Rate vs. Buffer Size -Greedy Information Gathering on the Line

Adi Rosén LRI CNRS - U. Paris 11 Gabriel Scalosub Computer Science Department Technion

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

Packet is stored in the buffer

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

Second case: the packet is not forwarded

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

 $\Rightarrow \quad \frac{\text{Adversary's throughput}}{\text{Protocol's throughput}} \geq 2.$

- 3 nodes, buffer size B = 1.
- Adversary:
 - Injects 1 packet/time-unit.
 - Chooses source.
 - Packet destination: node 3.
- Goal: maximize the throughput.
 - The number of packets successfully delivered.

 $\Rightarrow \quad \frac{\text{Adversary's throughput}}{\text{Protocol's throughput}} \geq 2.$

- What happens if B = 2?
 - Greedy is optimal.

Motivation

• Main concern:

Provide high throughput guarantees in adversarial settings.

- Why adversarial traffic?
 - Globally applicable.
 - Good traffic characterization: hard to find.
- Adversary does not control:
 - Protocol, and
 - Buffer provisioning.
- Online local-control protocols.
- Fundamental networking problems, e.g., in Sensor Networks.

Model

- Digraph G = (V, E).
- Buffer of size *B* at the tail of every edge.
- Packet: source, destination, and path.
- Discrete time units.
- In every time unit:
 - At most one packet traverses an edge.
 - A packet either arrives to destination, or is stored in a buffer.
- If the buffer is full packets must be dropped.
- Online local control algorithm.
- Measure: Competitive Ratio
 - A protocol has competitive ratio c if for any input sequence σ ,

$$\operatorname{Protocol}(\sigma) \ge \frac{1}{c} \operatorname{OPT}(\sigma).$$

Model

- Digraph G = (V, E).
- Buffer of size *B* at the tail of every edge.
- Packet: source, destination, and path.
- Discrete time units.
- In every time unit:
 - At most one packet traverses an edge.
 - A packet either arrives to destination, or is stored in a buffer.
- If the buffer is full packets must be dropped.
- Online local control algorithm.
- Measure: Competitive Ratio
 - A protocol has competitive ratio c if for any input sequence σ ,

$$\operatorname{Protocol}(\sigma) \ge \frac{1}{c} \operatorname{OPT}(\sigma).$$

Model (cont.)

Extending the model:

- *r*-adversary (for *r* > 0):
 For every edge *e*, at most [*rt*] packets that use *e* injected in *t* time units.
- Goal: Analyze the performance guarantees in terms of:
 - Network size done in CNT,
 - Buffer size,
 - Adversary's rate.

Model (cont.)

Extending the model:

- r-adversary (for r > 0):
 For every edge e, at most [rt] packets that use e injected in t time units.
- Goal: Analyze the performance guarantees in terms of:
 - Network size done in CNT,
 - Buffer size,
 - Adversary's rate.

Greedy Information Gathering on the Line

As a first step, we consider:

• Line topology:

- Information gathering:
 - All packets destined to node n.
- The Greedy algorithm:
 - Accept/send if you can.

Previous Work

- Sensor Networks & Wireless Ad-hoc Networks Information gathering (on the line).
 [Florens et al. '04, Kothapalli et al. '03, Kothapalli et al. '05]
- Competitive Network Throughput (CNT) model.
- General Topologies:
 - NTG has bounded competitiveness.
 - FTG has unbounded competitiveness.
- Line topology, B = 1:
 - Greedy is $\Theta(n)$ -competitive.
- Line topology, $B \ge 2$:
 - NTG is $O(n^{2/3})$ -competitive.
 - Greedy is $\Omega(\sqrt{n})$ -competitive (even for information gathering).
 - Centralized polylog competitive alg's.
- Information gathering on the line, $B \ge 2$:
 - Greedy is $O(\sqrt{n})$ -competitive.

[Angelov et al. '05, Azar and Zachut '05]

[Aiello et al. '03]

Outline of Results

• B=1, $r \leq 1$: $\Theta(rn)$ -competitive.

• $B \ge 2$:

Range of r	Subrange of r	Result
$r \leq 1$	$r < \sqrt{\frac{B-1}{n}}$	Optimal
	$r \ge \sqrt{\frac{B-1}{n}}$	$\Theta\left(\max\left\{1, r\sqrt{\frac{n}{B}}\right\}\right)$
$1 < r < \min\{B, \sqrt{n}\}$	$r \leq \frac{n}{B}$	$\Theta\left(\sqrt{\frac{rn}{B}}\right)$
	$\frac{n}{B} < r < \min\left\{B, \sqrt{n}\right\}$	$\Theta(r)$
$r \ge \min\left\{B, \sqrt{n}\right\}$		$\Theta(\sqrt{n})$

Claim. If $B \le n$, and the adversary injects at most one packet in every time step, then the greedy policy is $O\left(\sqrt{\frac{n}{B}}\right)$ -competitive.

Claim. If $B \le n$, and the adversary injects at most one packet in every time step, then the greedy policy is $O\left(\sqrt{\frac{n}{B}}\right)$ -competitive.

Claim. If $B \le n$, and the adversary injects at most one packet in every time step, then the greedy policy is $O\left(\sqrt{\frac{n}{B}}\right)$ -competitive.

Proof Idea:

- Divide time into epochs, each with two phases:
 - Phase 1: until the adversary accepts n packets.
 - Phase 2: another O(n) time units.

Claim. If $B \le n$, and the adversary injects at most one packet in every time step, then the greedy policy is $O\left(\sqrt{\frac{n}{B}}\right)$ -competitive.

Proof Idea:

- Divide time into epochs, each with two phases:
 - Phase 1: until the adversary accepts n packets.
 - Phase 2: another O(n) time units.
- Assign weights to packets accepted by Greedy.
- Overflow => increase weight of every packet in the node's buffer by 1.
 Wait B time units before next increase.
- The weight 'pays' for packets in $OPT \setminus Greedy$.

An Upper Bound (cont.)

- The best of two worlds:
 - Maximum weight is small \implies Few packets were dropped.
 - Maximum weight is large \implies Many packets in the system.
- Greedy had stored in phase 1 at least $\Omega(\sqrt{nB})$.
- Phase 2 lasts O(n) time units.
 - Greedy delivers $\Omega(\sqrt{nB})$ packets.
 - Adversary can absorb another O(n) packets in phase 2.
- Competitive Ratio:

$$\frac{|\text{OPT}|}{|\text{Greedy}|} = \frac{O(n)}{\Omega(\sqrt{nB})} = O\left(\sqrt{\frac{n}{B}}\right)$$

Claim. For any $B \leq \frac{n}{16}$, the greedy policy has competitive ratio $\Omega\left(\sqrt{\frac{n}{B}}\right)$, even for adversaries which inject at most one packet in every time step.

Claim. For any $B \leq \frac{n}{16}$, the greedy policy has competitive ratio $\Omega\left(\sqrt{\frac{n}{B}}\right)$, even for adversaries which inject at most one packet in every time step.

Proof Idea:

• Divide the line into k segments S_0, \ldots, S_{k-1} , each of length d.

Claim. For any $B \leq \frac{n}{16}$, the greedy policy has competitive ratio $\Omega\left(\sqrt{\frac{n}{B}}\right)$, even for adversaries which inject at most one packet in every time step.

Proof Idea:

• Divide the line into k segments S_0, \ldots, S_{k-1} , each of length d.

Claim. For any $B \leq \frac{n}{16}$, the greedy policy has competitive ratio $\Omega\left(\sqrt{\frac{n}{B}}\right)$, even for adversaries which inject at most one packet in every time step.

Proof Idea:

- Divide the line into k segments S_0, \ldots, S_{k-1} , each of length d.
- Greedy: Forwards packets across segments \implies delivers $O(d + k \cdot B) = O(d + \frac{n}{d} \cdot B)$ packets.
- Adversary: Does not forward packets across segments until injection is done. Then delivers all packets injected.
 ⇒ delivers n packets.
- For $d = \sqrt{nB}$, the result follows:

$$\frac{n}{O(d + \frac{n}{d} \cdot B)} = \Omega\left(\sqrt{\frac{n}{B}}\right)$$

Summary

- An extension of the CNT model: Adversary's rate.
- Results in terms of network size, and also
 - Adversary's rate, and
 - Buffer size.
- Prior knowledge of adversary's characteristics:
 - Sometimes enables good buffer provisioning.
- Specifically:
 - Low-rate adversaries ($r \leq 1$): buffer size makes *all* the difference.
 - Medium-rate adversaries: buffer size makes some difference.
 - High-rate: competitive ratio independent of buffer size.
- Greedy information gathering on the line:
 - tight results (up to a constant factor).

Future Work

- Other online local control protocols.
 - Not greedy...
- Other topologies. E.g.,
 - General topologies,
 - Specific topologies: line with arbitrary destinations, rings, trees, DAGs, ...
- Buffer-size aware protocols (?)
 - Non-uniform buffer sizes.

Thank You!