnitude of the difference.

The sign test can be extended to cases where we want to know the probability
that one system outperforms the other by some amount. For example, suppose that
system A is much more resource intensive than system B, and is only worth deploy-
ing if it outperforms system B by some amount. We can define “success” in the sign
test as A outperforming B by this amount, and find the probability of A not truly
outperforming B by this amount as our p value in equation (1).

A commonly used test that takes the magnitude of the differences into account
is the paired Student’s t-test, which looks at the average difference between the
performance scores of algorithms A and B, normalized by the standard deviation
of the score difference. Using this test requires that the differences in scores for
different users is comparable, so that averaging these differences is reasonable. For
small numbers of users, the validity of the test also depends on the differences being
Normally distributed. Demšar [2006] points out that this assumption is hard to verify
when the number of samples is small and that the t-test is susceptible to outliers.
He recommends the use of Wilcoxon signed rank test, which like the t-test, uses
the magnitude of the differences between algorithms A and B, but without making
distributional assumptions on the differences. However, using the Wilcoxon signed
rank test still requires that differences between the two systems are comparable
between users.

Another way to improve the significance of our conclusions is to use a larger
test set. In the offline case, this may require using a smaller training set, which may
result in an experimental protocol that is not representative of the amount of training
data available after deployment. In the case of user studies, this implies an additional
expense. In the case of online testing, increasing the amount of data collected for
each algorithm requires either the added expense of a longer trial or the comparison
of fewer algorithms.

2.4.3 Unpaired Results

The tests described above are suitable for cases where observations are paired. That
is, each algorithm is run on each test case, as is often done in offline tests. In online
tests, however, it is often the case that users are assigned to one algorithm or the
other, so that the two algorithms are not evaluated on the same test cases. The Mann-
Whitney test is an extension of the Wilcoxon test to this scenario. Suppose we have
nA results from algorithm A and nB results from algorithm B.

The performance measures of the two algorithms are pooled and sorted so that
the best result is ranked first and the worst last. The ranks of ties are averaged. For
example if the second through fifth place tie, they are all assigned a rank of 3.5. The
Mann-Whitney test computes the probability of the null hypothesis that nA randomly
chosen results from the total nA +nB have at least as good an average rank as the nA
results that came from algorithm A.
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This probability can be computed exactly be enumerating all (nA+nB)!
nA!nB! choices and

counting the choices that have at least the required average rank, or can be approx-
imated by repeatedly resampling nA of the results. When nA and nB are both large
enough (typically over 5), the distribution of the average rank of nA results randomly
selected from a pool of nA + nB under the null hypothesis is well approximated by
a Gaussian with mean 1

2 (nA +nB +1) and standard deviation
√

1
12

nA
nB

(nA +nB +1).
Thus, in this case we can compute the average rank of the nA results from system A,
subtract 1

2 (nA + nB + 1), divide by
√

1
12

nA
nB

(nA +nB +1), and evaluate the standard
Gaussian CDF at this value to get the p value for the test.

2.4.4 Multiple tests

Another important consideration, mostly in the offline scenario, is the effect of eval-
uating multiple versions of algorithms. For example, an experimenter might try out
several variants of a novel recommender algorithm and compare them to a baseline
algorithm until they find one that passes a sign test at the p = 0.05 level and therefore
infer that their algorithm improves upon the baseline with 95% confidence. How-
ever, this is not a valid inference. Suppose the experimenter evaluated 10 different
variants all of which are statistically the same as the baseline. If the probability that
any one of these trials passes the sign test mistakenly is p = 0.05, the probability that
at least one of the ten trials passes the sign test mistakenly is 1−(1−0.05)10 = 0.40.
This risk is colloquially known as “tuning to the test set” and can be avoided by
separating the test set users into two groups–a development (or tuning) set, and an
evaluation set. The choice of algorithm is done based on the development test, and
the validity of the choice is measured by running a significance test on the evaluation
set.

A similar concern exists when ranking a number of algorithms, but is more diffi-
cult to circumvent. Suppose the best of N + 1 algorithms is chosen on the develop-
ment test set. To achieve a confidence 1− p that the chosen algorithm is indeed the
best, it must outperform the N other algorithms on the evaluation set with signifi-
cance 1−(1− p)1/N . This is known as the Bonferroni correction, and should be used
when pair-wise significant tests are used multiple times. Alternatively, approaches
such as ANOVA or the Friedman test for ranking, which are generalization of
the Student’s t-test and Wilcoxon’s rank test. ANOVA makes strong assumptions
about the Normality of the different algorithms’ performance measures, and about
the relationships of their variances. We refer the reader to Demšar [2006] for further
discussion of these and other tests for ranking multiple algorithms.

A more subtle version of this concern is when a pair of algorithms are com-
pared in a number of ways. For example, two algorithms may be compared using
a number of accuracy measures, a number of coverage measures, etc. Even if the
two algorithms are identical in all measures, the probability of finding a measure
by which one algorithm seems to outperform the other with some significance level
increases with the number of measures examined. If the different measures are in-
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dependent, the Bonferroni correction mentioned above can be used. However, since
the measures are often correlated, the Bonferroni correction may be too stringent,
and other approaches such as controlling for false discovery rate [benjamini, 1995]
may be used.

2.4.5 Confidence Intervals

Even though we focus here on comparative studies, where one has to choose the
most appropriate algorithm out of a set of candidates, it is sometimes desirable to
measure the value of some property. For example, an administrator may want to es-
timate the error in the system predictions, or the net profit that the system is earning.
When measuring such quantities it is important to understand the reliability of your
estimates. A popular approach for doing this is to compute confidence intervals.

For example, one may estimate that the RMSE of a system is expected to be 1.2,
and that it will be between 1.1 and 1.35 with probability 0.95. The simplest method
for computing confidence intervals is to assume that the quantity of interest is Gaus-
sian distributed, and then estimate its mean and standard deviations from multiple
independent observations. When we have many observations, we can dispense with
this assumption by computing the distribution of the quantity of interest with a non-
parametric method such as a histogram and finding upper and lower bounds such
that include the quantity of interest with the desired probability.

3 Recommendation System Properties

In this section we survey a range of properties that are commonly considered when
deciding which recommendation approach to select. As different applications have
different needs, the designer of the system must decide on the important proper-
ties to measure for the concrete application at hand. Some of the properties can be
traded-off, the most obvious example perhaps is the decline in accuracy when other
properties (e.g. diversity) are improved. It is important to understand and evaluate
these trade-offs and their effect on the overall performance. However, the proper
way of gaining such understanding without intensive online testing or defering to
the opinions of domain experts is still an open question.

Furthermore, the effect of many of these properties on the user experience is
unclear, and depends on the application. While we can certainly speculate that users
would like diverse recommendations or reported confidence bounds, it is essential to
show that this is indeed important in practice. Therefore, when suggesting a method
that improves one of this properties, one should also evaluate how changes in this
property affects the user experience, either through a user study or through online
experimentation.

Such an experiment typically uses a single recommendation method with a tun-
able parameter that affects the property being considered. For example, we can en-
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vision a parameter that controls the diversity of the list of recommendations. Then,
subjects should be presented with recommendations based on a variety of values
for this parameter, and we should measure the effect of the parameter on the user
experience. We should measure here not whether the user noticed the change in the
property, but whether the change in property has affected their interaction with the
system. As is always the case in user studies, it is preferable that the subjects in a
user study and users in an online experiment will not know the goal of the experi-
ment. It is difficult to envision how this procedure could be performed in an offline
setting because we need to understand the user response to this parameter.

Once the effects of the specific system properties in affecting the user experience
of the application at hand is understood, we can use differences in these properties
to select a recommender.

3.1 User Preference

As in this paper we are interested in the selection problem, where we need to choose
on out of a set of candidate algorithm, an obvious option is to run a user study
(within subjects) and ask the participants to choose one of the systems [Hijikata
et al., 2009]. This evaluation does not restrict the subjects to specific properties, and
it is generally easier for humans to make such judgments than to give scores for the
experience. Then, we can select the system that had the largest number of votes.

However, aside from the biases in user studies discussed earlier, there are addi-
tional concerns that we must be aware of. First, the above scheme assumes that all
users are equal, which may not always be true. For example, an e-commerce website
may prefer the opinion of users who buy many items to the opinion of users who
only buy a single item. We therefore need to further weight the vote by the impor-
tance of the user, when applicable. Assigning the right importance weights in a user
study may not be easy.

It may also be the case that users who preferred system A, only slightly preferred
it, while users who preferred B, had a very low opinion on A. In this case, even if
more users preferred A we may still wish to choose B. To measure this we need
non-binary answers for the preference question in the user study. Then, the problem
of calibrating scores across users arises.

Finally, when we wish to improve a system, it is important to know why people
favor one system over the other. Typically, it is easier to understand that when com-
paring specific properties. Therefore, while user satisfaction is important to mea-
sure, breaking satisfaction into smaller components is helpful to understand the sys-
tem and improve it.
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3.2 Prediction Accuracy

Prediction accuracy is by far the most discussed property in the recommendation
system literature. At the base of the vast majority of recommender systems lie a
prediction engine. This engine may predict user opinions over items (e.g. ratings of
movies) or the probability of usage (e.g. purchase).

A basic assumption in a recommender system is that a system that provides more
accurate predictions will be preferred by the user. Thus, many researchers set out to
find algorithms that provide better predictions.

Prediction accuracy is typically independent of the user interface, and can thus be
measured in an offline experiment. Measuring prediction accuracy in a user study
measures the accuracy given a recommendation. This is a different concept from
the prediction of user behavior without recommendations, and is closer to the true
accuracy in the real system.

We discuss here three broad classes of prediction accuracy measures; measuring
the accuracy of ratings predictions, measuring the accuracy of usage predictions,
and measuring the accuracy of rankings of items.

3.2.1 Measuring Ratings Prediction Accuracy

In some applications, such as in the new releases page of the popular Netflix DVD
rental service, we wish to predict the rating a user would give to an item (e.g. 1-star
through 5-stars). In such cases, we wish to measure the accuracy of the system’s
predicted ratings.

Root Mean Squared Error (RMSE) is perhaps the most popular metric used
in evaluating accuracy of predicted ratings. The system generates predicted ratings
r̂ui for a test set T of user-item pairs (u, i) for which the true ratings rui are known.
Typically, rui are known because they are hidden in an offline experiment, or because
they were obtained through a user study or online experiment. The RMSE between
the predicted and actual ratings is given by:

RMSE =

√
1
|T | ∑

(u,i)∈T
(r̂ui− rui)2 (2)

Mean Absolute Error (MAE) is a popular alternative, given by

MAE =
1
|T | ∑

(u,i)∈T
|r̂ui− rui| (3)

Compared to MAE, RMSE disproportionately penalizes large errors, so that,
given a test set with four hidden items RMSE would prefer a system that makes
an error of 2 on three ratings and 0 on the fourth to one that makes an error of 3 on
one rating and 0 on all three others, while MAE would prefer the second system.
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Normalized RMSE (NMRSE) and Normalized MAE (NMAE) are versions
of RMSE and MAE that have been normalized by the range of the ratings (i.e.
rmax− rmin). Since they are simply scaled versions of RMSE and MAE, the result-
ing ranking of algorithms is the same as the ranking given by the unnormalized
measures.

Average RMSE and Average MAE adjust for unbalanced test sets. For example,
if the test set has an unbalanced distribution of items, the RMSE or MAE obtained
from it might be heavily influenced by the error on a few very frequent items. If
we need a measure that is representative of the prediction error on any item, it is
preferable to compute MAE or RMSE separately for each item and then take the
average over all items. Similarly, one can compute a per-user average RMSE or
MAE if the test set has an unbalanced user distribution and we wish to understand
the prediction error a randomly drawn user might face.

RMSE and MAE depend only on the magnitude of the errors made. In some ap-
plications, the semantics of the ratings may be such that the impact of a prediction
error does not depend only on its magnitude. In such domains it may be preferable
to use a suitable distortion measure d(r̂,r) than squared difference or absolute dif-
ference. For example in an application with a 3-star rating system where 1 means
“disliked,” 2 means “neutral” and 3 means “liked,” and where recommending an
item the user dislikes is worse that not recommending an item a user likes, a distor-
tion measure with d(3,1) = 5, d(2,1) = 3, d(3,2) = 3, d(1,2) = 1, d(2,3) = 1, and
d(1,3) = 2 may be reasonable.

3.2.2 Measuring Usage Prediction

In many applications the recommendation system does not predict the user’s pref-
erences of items, such as movie ratings, but tries to recommend to users items that
they may use. For example, when movies are added to the queue, Netflix suggests
a set of movies that may also be interesting, given the added movie. In this case
we are interested not in whether the system properly predicts the ratings of these
movies but rather whether the system properly predicts that the user will add these
movies to the queue (use the items).

In an offline evaluation of usage prediction, we typically have a data set con-
sisting of items each user has used. We then select a test user, hide some of her
selections, and ask the recommender to predict a set of items that the user will use.
We then have four possible outcomes for the recommended and hidden items, as
shown in Table 1.

Recommended Not recommended
Used True-Positive (tp) False-Negative (fn)
Not used False-Positive (fp) True-Negative (tn)

Table 1 Classification of the possible result of a recommendation of an item to a user.
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In the offline case, since the data isn’t typically collected using the recommender
system under evaluation, we are forced to assume that unused items would have not
be used even if they had they been recommended — i.e. that they are uninteresting
or useless to the user. This assumption may be false, such as when the set of unused
items contains some interesting items that the user did not select. For example, a
user may not have used an item because she was unaware of its existence, but after
the recommendation exposed that item the user can decide to select it. In this case
the number of false positives is over estimated.

We can count the number of examples that fall into each cell in the table and
compute the following quantities:

Precision =
#tp

#tp+#fp
(4)

Recall (True Positive Rate) =
#tp

#tp+#fn
(5)

False Positive Rate (1 - Specificity) =
#fp

#fp+#tn
(6)

Typically we can expect a trade off between these quantities — while allowing
longer recommendation lists typically improves recall, it is also likely to reduce
the precision. In applications where the number of recommendations that can be
presented to the user is preordained, the most useful measure of interest is Precision
at N.

In other applications where the number of recommendations that are presented
to the user is not preordained, it is preferable to evaluate algorithms over a range of
recommendation list lengths, rather than using a fixed length. Thus, we can com-
pute curves comparing precision to recall, or true positive rate to false positive rate.
Curves of the former type are known simply as precision-recall curves, while those
of the latter type are known as a Receiver Operating Characteristic3 or ROC curves.
While both curves measure the proportion of preferred items that are actually recom-
mended, precision-recall curves emphasize the proportion of recommended items
that are preferred while ROC curves emphasize the proportion of items that are not
preferred that end up being recommended.

We should select whether to use precision-recall or ROC based on the properties
of the domain and the goal of the application; suppose, for example, that an online
video rental service recommends DVDs to users. The precision measure describes
the proportion of their recommendations were actually suitable for the user. Whether
the unsuitable recommendations represent a small or large fraction of the unsuitable
DVDs that could have been recommended (i.e. the false positive rate) may not be
as relevant as what proportion of the relevant items the system recommended to
the user, so a precision-recall curve would be suitable for this application. On the
other hand, consider a recommender system that is used for selecting items to be
marketed to users, for example by mailing an item to the user who returns it at no

3 A reference to their origins in signal detection theory.
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cost to themselves if they do not purchase it. In this case, where we are interested
in realizing as many potential sales as possible while minimizing marketing costs,
ROC curves would be more relevant than precision-recall curves.

Given two algorithms, we can compute a pair of such curves, one for each al-
gorithm. If one curve completely dominates the other curve, the decision about the
superior algorithm is easy. However, when the curves intersect, the decision is less
obvious, and will depend on the application in question. Knowledge of the applica-
tion will dictate which region of the curve the decision will be based on.

Measures that summarize the precision recall of ROC curve such as F-measure
[Van Rijsbergen, 1979] and the Area Under the ROC Curve (AUC) [Bamber,
1975] are useful for comparing algorithms independently of application, but when
selecting an algorithm for use in a particular task, it is preferable to make the choice
based on a measure that reflects the specific needs at hand.

Precision-Recall and ROC for Multiple Users

When evaluating precision-recall or ROC curves for multiple test users, a number of
strategies can be employed in aggregating the results, depending on the application
at hand.

In applications where a fixed number of recommendations is made to each user
(e.g. when a fixed number of headlines are shown to a user visiting a news portal),
we can compute the precision and recall (or true positive rate and false positive rate)
at each recommendation list length N for each user, and then compute the average
precision and recall (or true positive rate and false positive rate) at each N [Sarwar
et al., 2000]. The resulting curves are particularly valuable because they prescribe
a value of N for each achievable precision and recall (or true positive rate and false
positive rate), and conversely, can be used to estimate performance at a given N. An
ROC curve obtained in this manner is termed a Customer ROC (CROC) curve
[Schein et al., 2002].

When different numbers of recommendations can be shown to each user (e.g.
when presenting the set of all recommended movies to each user), we can compute
ROC or precision-recall curves by aggregating the hidden ratings from the test set
into a set of reference user-item pairs, using the recommender system to generate a
single ranked list of user-item pairs, picking the top recommendations from the list,
and scoring them against the reference set. An ROC curve calculated in this way is
termed a Global ROC (GROC) curve [Schein et al., 2002]. Picking an operating
point on the resulting curve can result in a different number of recommendations
being made to each user.

A final class of applications is where the recommendation process is more in-
teractive, and the user is able to obtain more and more recommendations. This is
typical of information retrieval tasks, where the user can keep asking the system
for more recommended documents. In such applications, we compute a precision-
recall curve (or ROC curve) for each user and then average the resulting curves over
users. This is the usual manner in which precision-recall curves are computed in
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the information retrieval community, and in particular in the influential TREC com-
petitions [Voorhees, 2002b]. Such a curve can be used to understand the trade-off
between precision and recall (or false positives and false negatives) a typical user
would face.

3.2.3 Ranking Measures

In many cases the application presents to the user a list of recommendations, typ-
ically as vertical or horizontal list, imposing a certain natural browsing order. For
example, in Netflix, the “movies you’ll love” tab, shows a set of categories, and in
each category, a list of movies that the system predicts the user to like. These lists
may be long and the user may need to continue to additional “pages” until the entire
list is browsed. In these applications, we are not interested in predicting an explicit
rating, or selecting a set of recommended items, as in the previous sections, but
rather in ordering items according to the user’s preferences. This task is typically
known as ranking of items. There are two approaches for measuring the accuracy
of such a ranking. We can try to determine the correct order of a set of items for
each user and measure how close a system comes to this correct order, or we can
attempt to measure the utility of the system’s raking to a user. We first describe these
approaches for offline tests, and then describe their applicability to user studies and
online tests.

Using a Reference Ranking

In order to evaluate a ranking algorithm with respect to a reference ranking (a correct
order), it is first necessary to obtain such a reference. In cases where explicit user
ratings of items are available, we can rank the rated items in decreasing order of the
ratings, with ties. For example, in the case of Netflix, movies ranked by a user can be
ranked in order of decreasing order of rating, with 5-star movies tied, followed by 4-
star movies which are themselves tied, etc. In cases where we only have usage data,
it may be appropriate to construct a reference ranking where items used by the user
are ranked above unused items. However, this is only valid if we know that the user
was aware of the unused items, so that we can infer that the user actually preferred
the used items to the unused items. Thus, for example, logs from an online music
application such as Pandora4 can be used to construct a reference ranking where
tracks that a user listened to are ranked above ones they skipped. Once again, used
items should be tied with each other and unused items should be tied with each
other.

In both kinds of reference rankings above, two items are tied when we have no
information about the user’s relative ranking of the two. However, a recommender
system used in an application such as Netflix’s “movies you’ll love” needs to strictly

4 www.pandora.com
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rank items with no ties. In such cases, a system under evaluation should not be pe-
nalized for ranking one item over another when they are tied in the reference rank-
ing. The Normalized Distance-based Performance Measure (NDPM) measure
Yao [1995] is suitable for such cases. If we have reference rankings rui and system
rankings r̂ui of nu items i for user u, we can define

C+ = ∑
i j

sgn(rui− ru j)sgn(r̂ui− r̂u j) (7)

C− = ∑
i j

sgn(rui− ru j)sgn(r̂u j− r̂ui) (8)

Cu = ∑
i j

sgn2(rui− ru j) (9)

Cs = ∑
i j

sgn2(r̂ui− r̂u j) (10)

Cu0 = Cu− (C+ +C−) (11)

where the sums range over the 1
2 nu(nu− 1) pairs of items. Thus, Cu is the number

of pairs of items for which the reference ranking asserts an ordering (i.e. not tied),
while C+ and C− are the number of these pairs that the system ranking asserts the
correct order and the incorrect order respectively. Cu0 is the number of pairs where
the reference ranking does not tie but the system ranking ties. The NDPM is then
given by

NDPM =
C−+0.5Cu0

Cu (12)

Thus, the NDPM measure gives a perfect score of 0 to systems that correctly pre-
dicts every preference relation asserted by the reference. The worst score of 1 is
assigned to systems that contradict every reference preference relation. Not predict-
ing a reference preference relation is penalized only half as much as contradicting it.
Predicting preferences that the reference does not order (i.e. when we do not know
the user’s true preference) is not penalized.

In some cases, we may completely know the user’s true preferences for some
set of items. For example, we may elicit the user’s true ordering by presenting the
user with binary choices. In this case, when a pair of items are tied in the reference
ranking it means that the user is actually indifferent between the items. Thus, a
perfect system should not rank one item higher than the other. In such cases, rank
correlation measures such as Spearman’s ρ or Kendall’s τ [Kendall, 1938, 1945]
can be used. These measures tend to be highly correlated in practice [Fredricks and
Nelsen, 2007]. Kendall’s τ is given by

τ =
C+−C−√

Cu
√

Cs
(13)

while Spearman’s ρ is given by
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ρ =
1
nu

∑i(ri,u− r)(r̂i,u− r̂)
σ(r)σ(r̂)

(14)

where ·̄ and σ(·) denote the mean and standard deviation. Note that in the case of
ties, each tied item should be assigned the average ranking, so that, e.g., if two items
are tied for second and third place, they are assigned a rank of 2.5 [Kendall, 1945].

Utility-based ranking

While reference ranking scores a ranking on its correlation with some “true” rank-
ing, there are other criteria for deciding on ordering a list of items. One popular
alternative is to assume that the utility of a list of recommendations is additive,
given by the sum of the utilities of the individual recommendations. The utility of
each recommendation is the utility of the recommended item discounted by a factor
that depends on its position in the list of recommendations. One example of such a
utility is the likelihood that a user will observe a recommendation at position i in
the list. It is usually assumed that users scan recommendation lists from the begin-
ning to the end, with the utility of recommendations being discounted more heavily
towards the end of the list. The discount can also be interpreted as the probability
that a user would observe a recommendation in a particular position in the list, with
the utility of the recommendation given that it was observed depending only on the
item recommend. Under this interpretation, the probability that a particular position
in the recommendation list is observed is assumed to depend only on the position
and not on the items that are recommended.

In many applications, the user can use only a single, or a very small set of items,
or the recommendation engine is not used as the main browsing tool. In such cases,
we can expect the users to observe only a few items of the top of the recommenda-
tions list. We can model such applications using a very rapid decay of the positional
discount down the list. The R-Score metric Breese et al. [1998] assumes that the
value of recommendations decline exponentially down the ranked list to yield the
following score for each user u:

Ru = ∑
j

max(ru,i j −d,0)

2
j−1

α−1

(15)

where i j is the item in the jth position, ru,i is user u’s rating of item i, d is a task
dependent neutral (“don’t care”) rating, and α is a half-life parameter, which con-
trols the exponential decline of the value of positions in the ranked list. In the case
of ratings prediction tasks, rui is the rating given by the user to each item (e.g. 4
stars), and d is the don’t care vote (e.g. 3 stars), and the algorithm only gets credit
for ranking items with rating above the “don’t care” vote higher than d (e.g. 4 or
5 stars). In usage prediction tasks, ru,i is typically 1 if u selects i and 0 otherwise,
while d is 0. Using
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ru,i =− log(popularity(i)) (16)

if i is used and 0 otherwise [Shani et al., 2005] can capture the amount of information
in the recommendation. The resulting per-user scores are aggregated using:

R = 100
∑u Ru

∑u R∗u
(17)

where R∗u is the score of the best possible ranking for user u.
In other applications the user is expected to read a relatively large portion of

the list. In certain types of search, such as the search for legal documents [Herlocker
et al., 2004], users may look for all relevant items, and would be willing to read large
portions of the recommendations list. In such cases, we need a much slower decay
of the positional discount. Normalized Cumulative Discounted Gain (NDCG)
[Järvelin and Kekäläinen, 2002] is a measure from information retrieval, where po-
sitions are discounted logarithmically. Assuming each user u has a “gain” gui from
being recommended an item i, the average Discounted Cumulative Gain (DCG) for
a list of J items is defined as

DCG =
1
N

N

∑
u=1

J

∑
j=1

gui j

max(1, logb j)
(18)

where the logarithm base is a free parameter, typically between 2 and 10. A loga-
rithm with base 2 is commonly used to ensure all positions are discounted. NDCG
is the normalized version of DCG given by

NDCG =
DCG
DCG∗

(19)

where DCG∗ is the ideal DCG.
We show the two methods here as they were originally presented, but note that

the numerator in the two cases contains a utility function that assigns a value for
each item. One can replace the original utility functions with a function that is more
appropriate to the designed application. A measure closely related to R-score and
NDCG is Average Reciprocal Hit Rank (ARHR) [Deshpande and Karypis, 2004]
which is an un-normalized measure that assigns a utility 1/k to a successful recom-
mendation at position k. Thus, ARHR decays more slowly than R score but faster
than NDCG.

Online evaluation of ranking

In an online experiment designed to evaluate the ranking of the recommendation list,
we can look at the interactions of users with the system. When a recommendation
list is presented to a user, the user may select a number of items from the list. We can
now assume that the user has scanned the list at least as deep as the last selection.
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That is, if the user has selected items 1, 3, and 10, we can assume that the user has
observed items 1 through 10. We can now make another assumption, that the user
has found items 1,3, and 10 to be interesting, and items 2,4,5,6,7,8, and 9 to be
uninteresting. In some cases we can have additional information whether the user
has observed more items. For example, if the list is spread across several pages, and
only 20 results are presented per page, then, in the example above, if the user moved
to the second page we can also assume that she has observed results 11 through 20
and had found them to be irrelevant.

In the scenario above, the results of this interaction is a division of the list into 3
parts — the interesting items (1,3,10 in the example above), the uninteresting items
(the rest of the items from 1 through 20), and the unknown items (21 till the end of
the list). We can now use an appropriate reference ranking metric to score the origi-
nal list. This can be done in two different ways. First, the reference list can contain
the interesting items at the top, then the unknown items, and the uninteresting items
at the bottom. This reference list captures the case where the user may only select a
small subset of the interesting items, and therefore the unknown items may contain
more interesting items. Second, the reference list can contain the interesting items
at the top, followed by the uninteresting items, with the unknown items completely
ignored. This is useful when making unreasonable preference assumptions, such as
that some unknown items are preferred to the uninteresting items, may have nega-
tive consequences. In either case, it should be borne in mind that the semantics of
the reference ranking are different from the case of offline evaluations. In offline
evaluations, we have a single reference ranking which is assumed to be correct, and
we measure how much each recommender deviates from this “correct” ranking. In
the online case, the reference ranking is assumed to be the ranking that the user
would have preferred given that were presented with the recommender’s ranking. In
the offline case, we assume that there is one correct ranking, while in the online case
we allow for the possibility of multiple correct rankings.

In the case of utility ranking, we can evaluate a list based on the sum of the
utilities of the selected items. Lists that place interesting items with high utility
close to the beginning of the list, will hence be preferred to lists that place these
interesting items down the list, because we expect that in the latter case, the user
will often not observe these interesting items at all, generating no utility for the
recommender.

3.3 Coverage

As the prediction accuracy of a recommendation system, especially in collaborative
filtering systems, in many cases grows with the amount of data, some algorithms
may provide recommendations with high quality, but only for a small portion of the
items where they have huge amounts of data. The term coverage can refer to several
distinct properties of the system that we discuss below.
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3.3.1 Item Space Coverage

Most commonly, the term coverage refers to the proportion of items that the recom-
mendation system can recommend. This is often referred to as catalog coverage.
The simplest measure of catalog coverage is the percentage of all items that can
ever be recommended. This measure can be computed in many cases directly given
the algorithm and the input data set.

A more useful measure is the percentage of all items that are recommended to
users during an experiment, either offline, online, or a user study. In some cases
it may be desirable to weight the items, for example, by their popularity or utility.
Then, we may agree not to be able to recommend some items which are very rarely
used anyhow, but ignoring high profile items may be less tolerable.

Another measure of catalog coverage is the sales diversity [Fleder and Hosana-
gar, 2007], which measures how unequally different items are chosen by users when
a particular recommender system is used. If each item i accounts for a proportion
p(i) of user choices, the Gini Index is given by:

G =
1

n−1

n

∑
j=1

(2 j−n−1)p(i j) (20)

where i1, · · · in is the list of items ordered according to increasing p(i). The index is 0
when all items are chosen equally often, and 1 when a single item is always chosen.
The Gini index of the number of times each item is recommended could also be
used. Another measure of distributional inequality is the Shannon Entropy:

H =−
n

∑
i=1

p(i) log p(i) (21)

The entropy is 0 when a single item is always chosen or recommended, and logn
when n items are chosen or recommended equally often.

3.3.2 User Space Coverage

Coverage can also be the proportion of users or user interactions for which the sys-
tem can recommend items. In many applications the recommender may not provide
recommendations for some users due to, e.g. low confidence in the accuracy of pre-
dictions for that user. In such cases we may prefer recommenders that can provide
recommendations for a wider range of users. Clearly, such recommenders should be
evaluated on the trade-off between coverage and accuracy.

Coverage here can be measured by the richness of the user profile required to
make a recommendation. For example, in the collaborative filtering case this could
be measured as the number of items that a user must rate before receiving recom-
mendations. This measurement can be typically evaluated in offline experiments.
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3.3.3 Cold Start

Another, related set of issues are the well known cold start problems — the perfor-
mance of the system on new items and on new users. Cold start can be considered
as a sub problem of coverage because it measures the system coverage over a spe-
cific set of items and users. In addition to measuring how large the pool of cold start
items or users are, it may also be important to measure system accuracy for these
users and items.

Focusing on cold start items, we can use a threshold to decide on the set of cold
items. For example, we can decide that cold items are only items with no ratings or
usage evidence [Schein et al., 2002], or items that exist in the system for less than
a certain amount of time (e.g., a day), or items that have less than a predefined evi-
dence amount (e.g., less than 10 ratings). Perhaps a more generic way is to consider
the “coldness” of an item using either the amount of time it exists in the system or
the amount of data gathered for it. Then, we can credit the system more for properly
predicting colder items, and less for the hot items that are predicted.

It may be possible that a system better recommends cold items at the price of a
reduced accuracy for hotter items. This may be desirable due to other considerations
such as novelty and serendipity that are discussed later. Still, when computing the
system accuracy on cold items it may be wise to evaluate whether there is a trade-off
with the entire system accuracy.

3.4 Confidence

Confidence in the recommendation can be defined as the system’s trust in its rec-
ommendations or predictions [Swearingen and Sinha, 2001, Herlocker et al., 2000].
As we have noted above, collaborative filtering recommenders tend to improve their
accuracy as the amount of data over items grows. Similarly, the confidence in the
predicted property typically also grows with the amount of data.

In many cases the user can benefit from observing these confidence scores [Her-
locker et al., 2000]. When the system reports a low confidence in a recommended
item, the user may tend to further research the item before making a decision. For
example, if a system recommends a movie with very high confidence, and another
movie with the same rating but a lower confidence, the user may add the first movie
immediately to the watching queue, but may further read the plot synopsis for the
second movie, and perhaps a few movie reviews before deciding to watch it.

Perhaps the most common measurement of confidence is the probability that the
predicted value is indeed true, or the interval around the predicted value where a
predefined portion, e.g. 95% of the true values lie. For example, a recommender
may accurately rate a movie as a 4 star movie with probability 0.85, or have 95% of
the actual ratings lie within −1 and + 1

2 of the predicted 4 stars. The most general
method of confidence is to provide a complete distribution over possible outcomes
[McLaughlin and Herlocker, 2004].
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Given two recommenders that perform similarly on other relevant properties,
such as prediction accuracy, is can be desirable to choose the one that can provide
valid confidence estimates. In this case, given two recommenders with, say, iden-
tical accuracy, that report confidence bounds in the same way, we will prefer the
recommender that better estimates its confidence bounds.

Standard confidence bounds, such as the ones above, can be directly evaluated
in regular offline trials, much the same way as we estimate prediction accuracy. We
can design for each specific confidence type a score that measures how close the
method confidence estimate is to the true error in prediction. This procedure cannot
be applied when the algorithms do not agree on the confidence method, because
some confidence methods are weaker and therefore easier to estimate. In such a
case a more accurate estimate of a weaker confidence metric does not imply a better
recommender.

Example 1. Recommenders A and B both report confidence intervals over possible
movie ratings. We train A and B over a confidence threshold, ranging of 95%. For
each trained model, we run A and B on offline data, hiding a part of the user ratings
and requesting each algorithm to predict the missing ratings. Each algorithm pro-
duces, along with the predicted rating, a confidence interval. We compute A+ and
A−, the number of times that the predicted rating of algorithm A was within and out-
side the confidence interval (respectively), and do the same for B. Then we compute
the true confidence of each algorithm using A+

A−+A+
= 0.97 and B+

A−+A+
= 0.94. The

result indicates that A is over conservative, and computes intervals that are too large,
while B is liberal and computes intervals that are too small. As we do not require the
intervals to be conservative, we prefer B because its estimated intervals are closer to
the requested 95% confidence.

Another application of confidence bounds is in filtering recommended items
where the confidence in the predicted value is below some threshold. In this scenario
we assume that the recommender is allowed not to predict a score for all values, as
is typically the case when presenting top n recommendations. We can hence design
an experiment around this filtering procedure by comparing the accuracy of two
recommenders after their results were filtered by removing low confidence items. In
such experiments we can compute a curve, estimating the prediction accuracy for
each portion of filtered items, or for different filtering thresholds. This evaluation
procedure does not require both algorithms to agree on the confidence method.

While user studies and online experiments can study the effect of reporting con-
fidence on the user experience, it is difficult to see how these types of tests can be
used to provide further evidence as to the accuracy of the confidence estimate.
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3.5 Trust

While confidence is the system trust in its ratings, in trust we refer here to the user’s
trust in the system recommendation5. For example, it may be beneficial for the sys-
tem to recommend a few items that the user already knows and likes. This way,
even though the user gains no value from this recommendation, she observes that
the system provides reasonable recommendations, which may increase her trust in
the system recommendations for unknown items. Another common way of enhanc-
ing trust in the system is to explain the recommendations that the system provides
??. Trust in the systems is also called the credibility of the system ??.

If we do not restrict ourselves to a single method of gaining trust, such as the one
suggested above, the obvious method for evaluating user trust is by asking users
whether the system recommendations are reasonable in a user study [Herlocker
et al., 2000, Bonhard et al., 2006, Cramer et al., 2008, Pu and Chen, 2006]. In an
online test one could associate the number of recommendations that were followed
with the trust in the recommender, assuming that higher trust in the recommender
would lead to more recommendations being used. Alternatively, we could also as-
sume that trust in the system is correlated with repeated users, as users who trust the
system will return to it when performing future tasks. However, such measurements
may not separate well other factors of user satisfaction, and may not be accurate.
It is unclear how to measure trust in an offline experiment, because trust is built
through an interaction between the system and a user.

3.6 Novelty

Novel recommendations are recommendations for items that the user did not know
about [Konstan et al., 2006]. In applications that require novel recommendation, an
obvious and easy to implement approach is to filter out items that the user already
rated or used. However, in many cases users will not report all the items they have
used in the past. Thus, this simple method is insufficient to filter out all items that
the user already knows.

While we can obviously measure novelty in a user study, by asking users whether
they were already familiar with a recommended item [Celma and Herrera, 2008,
Jones and Pu, 2007], we can also gain some understanding of a system’s novelty
through offline experiments. For such an experiment we could split the data set on
time, i.e. hide all the user ratings that occurred after a specific point in time. In addi-
tion, we can hide some ratings that occurred prior to that time, simulating the items
that the user is familiar with, but did not report ratings for. When recommending,
the system is rewarded for each item that was recommended and rated after the split

5 Not to be confused with trust in the social network research, used to measure how much a user
believes another user. Some literature on recommender systems uses such trust measurements to
filter similar users [Massa and Bhattacharjee, 2004] ??.
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time, but would be punished for each item that was recommended but rated prior to
the split time.

To implement the above procedure we must carefully model the hiding process
such that it would resemble the true preference discovery process that occurs in the
real system. In some cases the set of rated items is not a uniform sample of the
set of all items the user is familiar with, and such bias should be acknowledged
and handled if possible. For example, if we believe that the user will provide more
ratings about special items, but less ratings for popular items, then the hiding process
should tend to hide more popular items.

In using this measure of novelty, it is important to control for accuracy, as irrel-
evant recommendations may be new to the user, but still worthless. One approach
would be to consider novelty only among the relevant items [Zhang et al., 2002].

Example 2. We wish to evaluate the novelty of a set of movie recommenders in an
offline test. As we believe that users of our system rate movies after they watch
them, we split the user ratings in a sequential manner. For each test user profile we
choose a cutoff point randomly along the time-based sequence of movie ratings,
hiding all movies after a certain point in the sequence.

User studies on our system showed that people tend not to report ratings of
movies that they did not feel strongly about, but occasionally also do not report a
rating of a movie that they liked or disliked strongly. Therefore, we hide a rating of
a movie prior to the cutoff point with probability 1− |r−3|

2 where r ∈ {1,2,3,4,5} is
the rating of the movie, and 3 is the neutral rating. We would like to avoid predicting
these movies with hidden ratings because the user already knows about them.

Then, for each user, each recommender produces a list of 5 recommendations,
and we compute precision only over items after the cutoff point. That is, the recom-
menders get no credit for recommending movies with hidden ratings that occurred
prior to the cutoff point. In this experiment the algorithm with the highest precision
score is preferred.

Another method for evaluating novel recommendations uses the above assump-
tion that popular items are less likely to be novel. Thus, novelty can be taken into ac-
count be using an accuracy metric where the system does not get the same credit for
correctly predicting popular items as it does when it correctly predicts non-popular
items [Shani et al., 2008]. Ziegler et al. [2005] and Celma and Herrera [2008] also
give accuracy measures that take popularity into account.

Finally, we can evaluate the amount of new information in a recommendation to-
gether with the relevance of the recommended item. For example, when item ratings
are available, we can multiply the hidden rating by some information measurement
of the recommended item (such as the conditional entropy given the user profile) to
produce a novelty score.
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3.7 Serendipity

Serendipity is a measure of how surprising the successful recommendations are. For
example, if the user has rated positively many movies where a certain star actor
appears, recommending the new movie of that actor may be novel, because the user
may not know of it, but is hardly surprising. Of course, random recommendations
may be very surprising, and we therefore need to balance serendipity with accuracy.

One can think of serendipity as the amount of relevant information that is new
to the user in a recommendation. For example, if following a successful movie
recommendation the user learns of a new actor that she likes, this can be consid-
ered as serendipitous. In information retrieval, where novelty typically refers to the
new information contained in the document (and is thus close to our definition of
serendipity), Zhang et al. [2002] suggested to manually label pairs of documents
as redundant. Then, they compared algorithms on avoiding recommending redun-
dant documents. Such methods are applicable to recommender systems when some
meta-data over items, such as content information, is available.

To avoid human labeling, we could design a distance measurement between items
based on content ??. Then, we can score a successful recommendation by its dis-
tance from a set of previously rated items in a collaborative filtering system, or from
the user profile in a content-based recommender [Zhang and Hurley, 2008]. Thus,
we are rewarding the system for successful recommendations that are far from the
user profile.

Example 3. In a book recommendation application, we would like to recommend
books from authors that the reader is less familiar with. We therefore design a dis-
tance metric between a book b and a set of books B (the books that the user has pre-
viously read); Let cB,w be the number of books by writer w in B. Let cB = maxw cB,w

the maximal number of books from a single writer in B. Let d(b,B) =
1+cB−cB,w(b)

1+cB
,

where w(b) is the writer of book b.
We now run an offline experiment to evaluate which of the candidate algorithms

generates more serendipitous recommendations. We split each test user profile —
set of books that the user has read — into sets of observed books Bo

i and hidden
books Bh

i . We use Bo
i as the input for each recommender, and request a list of 5 rec-

ommendations. For each hidden book b ∈ Bh
i that appeared in the recommendation

list for user i, the recommender receives a score of d(b,Bo
i ). Thus the recommender

is getting more credit for recommending books from writers that the reader has read
less often. In this experiment the recommender that received a higher score is se-
lected for the application.

One can also think of serendipity as deviation from the “natural” prediction [Mu-
rakami et al., 2008]. That is, given a prediction engine that has a high accuracy,
the recommendations that it issues are “obvious”. Therefore, we will give higher
serendipity scores to successful recommendations that the prediction engine would
deem unlikely.

We can evaluate the serendipity of a recommender in a user study by asking the
users to mark the recommendations that they find unexpected. Then, we can also
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see whether the user followed these recommendations, which would make them
unexpected and successful and therefore serendipitous. In an online study, we can
assume that our distance metric is correct and evaluate only how distance from the
user profile affected the probability that a user will follow the recommendation. It is
important to check the effect of serendipity over time, because users might at first be
intrigued by the unexpected recommendations and try them out. If after following
the suggestion they discover that the recommendations are inappropriate, they may
stop following them in the future, or stop using the recommendation engine at all.

3.8 Diversity

Diversity is generally defined as the opposite of similarity. In some cases suggesting
a set of similar items may not be as useful for the user, because it may take longer to
explore the range of items. Consider for example a recommendation for a vacation
[Smyth and McClave, 2001], where the system should recommend vacation pack-
ages. Presenting a list with 5 recommendations, all for the same location, varying
only on the choice of hotel, or the selection of attraction, may not be as useful as
suggesting 5 different locations. The user can view the various recommended loca-
tions and request more details on a subset of the locations that are appropriate to
her.

The most explored method for measuring diversity uses item-item similarity, typ-
ically based on item content, as in Section 3.7. Then, we could measure the diver-
sity of a list based on the sum, average, min, or max distance between item pairs,
or measure the value of adding each item to the recommendation list as the new
item’s diversity from the items already in the list [Ziegler et al., 2005, Bradley and
Smyth, 2001]. The item-item similarity measurement used in evaluation can be dif-
ferent from the similarity measurement used by the algorithm that computes the
recommendation lists. For example, we can use for evaluation a costly metric that
produces more accurate results than fast approximate methods that are more suitable
for online computations.

As diversity may come at the expanse of other properties, such as accuracy
[Zhang and Hurley, 2008], we can compute curves to evaluate the decrease in accu-
racy vs. the increase in diversity.

Example 4. In a book recommendation application, we are interested in presenting
the user with a diverse set of recommendations, with minimal impact to accuracy.
We use d(b,B) from Example 3 as the distance metric. Given candidate recom-
menders, each with a tunable parameter that controls the diversity of the recommen-
dations, we train each algorithm over a range of values for the diversity parameters.
For each trained model, we now compute a precision score, and a diversity score as
follows; we take each recommendation list that an algorithm produces, and compute
the distance of each item from the rest of the list, averaging the result to obtain a
diversity score. We now plot the precision-diversity curves of the recommenders in
a graph, and select the algorithm with the dominating curve.
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In recommenders that assist in information search ??, we can assume that more
diverse recommendations will result in shorter search interactions [Smyth and Mc-
Clave, 2001]. We could use this in an online experiment measuring interaction se-
quence length as a proxy for diversification. As is always the case in online testing,
shorter sessions may be due to other factors of the system, and to validate this claim
it is useful to experiment with different diversity thresholds using the same predic-
tion engine before comparing different recommenders.

3.9 Utility

Many e-commerce websites employ a recommendation system in order to improve
their revenue by, e.g., enhancing cross-sell. In such cases the recommendation en-
gine can be judged by the revenue that it generates for the website [Shani et al.,
2005]. In general, we can define various types of utility functions that the recom-
mender tries to optimize. For such recommenders, measuring the utility, or the ex-
pected utility of the recommendations may be more significant than measuring the
accuracy of recommendations. It is also possible to view many of the other prop-
erties, such as diversity or serendipity, as different types of utility functions, over
single items or over lists. In this paper, however, we define utility as the value that
either the system or the user gains from a recommendation.

Utility can be measured cleanly from the perspective of the recommendation
engine or the recommender system owner. Care must be taken, though, when mea-
suring the utility that the user receives from the recommendations. First, user util-
ities or preferences are difficult to capture and model, and considerable research
has focused on this problem [Braziunas and Boutilier, 2005, Haddawy et al., 2002,
Queiroz, 2007]. Second, it is unclear how to aggregate user utilities across users for
computing a score for a recommender. For example, it is tempting to use money
as a utility thus selecting a recommender that minimizes user cost. However, under
the diminishing returns assumption [Spillman and Lang, 1924], the same amount
of money does not have the same utility for people with different income levels.
Therefore, the average cost per purchase, for example, is not a reasonable aggrega-
tion across users.

In an application where users rate items, it is also possible to use the ratings as
a utility measurement [Breese et al., 1998]. For example, in movie ratings, where a
5 star movie is considered an excellent movie, we can assume that a recommending
a 5 star movie has a higher utility for the user than recommending a movie that the
user will rate with 4 stars. As users may interpret ratings differently, user ratings
should be normalized before aggregating across users.

While we typically only assign positive utilities to successful recommendations,
we can also assign negative utilities to unsuccessful recommendations. For example,
if some recommended item offends the user, then we should punish the system for
recommending it by assigning a negative utility. We can also add a cost to each
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recommendation, perhaps based on the position of the recommended item in the
list, and subtract it from the utility of the item.

For any utility function, the standard evaluation of the recommender is to com-
pute the expected utility of a recommendation. In the case where the recommender
is trying to predict only a single item, such as when we evaluate the system on time-
based splits and try to predict only the next item in the sequence, the value of a
correct recommendation should simply be the utility of the item. In the task where
the recommender predicts n items we can use the sum of the utilities of the correct
recommendations in the list. When negative utilities for failed recommendations are
used, then the sum is over all recommendations, successful or failed. We can also
integrate utilities into ranking measurements, as discussed in Section 3.2.3. Finally,
we can normalize the resulting score using the maximal possible utility given the
optimal recommendation list.

Evaluating utility in user studies and online is easy in the case of recommender
utility. If the utility we optimize for is the revenue of the website, measuring the
change in revenue between users of various recommenders is simple. When we
try to optimize user utilities the online evaluation becomes harder, because users
typically find it challenging to assign utilities to outcomes. In many cases, however,
users can say whether they prefer one outcome to another. Therefore, we can try to
elicit the user preferences [Hu and Pu, 2009] in order to rank the candidate methods.

3.10 Risk

In some cases a recommendation may be associated with a potential risk. For ex-
ample, when recommending stocks for purchase, users may wish to be risk-averse,
preferring stocks that have a lower expected growth, but also a lower risk of col-
lapsing. On the other hand, users may be risk-seeking, preferring stocks that have a
potentially high, even if less likely, profit. In such cases we may wish to evaluate not
only the (expected) value generated from a recommendation, but also to minimize
the risk.

The standard way to evaluate risk sensitive systems is by considering not just the
expected utility, but also the utility variance. For example, we may use a parame-
ter q and compare two systems on E[X ] + q ·Var(X). When q is positive, this ap-
proach prefers risk-seeking (also called bold [McNee et al., 2006]) recommenders,
and when q is negative, the system prefers risk-averse recommenders.

3.11 Robustness

Robustness ?? is the stability of the recommendation in the presence of fake infor-
mation [O’Mahony et al., 2004], typically inserted on purpose in order to influence
the recommendations. As more people rely on recommender systems to guide them
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through the item space, influencing the system to change the rating of an item may
be profitable to an interested party. For example, an owner of an hotel may wish
to boost the rating for their hotel. This can be done by injecting fake user profiles
that rate the hotel positively, or by injecting fake users that rate the competitors
negatively.

Such attempts to influence the recommendation are typically called attacks
[Mobasher et al., 2007, Lam et al., 2006]. Coordinated attacks occur when a ma-
licious user intentionally queries the data set or injects fake information in order
to learn some private information of some users. In evaluating such systems, it is
important to provide a complete description of the attack protocol, as the sensitivity
of the system typically varies from one protocol to another.

In general, creating a system that is immune to any type of attack is unrealistic.
An attacker with an ability to inject an infinite amount of information can, in most
cases, manipulate a recommendation in an arbitrary way. It is therefore more useful
to estimate the cost of influencing a recommendation, which is typically measured
by the amount of injected information. While it is desirable to theoretically analyze
the cost of modifying a rating, it is not always possible. In these cases, we can
simulate a set of attacks by introducing fake information into the system data set,
empirically measuring average cost of a successful attack [Lam and Riedl, 2004,
Chirita et al., 2005].

As opposed to other evaluation criteria discussed here, it is hard to envision ex-
ecuting an attack on a real system as an online experiment. It may be fruitful, how-
ever, to analyze the real data collected in the online system to identify actual attacks
that are executed against the system.

Another type of robustness is the stability of the system under extreme con-
ditions, such as a large number of requests. While less discussed, such robust-
ness is very important to system administrators, who must avoid system malfunc-
tion. In many cases system robustness is related to the infrastructure, such as the
database software, or to the hardware specifications, and is related to scalability
(Section 3.14).

3.12 Privacy

In a collaborative filtering system, a user willingly discloses his preferences over
items to the system in the hope of getting useful recommendations. However, it is
important for most users that their preferences stay private, that is, that no third party
can use the recommendation system to learn something about the preferences of a
specific user.

For example, consider the case where a user who is interested in the wonderful,
yet rare art of growing Bahamian orchids has bought a book titled “The Divorce Or-
ganizer and Planner”. The spouse of that user, looking for a present, upon browsing
the book “The Bahamian and Caribbean Species (Cattleyas and Their Relatives)”
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may get a recommendation of the type “people who bought this book also bought”
for the divorce organizer, thus revealing sensitive private information.

It is generally considered inappropriate for a recommendation system to disclose
private information even for a single user. For this reason analysis of privacy tends
to focus on a worst case scenario, illustrating theoretical cases under which users
private information may be revealed. Other researchers [Frankowski et al., 2006]
compare algorithms by evaluating the portion of users whose private information
was compromised. The assumption in such studies is that complete privacy is not re-
alistic and that therefore we must compromise on minimizing the privacy breaches.

Another alternative is to define different levels of privacy, such as k-identity
[Frankowski et al., 2006], and compare algorithms sensitivity to privacy breaches
under varying levels of privacy.

Privacy may also come at the expense of the accuracy of the recommendations.
Therefore, it is important to analyze this trade-off carefully. Perhaps the most infor-
mative experiment is when a privacy modification has been added to an algorithm,
and the accuracy (or any other trade-off property) can be evaluated with or without
the modification [McSherry and Mironov, 2009].

3.13 Adaptivity

Real recommendation systems may operate in a setting where the item collection
changes rapidly, or where trends in interest over items may shift. Perhaps the most
obvious example of such systems is the recommendation of news items or related
stories in online newspapers [George, 2005]. In this scenario stories may be inter-
esting only over a short period of time, afterwards becoming outdated. When an
unexpected news event occurs, such as the tsunami disaster, people become inter-
ested in articles that may not have been interesting otherwise, such as a relatively
old article explaining the tsunami phenomenon. While this problem is similar to
the cold-start problem, it is different because it may be that old items that were not
regarded as interesting in the past suddenly become interesting.

This type of adaptation can be evaluated offline by analyzing the amount of in-
formation needed before an item is recommended. If we model the recommendation
process in a sequential manner, we can record, even in an offline test, the amount
of evidence that is needed before the algorithm recommends a story. It is likely that
an algorithm can be adjusted to recommend items faster once they become inter-
esting, by sacrificing some prediction accuracy. We can compare two algorithms by
evaluating a possible trade-off between accuracy and the speed of the shift in trends.

Another type of adaptivity is the rate by which the system adapts to a user’s per-
sonal preferences [Mahmood and Ricci, 2007], or to changes in user profile [Koy-
chev and Schwab, 2000]. For example, when users rate an item, they expect the set
of recommendations to change. If the recommendations stay fixed, users may as-
sume that their rating effort is wasted, and may not agree to provide more ratings.
As with the shift in trends evaluation, we can again evaluate in an offline experi-
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ment the changes in the recommendation list after adding more information to the
user profile such as new ratings. We can evaluate an algorithm by measuring the
difference between the recommendation lists before and after the new information
was added. The Gini index and Shannon entropy measures discussed in Section 3.3
can be used to measure the variability of recommendations made to a user as the
user profile changes.

3.14 Scalability

As recommender systems are designed to help users navigate in large collections
of items, one of the goals of the designers of such systems is to scale up to real
data sets. As such, it is often the case that algorithms trade other properties, such as
accuracy or coverage, for providing rapid results even for huge data sets consisting
of millions of items (e.g. Das et al. [2007]).

With the growth of the data set, many algorithms are either slowed down or
require additional resources such as computation power or memory. One standard
approach in computer science research is to evaluate the computational complexity
of an algorithm in terms of time or space requirements (as done, e.g., in [Karypis,
2001, Boutilier and Zemel, 2002]). In many cases, however, the complexity of two
algorithms is either identical, or could be reduced by changing some parameters,
such as the complexity of the model, or the sample size. Therefore, to understand
the scalability of the system it is also useful to report the consumption of system
resources over large data sets.

Scalability is typically measured by experimenting with growing data sets, show-
ing how the speed and resource consumption behave as the task scales up (see, e.g.
[George, 2005]). It is important to measure the compromises that scalability dic-
tates. For example, if the accuracy of the algorithm is lower than other candidates
that only operate on relatively small data sets, one must show over small data sets the
difference in accuracy. Such measurements can provide valuable information both
on the potential performance of recommender systems in general for the specific
task, and on future directions to explore.

As recommender systems are expected in many cases to provide rapid recom-
mendations online, it is also important to measure how fast does the system provides
recommendations [Herlocker et al., 2002, Sarwar et al., 2001]. One such measure-
ment is the throughput of the system, i.e., the number of recommendations that the
system can provide per second. We could also measure the latency (also called re-
sponse time) — the required time for making a recommendation online.
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4 Conclusion

In this paper we discussed how recommendation algorithms could be evaluated in
order to select the best algorithm from a set of candidates. This is an important step
in the research attempt to find better algorithms, as well as in application design
where a designer chooses an existing algorithm for their application. As such, many
evaluation metrics have been used for algorithm selection in the past.

We describe the concerns that need to be addressed when designing offline and
online experiments and user studies. We outline a few important measurements that
one must take in addition to the score that the metric provides, as well as other
considerations that should be taken into account when designing experiments for
recommendation algorithms.

We specify a set of properties that are sometimes discussed as important for
the recommendation system. For each such property we suggest an experiment that
can be used to rank recommenders with regards to that property. For less explored
properties, we restrict ourselves to generic descriptions that could be applied to
various manifestations of that property. Specific procedures that can be practically
implemented can then be developed for the specific property manifestation based on
our generic guidelines.
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Janez Demšar. Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res., 7:1–30, 2006. ISSN 1533-7928.

Mukund Deshpande and George Karypis. Item-based top-N recommendation algo-
rithms. ACM Transactions on Information Systems, 22(1):143–177, 2004.

Gerhard Fischer. User modeling in human-computer interaction. User Model. User-
Adapt. Interact., 11(1-2):65–86, 2001.

Daniel M. Fleder and Kartik Hosanagar. Recommender systems and their impact on
sales diversity. In EC ’07: Proceedings of the 8th ACM conference on Electronic
commerce, pages 192–199, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-653-0. doi: http://doi.acm.org/10.1145/1250910.1250939.

Dan Frankowski, Dan Cosley, Shilad Sen, Loren Terveen, and John Riedl. You are
what you say: privacy risks of public mentions. In SIGIR ’06: Proceedings of the
29th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 565–572, New York, NY, USA, 2006. ACM. ISBN
1-59593-369-7. doi: http://doi.acm.org/10.1145/1148170.1148267.

Gregory A. Fredricks and Roger B. Nelsen. On the relationship between spear-
man’s rho and kendall’s tau for pairs of continuous random variables. Journal of
Statistical Planning and Inference, 137(7):2143–2150, July 2007.

Thomas George. A scalable collaborative filtering framework based on co-
clustering. In Fifth IEEE International Conference on Data Mining, pages 625–
628, 2005.

Anthony G. Greenwald. Within-subjects designs: To use or not to use? Psychologi-
cal Bulletin, 83:216–229, 1976.



40 Guy Shani and Asela Gunawardana

Peter Haddawy, Vu Ha, Angelo Restificar, Benjamin Geisler, and John Miyamoto.
Preference elicitation via theory refinement. Journal of Machine Learning Re-
search, 4:2003, 2002.

Jonathan L. Herlocker, Joseph A. Konstan, and John T. Riedl. Explain-
ing collaborative filtering recommendations. In CSCW ’00: Proceedings of
the 2000 ACM conference on Computer supported cooperative work, pages
241–250, New York, NY, USA, 2000. ACM. ISBN 1-58113-222-0. doi:
http://doi.acm.org/10.1145/358916.358995.

Jonathan L. Herlocker, Joseph A. Konstan, and John T. Riedl. An empir-
ical analysis of design choices in neighborhood-based collaborative filter-
ing algorithms. Inf. Retr., 5(4):287–310, 2002. ISSN 1386-4564. doi:
http://dx.doi.org/10.1023/A:1020443909834.

Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and
John T. Riedl. Evaluating collaborative filtering recommender sys-
tems. ACM Trans. Inf. Syst., 22(1):5–53, 2004. ISSN 1046-8188. doi:
http://doi.acm.org/10.1145/963770.963772.

Yoshinori Hijikata, Takuya Shimizu, and Shogo Nishida. Discovery-oriented
collaborative filtering for improving user satisfaction. In IUI ’09: Proceed-
ings of the 13th international conference on Intelligent user interfaces, pages
67–76, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-168-2. doi:
http://doi.acm.org/10.1145/1502650.1502663.

Rong Hu and Pearl Pu. A comparative user study on rating vs. personal-
ity quiz based preference elicitation methods. In IUI 0́9: Proceedings of
the 13th international conference on Intelligent user interfaces, pages 367–
372, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-168-2. doi:
http://doi.acm.org/10.1145/1502650.1502702.
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