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Abstract: Marginal Conditional Stochastic Dominance (MCSD) states the probabilistic conditions under which, 

given a specific portfolio, one risky asset is marginally preferred to another by all risk-averse investors. Furthermore, 

by increasing the share of dominating assets and reducing the share of dominated assets one can improve the portfo-

lio performance for all these investors. We use this standard MCSD model sequentially to build optimal portfolios 

that are then compared to the optimal portfolios obtained from Chow’s MCSD statistical test model. These portfolios 

are furthermore compared to the portfolios obtained from the recently developed Almost Marginal Conditional Sto-

chastic Dominance (AMCSD) model. The AMCSD model restricts the class of risk-averse investors by not includ-

ing extreme case utility functions and reducing the incidence of unrealistic behavior under uncertainty. For each 

model, an algorithm is developed to manage the various dynamic portfolios traded on the New York, Frankfurt, 

London, and Tel Aviv stock exchanges during the years 2000-2012. The results show how the various MCSD opti-

mal portfolios provide valid investment alternatives to stochastic dominance optimization. MCSD and AMCSD in-

vestment models dramatically improve the initial portfolios and accumulate higher returns while the strategy derived 

from Chow’s statistical test performed poorly and did not yield any positive return. 
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1. INTRODUCTION 

 The essence of portfolio theory is to design rules that will 

satisfy the choices of investors to increase wealth in an envi-
ronment of risk and uncertainty. In a static world the sim-
plest model amounts to choosing a portfolio of assets that 
maximizes the total expected return while keeping risk at a 
satisfactory level. This basic model has suffered major set-
backs when the variance was used to estimate portfolio risk 

because in order to be compatible with investors preferences, 
it requires that assets be normally distributed. The failure of 
the mean-variance paradigm became evident when it ap-
peared that, empirically, financial assets were not normally 
distributed and higher moments such as skewness and kurto-
sis could not be easily dismissed. 

1
Afterwards, the mean-

variance model was theoretically remedied with the use of 
expected utility maximization. 

 In practice, the solution of using expected utility empiri-
cally came with the advent of Second Degree Stochastic 
Dominance (SSD) by Hanoch and Levy (1969), Hadar and  
 

*Address correspondence to this author Department of Economics, Ben-

Gurion University of the Negev, Beer-Sheva, Israel. Email: shalit@bgu.ac.il  

                                                      

1 Furthermore, as shown by Lambert and Yitzhaki (2014), higher variance 

would not be so bad for low risk-averse investors. 

Russell (1969), and Rothschild and Stiglitz (1970) all of 

whom devise rules based on the entire statistical distribution 
of risky assets instead of a finite number of moments. Be-
cause of this, less restrictive assumptions regarding inves-
tor’s behavior were needed, with the only requirement being 
that the utility functions describing a rational risk-averse 
investor be monotonically increasing and concave. SSD 

compares cumulative probability distributions of risky assets 
to determinate their dominance. The main advantage of SSD 
lies in its ability to discriminate among existing assets. How-
ever, it lacks the power to reach portfolio optimality. 

 To overcome this last obstacle Shalit and Yitzhaki (1994) 
developed the concept of Marginal Conditional Stochastic 
Dominance (MCSD) in finance. Under the SSD assump-
tions, MCSD allows an investor holding a given portfolio to 

derive dominance relations between two assets. Then, a mar-
ginal increase in the share of the dominating asset at the ex-
pense of the dominated one will improve the portfolio for all 
risk-averse investors. A series of marginal improvements 
will lead to a SSD efficient portfolio regardless of whether a 
change in portfolio structure or a new investment opportuni-

ty is being considered. MCSD has enjoyed some success 
owing to the papers of Chow, Huang, and Hu (2007), Clark 
and Kassimatis (2012), Clark and Kassimatis (2013), Shalit 
and Yitzhaki (2003) and Shalit (2010) to cite a few. Most 
notably is that for portfolio management, Clark, Jokung, and 
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Kassimatis (2011) used MCSD to develop a new methodolo-
gy aimed at constructing SSD efficient portfolios. 

 Chow (2001) improved upon MCSD by introducing a 
statistical test to confine the number of assets to those with 
significant dominance relations. He basically reformulated 
the model to make it more suitable for statistical computa-
tion and testing. An additional issue regarding SSD and 
MCSD is that some extreme utility functions that satisfy the 

mathematical definition of risk aversion are hardly present in 
the real world. 2 To tackle this issue Denuit, Huang,Tzeng, 
and Wang (2014) recently developed the concept of Almost 
Marginal Conditional Stochastic Dominance (AMCSD). The 
basic idea of AMCSD is that the set of relevant utility func-
tions is reduced by putting restrictions on the second deriva-

tive. Accordingly, Denuit et al (2014) obtained new MCSD 
conditions whose purpose was to increase the number of 
dominance relations. 

 In this paper, we apply the three different MCSD ap-
proaches to test active portfolio management. Our purpose is 
to show in practice how a series of small portfolio improve-
ments leads to portfolio optimization for all risk-averse in-
vestors. Although MCSD was applied successfully to active 

portfolio management we are providing here a new compari-
son of three approaches related to MCSD. Our data consists 
of historical returns for the 2000-2012 period from four fi-
nancial markets to test our optimization algorithms written in 
MATLAB. 

 In the next section we provide the theoretical framework 
of the three MCSD models. In section 3, we outline the op-
timization methodology. In section 4, we present the data 

and in Section 5 we show the main results. Section 6 con-
cludes the paper as well as the implications of our findings. 

2. MCSD THEORY 

 We begin by providing the theoretical background for the 
three models we use to construct optimal portfolios, namely 
the original Shalit and Yitzhaki (1994) MCSD, the model 
derived from Chow’s (2001) statistical test for MCSD, and 
Denuit et al.’s (2014) recent model of AMCSD . The three 
models are rooted in the concept of SSD that expresses the 
probabilistic conditions under which all risk-averse investors 
prefer one risky asset to another. SSD was developed inde-
pendently by Hadar and Russell (1969), Hanoch and Levy 
(1969) and, Rothschild and Stiglitz (1970) who derived the 
necessary and sufficient conditions by using the asset’s cu-
mulative probability distributions functions (CDF) as we 
now present. Let us consider a risk-averse investor who max-
imizes the expected utility of asset returns EU(r) where U is 
non-decreasing and concave. Given two risky assets with 
random returns rk  and rj  and CDF Fk and Gj  the SSD nec-
essary and sufficient conditions are stated as follows: 

                                                      

2 For instance, a lottery with equal probabilities prizes of 999$ or 100,000$ 
does not dominate a certain prize of 1,000$, although any rational agent will 

choose the lottery. 

 Theorem 1:    F k G jE U r E U r     
 if and only if  

    0

x

j j k kG r F r


  
  for all x and all concave U. 

It should be noted that these conditions are not so practical 

when applied to optimizing portfolios as they require infinite 

comparisons of CDFs, their intersections, and their areas 

under these CDFs. A more accessible and intuitive alterna-

tive for using CDFs was provided by Shorrocks (1983) who 

developed the absolute (generalized) Lorenz curves to rank 

distributions and derive appropriate necessary and sufficient 

conditions for SSD.3 To see this equivalence, let us define 

the absolute Lorenz curve as the function relating conditional 

mean return to the cumulative probability of getting that re-

turn, namely: 

    ,

x

L rdF r for all x


   (1) 

where  is the cumulative probability  
x

dF r


   Garts-

with (1977) has simplified the notation of the Lorenz curve 

as    1

0

L F d



     and thus only one equation is needed 

to formulate the Lorenz curve. As shown by Thistle (1989), 

the SSD conditions using the Lorenz become: 

Theorem 2:    F k G jE U r E U r     
if and only if 

    0k jL L    for all (0,1)  , 

where Lk() and Lj() are the absolute Lorenz curves of asset 

k and asset j, respectively. In other words, the absolute Lo-

renz of the dominating asset must not lie below the absolute 

Lorenz curve of the dominated one. The main reason to pre-

fer the SSD concept over some other alternatives is that there 

is no need for restrictive assumptions regarding the utility 

function and the distribution of the risky assets. Nonetheless, 

there are major shortcomings, the main one being SSD’s 

ineptitude to obtain optimal portfolios. Indeed, once an op-

timum portfolio is attained it can always be improved by 

altering the allocation increasing the dominating asset and 

shortening the dominated asset and raising the portfolio ex-

pected return. 

 To correct upon SSD lacunae, Shalit and Yitzhaki (1994) 

developed the concept of MCSD, which as mentioned previ-

ously, provides dominating and dominated assets conditional 

upon holding a portfolio. For all risk-averse expected utility 

maximizers, MCSD provides the probabilistic rules for one 

asset to marginally dominate another one and improve upon 

the initial portfolio. Consider a risk-averse investor holding a 

                                                      

3 In welfare economics, relative Lorenz curves are used to measure income 

inequality and wealth distribution. In financial economics, absolute Lorenz 
curves are used to rank distributions and measure the risk and return of 

assets and portfolios. See Shalit (2014). 
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portfolio p of n risky assets defined by the shares  i   

such that 
1

1
n

i

i




 . The assets yield risky returns 

 ir r and the portfolio return is obtained by 
1

n

i i

i

p r


 . 

Expected utility maximizers who want to improve their cur-

rent positions, but without the trouble of reorganizing their 

entire portfolios, can marginally alter some of their holdings. 

Usually MCSD provides the conditions for dominance in the 

case of two assets. To marginally increase the share of domi-

nating asset j, one can marginally decrease the share of dom-

inated asset k, such as: 
k jd d   . Accordingly, portfolio 

return changes as  k k jdp d r r  and the change in ex-

pected utility becomes:  
 

 

' k

k j

U p d
dE U p E

r r

 
   

  

, lead-

ing to: 

 
       ' k j

k

dE U p
U t t t f t dt

d
 







        (2) 

where  i t  is the conditional expected return on asset i 

given the portfolio return t, i.e.,    i it E r p t    and 

 f t  is the pdf of portfolio returns t. (See Shalit and 

Yitzhaki (1994)). Asset k dominates asset j if, and only if 

Equation (2) is non-negative and is increasing the share of 

asset k on account of asset j increasing expected utility. 

Since  'U t is positive for all returns Equation (2) can be 

expressed in terms of Absolute Concentration Curves 

(ACCs) which are defined as the cumulative expected re-

turns on an asset conditional on the return on the portfolio . 

Namely, 

     
p

i iACC t f t dt

 


   (3) 

where p is the return implicitly defined by the CDF of the 

portfolio and  the cumulative probability: 

 
p

f t dt


   (4) 

Theorem 2: (MCSD) Given portfolio  asset k dominates 
marginally asset j for all risk-averse investors if and only if 

   k jACC ACC    (5) 

Proof: (See Shalit and Yitzhaki (1994)) 

 MSCD conditions are provided for two assets given a 

portfolio. As shown by Shalit and Yitzhaki (2003) in the 
case of m assets, the conditions are derived by trying to max-
imize the Lorenz of Equation (1) which is written as: 

       
p pn n

i i i i

i i

L tf t dt r f t dt ACC

    
 

      (6) 

 For a given portfolio 0 , an alternative portfolio 

   1 0 d    is preferred by all risk-averse investors if 

portfolio  1  leads to a higher Lorenz i.e.,: 

 
        

n n

i i i i

i ii

L
d ACC d for all


    







   (7) 

subject to 0
n

i

i

d  . One of the advantages of MCSD is 

that a series of marginal improvements will eventually lead 

to an optimal SSD portfolio. The main shortcomings of the 

method is that the inclusion of abnormal concave utility 

functions are compulsory. Another less important one is the 

lack of a statistical test, which, however was later devised by 

Chow and which is described as follows. 

2.1. Chow’s Statistical Test  

 The main issue not addressed by standard MCSD is 

whether dominance relations can be established from a sam-

ple of asset returns. Chow (2001) answered this question by 

developing a procedure that tests whether ACCs intersect 

statistically. The test is described as follows: Define anew 

the ACCs and the Lorenz to be more suitable for statistical 

computations. From Equation (4) the inverse  1p F   

defines portfolio return p  for the probability. Furthermore 

let I(t) be an index function mapping 1 for t ≤ p and 0 other-

wise. Hence, the ACC for asset i can be written: 

      1| ,i i i i iACC r t F r I t f t r dr dt


 





     (8) 

Equation (8) allows us to construct a test that checks whether 

two unique ACCs intersect. Consider a sample of n assets 

and T time periods. We choose a set of S target returns from 

the portfolio distribution as indicated by 

  | 1, 2,...,sp s S . Every target return is a test point that 

checks the intersection of ACCs. From Equation (8) we can 

compute the ACC of asset i, at a target point 
sp by averaging 

all the observations of vector  i sr I p which is calculated as: 

     ,

1

1
|

T

i i s i j j s i s

j

ACC r t p r I p r I p
T 

    (9) 

 Using Equation (9) we then estimate the difference be-
tween two ACCs at the target return

sp  as: 

     | |
k j

s k k s j j sp ACC r t p ACC r t p


      (10) 

 This allows us to obtain a vector of length S for all the 
target returns. The next step is to estimate the standard devia-
tions using Rao’s theorem and computing: 
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     
 

 

,1
k j

k s

s k s j s

j s

r I p
p var r I p var r I p cov

T r I p


   
            

    

 (11) 

 Finally, we obtain the Z statistic of the estimator of (10) 
by dividing with the standard deviation in Equation (11): 

 
 

 

k j

sk j

t k j

s

p
Z

p














 
 
 

 (12) 

 When parts of ACCs lie close to each other, conventional 
statistical inference methods cannot distinguish weak domi-

nance relations from intersections. In this case, Chow sug-
gests to obtain the critical values for every test point by us-
ing the Studentized Maximum Modulus distribution, with the 
normal approximation for large samples. The critical value 
given S test points and significance level  can be computed 
by the following approximation: 

   
1

, , 0.5 1 1 SSMM S Z  
  

     
  

 (13) 

 Using the values obtained by (12) and (13) it is possible 

to test the dominance relations for the desired significance 

level using the following rule: Asset k dominates asset j if 

   , ,k j

tZ SMM S     for all t and asset j dominates 

asset k if    , ,k j

tZ SMM S      for all t. For other 

cases there are no significant dominance relations either be-

cause ACCs intersect or lie close to each other. 

 This statistical test can help us make real-life decisions 
when investment portfolios need to be revised. Though, gen-
erally, such a test can limit the number of pairs of assets with 
dominance relations only to those with strong and significant 
dominance and thus be very helpful for portfolio manage-

ment. In practice, however, some questions remain unan-
swered regarding the desired significance of the test and its 
power. Indeed, one doesn’t know what significance levels 
will produce the best operative results, as lower significance 
levels will be less discriminative and higher levels will show 
poor dominance relations to choose from. 

2.2. Almost Marginal Conditional Stochastic Dominance 

 Some of the issues incurred with MCSD deal the inclu-
sion of extreme utility functions in the set of risk-averse in-
vestors. Most of these extreme functions do not appear in the 
real world and hence should not be considered when opti-

mizing portfolios of risky assets. Denuit, Huang, Tzeng, and 
Wang, (2014) developed “Almost Marginal Conditional Sto-
chastic Dominance” (AMCSD) that applies the dominance 
relations to a smaller set of risk-averse investors by exclud-
ing those extreme utility functions. Thus, AMCSD reduces 
the set of risk-averse agents by restricting the second deriva-

tive of the utility function. This can be seen as follows: Let 
U

1
 be the entire set of increasing and concave utility func-

tions that are defined on portfolio return p. A new set, U
2
 is 

defined using a single parameter €€(0,0.5) that limits set of 
utility functions: 

 
      

 

1

2

1

| :

1

p
U p U p U p inf U

U





       
  

  

 (14) 

Where  inf  is the infimum function. It can be easily 

shown that U
2
(0) = U

1
 and  2 0.5U  . In that case, U

2
 

can be considered as a set without extreme behavior func-

tions,with the critical limit being set by a sole parameter €. 

 By using Equation (4) and taking into consideration the 

fact that portfolio return p  can be obtained for the probabil-

ity   by applying  1p F  we can redefine the ACCs to 

be a function of p  instead of  , and can define the set of 

portfolio returns in which there is a “transgression” of the 

standard MCSD criteria as : 

    | 0k jp ACC p ACC p      

Theorem 4: (AMCSD) For any utility function in U
2
, the 

expression in (2) is non-negative if, and only if: 

   
 

 
|

k

k j

j

k j

ACC p
ACC p ACC p p dp

ACC p



 




 

 

 


       






  (15) 

Proof: See Denuit et al (2014) 

 We have shown that it is possible to derive dominance 
relations on a confined set of risk-averse utility functions. It 

is likely that by using the criteria described in (15) we can 
better model the behavior of real-world investors, and thus 
produce better performance. Still a valid question remains 
regarding what the proper value for € is in limiting the ex-
treme behavior utility functions. Levy, Leshno, and Leibo-
vitch (2010) used a series of laboratory experiments to derive 

the value of 0.3. In the following we will try to shed some 
light on this issue. 

3. MANAGING THE MCSD PORTFOLIOS 

 We now present the rules directing the investment algo-
rithm for the three portfolios. It is assumed that market par-

ticipants behave rationally in the sense that, learning from 
historic returns, investors derive the dominance relations and 
then, buy the dominating stocks and sell the dominated ones. 
For each MCSD approach we start with two portfolios, one 
where the assets are weighted according to the market index 
of that specific stock exchange and the other where all assets 
are weighted equally, i.e., the so called 1/N portfolio. 

3.1. Moving Window, Sample Size, and Computation 
Procedure 

 Following Chow’s suggestion that a sample of 600 is the 
minimal size needed to achieve satisfying test power, the 
sample size upon which the dominance relations are estab-
lished is set to 600 observations,. Going beyond 600 obser-
vations would probably introduce irrelevant and noisier data 

into the analysis. To be more consistent with the activity of a 



40    The Open Journal of Economics and Finance, 2018, Vol. 2, No. 1 Shalit and Gertsman 

real-life portfolio manager, we assume that the portfolio 

changes every 30 observations, which accounts for approxi-
mately a month and a half of daily trades. For every data set, 
the first day a portfolio changes is with the 601-th observa-
tion, since dominance relations are established with the 1- 
600 observations. The second trading day is with the 631-th 

observation since the sample used to compute dominance 
includes the 31-630 observations, and so on. After compos-
ing the new portfolio, it is used for the next 30 days until a 
new portfolio is formed, and the process is renewed all over 
again. 

 For every update point, i.e., observations 601,631, etc., a 

sample of 600 previous daily returns of K stocks and the 

initial portfolio consisting either in the market index, either 

the 1/N portfolio is used. With this data we construct the 

marginal change of   of K elements and compute the new 

portfolio returns for the next 30 days as follows: If Rp are the 

returns on the initial portfolio, then the returns on the new 

portfolio are *

1

K

p p i i

i

R R r 



  . This method was chosen 

because we ignore the exact weights of stocks in the initial 

market index portfolio and know only their returns. We re-

strict the marginal change to be in the ±100% interval in 

order to avoid infinite loops and stay close to real life portfo-

lios. We now explain how the   vector is constructed. 

3.2. Pairing the Stocks 

 We choose a pair of stocks whose dominance relation is 
defined according to the model at hand. Using the sample 
data, two matrices are constructed: a Boolean dominance 

matrix and a dominance strength matrix. The Boolean domi-
nance matrix indicates whether the i-th stock dominates the 
j-th stock with “1” in the i-th column and j-th row and “0” 
elsewhere. The dominance strength matrix quantifies the 
strength of the dominance relations. For example, in MCSD 
and AMCSD this value is the maximum difference between 

the ACCs of the two stocks. In the Chow test this value is the 
maximum of the Z-statistic for the two stocks. Once the ma-
trices are computed, all pairs are sorted with respect to their 
dominance strength index. A pair is chosen that has the larg-
est strength index value under two conditions: the pair was 
not used in the previous 10 iterations in order to avoid inter-

nal loops, and none of the stocks in the pair reached the 
±100% limit. After a pair is chosen, the marginal change is 
obtained when the share of dominating stock is increased at 
the expense of the dominated stock. Thereafter, the Boolean 
dominance relation matrix and dominance strength matrix is 
computed again and the whole process is reiterated. Unless it 

is terminated due to lack of pairs with definite dominance 
relations, the process is restricted to a maximum of 1000 
iterations. 

3.3. Marginal Change  

 After a pair with a defined dominance is selected, a sub-

routine is conducted to compute the best marginal change of 
the weight of the dominating stock on account of the weight 
of the dominated stock. First, the weight of the dominating 

stock is increased by 50% and the weight of the dominated 

stock is subsequently decreased by 50%. Then, the domi-
nance relations are computed for those two stocks again. If 
the dominance relation persists, then the change is preserved; 
otherwise it is discarded. Next, the whole process is reiterat-
ed with a change of 25%. At every step n, the change is 1/2

n
. 

This method allows us to get close enough to the point where 
dominance relations disappear within 20 fixed steps. For 
every step the ±100% limit is checked and the process stops 
if this weight exceeds this interval. 

4. THE DATA 

 The research was performed in four different stock ex-
changes: For the Tel-Aviv stock exchange, we use daily 
prices for the period 03.01.2000 - 28.06.2012. The stocks 
were chosen from the constituents of the Tel-Aviv-100 in-
dex, and the index itself was taken as one of the initial port-
folios. The constituents weights were computed by the mar-

ket shares in the index. The New York stock exchange was 
represented with the S&P-500 index, and its constituents 
were the subsequent stocks listed for the period 03.01.2000 - 
31.12.2011. The London stock exchange had a smaller sam-
ple for the period 03.03.2003 - 30.12.2011 and included the 
FTSE-100 index, and its constituents. The Frankfurt stock 

exchange had a similar sample for the period 02.01.2003 - 
30.12.2011. The difference between the Frankfurt exchange 
and the other exchanges is the incongruence of the initial 
portfolio index DAX-30 and the list of the assets based on 
the DAX-100. The reason for this disparity is the lack of 
accessible data regarding the DAX-100 returns.4 All the 

returns were corrected for dividends and splits. Assets with 
more than half of the data missing were eliminated and 
therefore in some markets the final number of assets was less 
than 100. For the missing data, a linear interpolation was 
made using the prices before and after the gap. After these 
corrections, the daily return for day t was computed as rt  = 
Pt/Pt-1 – 1. 

5. OPTIMIZATION RESULTS 

 To check which MCSD managed portfolio approach pro-

duces statistically significant excessive returns, we used two 

tests: the simple mean difference test and the sign test. We 

begin to show the first test. Let 
M

pr and 
l

pr  be the returns of 

the actively managed and initial portfolio, respectively. We 

set the null hypothesis as  0 : 0M I

p pH E r r   and use the 

statistic 
M I

p pr r  where 
M

pr and 
I

pr are the sample means. 

Hence, we use the standard Z-test with standard deviation 

  /M I

p pr r N   as follows: 

                                                      

4 The data for the Tel-Aviv Stock Exchange data were obtained from its 

website and for the other three datasets were obtained from Yahoo! finance. 
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  /

M I

p p

st
M I

p p

r r
Z

r r N






 (16) 

The sign test counts the instances that returns of the managed 

portfolio exceed those of the initial portfolio. When there is 

no significant increase in returns, the probability of sampling 

an occurrence with greater returns must be not different from 

0.5. Thus, under the null  0 : 0 0.5M I

p pH Prob r r   we 

compute the subsequent Z-statistic as follows: 

0.5

0.5
st

N N
Z

N

 
  (17) 

where N
+ 

is the number of instances that the managed portfo-
lio has outperformed the initial one. Since the procedures use 
the first 600 observations to establish dominance, MCSD-
managed portfolios started from the 601st observation. 

5.1. MCSD 

 At first, in every stock exchange, we use the market in-
dex as the initial portfolio and apply the standard MCSD 
portfolio management to check whether the method can im-
prove portfolio performance. In financial theory the market 

index is often considered an efficient portfolio, hence, this 
test amounts to checking market efficiency. The results for 
the two tests are given in Table 1. 

 The results show that in three out of the four stock mar-
kets the portfolio management algorithm using the MCSD 
criterion produced greater average daily returns than the ini-
tial portfolio. In two of the markets the improvement was 
statistically significant. In the Tel-Aviv and the Frankfurt 

exchanges the algorithm produced an additional 0.0367% 
and 0.0417% to the average daily return, which amounts to 
approximately to 9.175% and 10.425% in annual returns. In 
the US market, the managed portfolio produced poorer re-
sults than the initial one, although those results were not sta-
tistically significant. We have established that the manage-

ment algorithm efficiency depends upon which market it is 
applied and it generally improved the initial portfolio. 

5.2. MCSD with the Integrated Chow Test 

 Although the purpose of the Chow test is to improve the 
performance of the standard MCSD, questions remain as to 

the validity of the parameters used. For one thing, what is the 

optimal value of the significance level? As we would like 
to find only viable dominance relations, a small  should be 

chosen. However, a small  would lead to poor test power 
and viable dominance relations could be ignored due to sta-
tistical “noise”. Another question regards the number of 
points that should be used in the simultaneous test. In his 
original work, Chow used simulated data and came to the 
conclusion that 10 points received higher power than 20 

points. Finally, the location of these points seems completely 
arbitrary. To tackle these issues we used values of  of 0.05, 
0.1, 0.2 and 0.3 and checked anew the notion that 10 points 
were better than 20 points. Finally, two approaches were 
used to locate the test points: either to place them equally on 
the return distribution or else to place them on the equal 
quantiles. 

 The combinations of these parameters produced different 

results and we reached the conclusion that using 10 test 
points instead of 20 yields better test power. Furthermore, 
placing the test points at equally spaced quantiles results in a 
better test power. Finally, for the significance level the best 
results were obtained using the greater values of . In Table 
2, we show the results using 10 test points placed at equally 
spaced quantiles, and setting  = 0.3. 

 The results show the same pattern as with the MCSD-

managed portfolios, but the statistically significant changes 
are much smaller. As compared with the MCSD managed 
portfolios, Chow’s test algorithm produced only two thirds 
of the excess returns in Tel-Aviv and half of the excess re-
turns in Frankfurt. In order to determine the best portfolio 
management, we calculated the statistics for the excess re-

turns using Chow’s test in lieu of the regular MCSD and 
compared them as shown in Table 3. 

 It seems that in three of the four markets, the portfolios 
managed according to Chow’s test resulted in worse perfor-
mances than those portfolios managed by the standard 
MCSD even when we used the best combination of test pa-
rameters. The results confirm what was evident in Table 2 
i.e., that in most cases MCSD with an integrated Chow test 

reduces the average daily excess results although not always 
statistically significantly. 

5.3. AMCSD 

 In the AMCSD procedure, only one parameter needs to 
be valued, i.e., the utility set restriction factor €. Increasing 

this parameter confines the utility set that we are taking into 

Table 1. Excess Returns of MCSD Managed Portfolios. 

 Tel-Aviv New York London Frankfurt 

MCSD I

p pr r  0.000367 -0.000037 0.000081 0.000417 

p-value of the mean diff. 

test 
0.076045 0.552780 0.402263 0.125767 

p-value of the sign test 0.079495 0.508111 0.167100 0.042489 

Observations 2470 2419 1631 1699 
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account and increases the number of dominance relations 
pairs. In some recent work by Levy, Leshno, and Leibovitch 
(2010), a value of 0.3 was obtained. In the present paper we 
use the values of 0.1, 0.2, 0.3 and 0.4 to see how portfolio 
performance changes. It seems that the optimal value of the € 

parameter is 0.4. In most cases, the mean excess returns are 
increasing monotonically and become more significant when 
€ rises. In Table 4 we present the AMCSD results of excess 
returns for the initial portfolio and in Table 5 we exhibit the 
results for the AMCSD portfolio vs the MCSD-managed 
portfolio. 

 The results clearly show that AMCSD can produce better 
portfolio returns in all markets and that those changes are 

statistically significant (at least, according to the sign test). 
The managed portfolios in Tel-Aviv, New York, London, 
and Frankfurt exchanges produce average excess daily re-
turns of 0.0619%, 0.01%, 0.0252%, and 0.0794%, which 
amounts to annual mean returns of 15.475%, 2.5%, 6.3% and 
19.85%. Moreover, when AMCSD portfolio management is 

used instead of MCSD we observe significant improvements 
in all four markets. 

5.4. Changing the Initial Portfolio 

 As a test for robustness, we used the various MCSD pro-

cedures on the 1/N portfolio as the initial portfolio. Every 
asset in the portfolio is equally weighted from all the assets 
in the specific exchange. The results are not reported here 
and are available from the authors upon request. These re-
sults are somewhat astonishing since in all the markets and 
for all the procedures, the improvements were significantly 

lower than when the index portfolio was used as the initial 
portfolio. These results raise the following questions: Does 
this indicate that the 1/N portfolio is more efficient that the 
market index portfolio? This is quite possible since MCSD 
has far less room for improvement. Although these results to 
some extent contradict the general conclusions of De Miguel 

et. al. (2009) that 1/N naive portfolios are inefficient, we 
reiterate that the improvements provide portfolios that are 
marginally stochastic dominant. We have shown that im-
proving performance strongly depends upon the initial port-
folio and more specifically whether it is located near a local 
(or even global) optimum if such optimum exists. 

Table 2. Chow Test-Managed Portfolios. 

 Tel-Aviv New York London Frankfurt 

Chow I

p pr r  0.000267 -0.000082 0.000105 0.000195 

p-value of the mean diff. test 0.058611 0.679168 0.299266 0.205474 

p-value of the sign test 0.000069 0.014841 0.021305 0.000697 

Observations 2470 2419 1631 1699 

Table 3. Chow Test vs Standard MCSD-Managed Portfolios. 

 Tel-Aviv New York London Frankfurt 

Chow MCSD

p pr r  -0.000100 -0.000045 0.000025 -0.000221 

p-value of the mean diff. test 0.672852 0.585092 0.464774 0.817302 

p-value of the sign test 0.358609 0.572597 0.284505 0.623767 

Observations 2470 2419 1631 1699 

Table 4. AMCSD-Managed Portfolios. 

For =0.4 Tel-Aviv New York London Frankfurt 

AMCSD I

p pr r  0.000619 0.000100 0.000252 0.000794 

p-value of the mean diff. test 0.044458 0.401202 0.279602 0.118175 

p-value of the sign test 0.045498 0.086559 0.022446 0.000741 

Observations 2470 2419 1631 1699 
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5.5. The Market Effect 

 If we examine the mean excess return in the various ex-
changes, a pattern seems to prevail in all methods. The best 
results are obtained in the Tel-Aviv and Frankfurt exchanges 

followed by London and then New York. One possible ex-
planation for this pattern is that the level of market competi-
tion and efficiency can affect the results of the managing 
algorithm. Namely, more efficient markets like New York 
and London exhibit fast price adjustments, and automatic 
trading systems perform poorly. 

6. CONCLUSION 

 In this paper we used three different, yet interconnected, 
methods to manage portfolios. As shown, the standard 
MCSD procedure provides quite good results at least in the 
less efficient markets. Using Chow’s test in MCSD resulted 

in poorer portfolio improvement probably due to the test 
power which ignores assets with growth potential. It may be 
possible to improve the test by deriving its optimal parame-
ters by using 10 test points instead of 20 and locating them 
based on quantiles. Finally, we found evidence that using 
AMCSD improves the performance of the portfolio, beyond 

the standard MCSD. The reason is that if forced to satisfy 
“bizarre” concave utility functions, we ignore assets with 
improving returns. 
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