Online Time-Constrained Scheduling in Linear Networks

Gabriel Scalosub Computer Science Deptartment Technion

Joint work with Seffi Naor and Adi Rosén

• Multimedia applications call for QoS guarantees.

March 25th, 2005

Network Mo	odel
-------------------	------

Conclusions and Future Work

-

Network Model

Introduction

- Motivation
- Network Model
- Notation

Our Results and Previous Work

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

Network Model

Conclusions and Future Work

Notation

Introduction

- Motivation
- Network Model
- Notation
- Our Results and Previous Work
- Throughput Maximizaion
- Maximum Network Utilization
- Arbitrary Weights

Ring topology

Conclusions and Future Work

- We consider several special weight functions
 - Throughput Maximization: all packet weights are equal.
 - Maximum Network Utilization: $\forall p, w_p = |p|$.
- In what follows we use the following notation
 - M $\max_p |p|$ ρ_{\min} $\min_p w_p/|p|$ m $\min_p |p|$ ρ_{\max} $\max_p w_p/|p|$ α M/m β ρ_{\max}/ρ_{\min}

and R denotes the number of different packet lengths.

Competitive Analysis

Introduction

Our Results and Previous Work

- Competitive Analysis
- Our Results
- Previous Work
- Geometric Interpretation

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology

- We study the *online* version of the problem, i.e.: At any time *t*, the algorithm makes decisions while only knowing of packets which arrived by time *t*.
- We use *competitive analysis* to evaluate the performance of our algorithms:
 - Compare the performance of our algorithm with an optimal (clairvoyant) schedule.
 - Analysis applicable to *every* input sequence (e.g., independent of probabilistic assumptions).
- An algorithm A is δ -competitive if for every input σ ,

$$A(\sigma) \ge \frac{1}{\delta} OPT(\sigma).$$

Introduction

Our Results and Previous Work

Competitive Analysis

Our Results

Previous Work

Geometric Interpretation

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology

- Algorithm $A_{\rm MT}$ for Throughput Maximization
 - $O(\min \{\log \alpha, R\})$ -competitive.
 - Experimental results comparing it to other algorithms.

Introduction

Our Results and Previous Work

- Competitive Analysis
- Our Results
- Previous Work
- Geometric Interpretation

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology

- Algorithm $A_{\rm MT}$ for Throughput Maximization
 - $O(\min \{\log \alpha, R\})$ -competitive.
 - Experimental results comparing it to other algorithms.
- Algorithm $A_{\rm MNU}$ for Maximum Network Utilization $\circ (2\phi + 1)$ -competitive.

Introduction

Our Results and Previous Work

- Competitive Analysis
- Our Results
- Previous Work
- Geometric Interpretation

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology

- Algorithm $A_{\rm MT}$ for Throughput Maximization
 - $O(\min \{\log \alpha, R\})$ -competitive.
 - Experimental results comparing it to other algorithms.
- Algorithm $A_{\rm MNU}$ for Maximum Network Utilization $\circ (2\phi + 1)$ -competitive.
- Arbitrary Weights:
 - A_{MNU} is actually $O(\beta)$ -competitive for arbitrary weights.

Introduction

Our Results and Previous Work

- Competitive Analysis
- Our Results
- Previous Work
- Geometric Interpretation

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology

- Algorithm $A_{\rm MT}$ for Throughput Maximization
 - $O(\min \{\log \alpha, R\})$ -competitive.
 - Experimental results comparing it to other algorithms.
- Algorithm $A_{\rm MNU}$ for Maximum Network Utilization $\circ (2\phi + 1)$ -competitive.
- Arbitrary Weights:
 - A_{MNU} is actually $O(\beta)$ -competitive for arbitrary weights.
- Lower bound of 2 for Throughput Maximization.

Introduction

Our Results and Previous Work

- Competitive Analysis
- Our Results
- Previous Work
- Geometric Interpretation

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology

- Algorithm $A_{\rm MT}$ for Throughput Maximization
 - $O(\min \{\log \alpha, R\})$ -competitive.
 - Experimental results comparing it to other algorithms.
- Algorithm $A_{\rm MNU}$ for Maximum Network Utilization $\circ (2\phi + 1)$ -competitive.
- Arbitrary Weights:
 - A_{MNU} is actually $O(\beta)$ -competitive for arbitrary weights.
- Lower bound of 2 for Throughput Maximization.
- Lower bounds for Maximum Network Utilization and arbitrary weights follow from [Baruah *et al.* (1992)].

Introduction

Our Results and Previous Work

- Competitive Analysis
- Our Results
- Previous Work
- Geometric Interpretation

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology

- Algorithm $A_{\rm MT}$ for Throughput Maximization
 - $O(\min \{\log \alpha, R\})$ -competitive.
 - Experimental results comparing it to other algorithms.
- Algorithm $A_{\rm MNU}$ for Maximum Network Utilization $\circ (2\phi + 1)$ -competitive.
- Arbitrary Weights:
 - A_{MNU} is actually $O(\beta)$ -competitive for arbitrary weights.
- Lower bound of 2 for Throughput Maximization.
- Lower bounds for Maximum Network Utilization and arbitrary weights follow from [Baruah *et al.* (1992)].
- Our algorithms extend well to the ring topology.

Previous Work Offline 2-approximation algorithm for Throughput Maximization in linear networks. Introduction [Adler et al. (1998)] Our Results and Previous Work Competitive Analysis Extension to arbitrary weights. Our Results Previous Work [Adler et al. (1999)] Geometric Interpretation **Throughput Maximizaion** Offline constant-approximations for trees/mesh networks. Maximum Network Utilization [Adler et al. (1999)] Arbitrary Weights Ring topology Conclusions and Future Work

_			
		Previous Work	
		 Offline 2-approximation algorithm for T Maximization in linear networks 	hroughput
	Introduction Our Results and Previous Work		[Adler et al. (1998)]
	 Competitive Analysis Our Results Previous Work Geometric Interpretation 	 Extension to arbitrary weights. 	[Adler <i>et al.</i> (1999)]
	Throughput Maximizaion Maximum Network Utilization	 Offline constant-approximations for tree 	es/mesh networks. [Adler <i>et al.</i> (1999)]
	Arbitrary Weights Ring topology	But,	
	Conclusions and Future Work		

+

Т

	Previous Work
Interclustion	 Offline 2-approximation algorithm for Throughput Maximization in linear networks.
Our Results and Previous Work	[Adler <i>et al.</i> (1998)]
 Competitive Analysis Our Results Previous Work Geometric Interpretation 	 Extension to arbitrary weights. [Adler et al. (1999)]
Throughput Maximizaion Maximum Network Utilization	 Offline constant-approximations for trees/mesh networks. [Adler et al. (1999)]
Arbitrary Weights	But,
Ring topology Conclusions and Future Work	None of these provide an online Algorithm!

+

Т

	Previous Work
	 Offline 2-approximation algorithm for Throughput Maximization in linear networks.
Our Results and Previous Work	[Adler et al. (1998)]
 Competitive Analysis Our Results Previous Work Geometric Interpretation 	 Extension to arbitrary weights. [Adler et al. (1999)]
Throughput Maximizaion Maximum Network Utilization	Offline constant-approximations for trees/mesh networks. [Adler at al. (1999)]
Arbitrary Weights	But,
Ring topology Conclusions and Future Work	None of these provide an online Algorithm!
	• $\Omega(\log n)$ online LB for trees. [Adler <i>et al.</i> (1999)]
	 Closely related to interval scheduling and call control problems. [Garay <i>et al.</i> (1993)], [Lipton and Tomkins (1994)] Hard to approximate for general topologies. [Adler <i>et al.</i>

Hard to approximate for general topologies. [Adler *et al.* (1999)]

+

Т

Slack and Geometric Interpretation

• The *slack* of packet
$$p$$
: $\ell(p) = d_p - r_p - |p|$

Introduction

Our Results and Previous Work

Competitive Analysis

Our Results

• Previous Work

• Geometric Interpretation

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology

Slack and Geometric Interpretation

• The *slack* of packet p: $\ell(p) = d_p - r_p - |p|$

Introduction

- Our Results and Previous Work
- Competitive Analysis
- Our Results
- Previous Work
- Geometric Interpretation

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

0

- Concept of *waves*: SW-NE lines on which we 'mount' packets.
- Every packet has a set of eligible waves.

n

Slack and Geometric Interpretation

• The *slack* of packet p: $\ell(p) = d_p - r_p - |p|$

Concept of *waves*: SW-NE lines on which we 'mount' packets.

• Every packet has a set of eligible waves.

Introduction

- Previous Work
- Geometric Interpretation

Our Results and Previous Work

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology
• The *slack* of packet p: $\ell(p) = d_p - r_p - |p|$

Concept of *waves*: SW-NE lines on which we 'mount' packets.

• Every packet has a set of eligible waves.

Introduction

- Our Results and Previous Work
- Competitive Analysis
- Our Results
- Previous Work
- Geometric Interpretation

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology

• The *slack* of packet p: $\ell(p) = d_p - r_p - |p|$

Concept of *waves*: SW-NE lines on which we 'mount' packets.

• Every packet has a set of eligible waves.

Introduction

- Our Results and Previous Work
- Competitive Analysis
- Our Results
- Previous Work
- Geometric Interpretation

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology

• The *slack* of packet p: $\ell(p) = d_p - r_p - |p|$

 Concept of waves: SW-NE lines on which we 'mount' packets.

• Every packet has a set of eligible waves.

Introduction

- Our Results and Previous Work
- Competitive Analysis
- Our Results
- Previous Work
- Geometric Interpretation

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology

• The *slack* of packet p: $\ell(p) = d_p - r_p - |p|$

 Concept of waves: SW-NE lines on which we 'mount' packets.

• Every packet has a set of eligible waves.

Introduction

- Our Results and Previous Work
- Competitive Analysis
- Our Results
- Previous Work
- Geometric Interpretation

Ring topology

• The *slack* of packet p: $\ell(p) = d_p - r_p - |p|$

Concept of *waves*: SW-NE lines on which we 'mount' packets.

• Every packet has a set of eligible waves.

Introduction

- Our Results and Previous Work
- Competitive Analysis
- Our Results
- Previous Work
- Geometric Interpretation

Maximum Network Utilization

Arbitrary Weights

Ring topology

• Not allowing preemption might be costly

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower
 bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• The case where all packets have zero-slack can be solved efficiently.

Allow preemption

• What if we allow positive slack?

• Not allowing preemption might be costly

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• The case where all packets have zero-slack can be solved efficiently.

Allow preemption

• What if we allow positive slack?

• Not allowing preemption might be costly

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• The case where all packets have zero-slack can be solved efficiently.

Allow preemption

• What if we allow positive slack?

• Not allowing preemption might be costly

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• The case where all packets have zero-slack can be solved efficiently.

Allow preemption

• What if we allow positive slack?

• Not allowing preemption might be costly

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• The case where all packets have zero-slack can be solved efficiently.

Allow preemption

• What if we allow positive slack?

• Not allowing preemption might be costly

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• The case where all packets have zero-slack can be solved efficiently.

Allow preemption

• What if we allow positive slack?

• Not allowing preemption might be costly

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• The case where all packets have zero-slack can be solved efficiently.

Allow preemption

• What if we allow positive slack?

• Not allowing preemption might be costly

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• The case where all packets have zero-slack can be solved efficiently.

Allow preemption

• What if we allow positive slack?

• Not allowing preemption might be costly

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• The case where all packets have zero-slack can be solved efficiently.

Allow preemption

• What if we allow positive slack?

• Not allowing preemption might be costly

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• The case where all packets have zero-slack can be solved efficiently.

Allow preemption

• What if we allow positive slack?

• Not allowing preemption might be costly

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• The case where all packets have zero-slack can be solved efficiently.

Allow preemption

• What if we allow positive slack?

• Not allowing preemption might be costly

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• The case where all packets have zero-slack can be solved efficiently.

Allow preemption

• What if we allow positive slack?

• Not allowing preemption might be costly

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• The case where all packets have zero-slack can be solved efficiently.

Allow preemption

• What if we allow positive slack?

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

• Intuition: prefer packets with short paths.

• Overview:

- The algorithm will assign packets to waves.
- A packet's assignment turns active in due time.
- De-assignment/preemption may occur at any time.

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

- Intuition: prefer packets with short paths.
- Overview:
 - The algorithm will assign packets to waves.
 - A packet's assignment turns active in due time.
 - De-assignment/preemption may occur at any time.
- Algorithm $A_{\rm MT}$:

Given packet p newly arrived,
1. If p has a free eligible wave c ,
assign p to c .
2. Otherwise,
Schedule p instead of an assigned q if
$\circ q$ is assigned to a wave eligible for p ,
$\circ p$ and q intersect,
$\circ p \leq q /2$, and
$\circ t_p \leq t_q.$

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

- Intuition: prefer packets with short paths.
- Overview:
 - The algorithm will assign packets to waves.
 - A packet's assignment turns active in due time.
 - De-assignment/preemption may occur at any time.
- Algorithm $A_{\rm MT}$:

Given packet p newly arrived,
1. If p has a free eligible wave c ,
assign p to c .
2. Otherwise,
Schedule p instead of an assigned q if
$\circ q$ is assigned to a wave eligible for p ,
$\circ p$ and q intersect,
$\circ \ p \leq q /2$, and
$\circ t_p \leq t_q.$

Theorem. $A_{\rm MT}$ is $O(\min \{\log \alpha, R\})$ -competitive.

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

- Let O be an optimal schedule. • Every packet $q \in O \setminus A_{MT}$ is mapped to a packet $p \in A_{MT}$.
- $O(\min \{ \log \alpha, R \})$ packets are mapped to any $p \in A_{MT}$.

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

Let O be an optimal schedule.

• Every packet $q \in O \setminus A_{MT}$ is mapped to a packet $p \in A_{MT}$.

• $O(\min \{\log \alpha, R\})$ packets are mapped to any $p \in A_{MT}$.

Consider a packet $q \in O \setminus A_{MT}$.

Introduction

Our Results and Previous Work

Throughput Maximizaion

• Preliminaries and Lower bound

Algorithm

Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

Let O be an optimal schedule.

• Every packet $q \in O \setminus A_{MT}$ is mapped to a packet $p \in A_{MT}$.

• $O(\min \{\log \alpha, R\})$ packets are mapped to any $p \in A_{MT}$.

Consider a packet $q \in O \setminus A_{MT}$.

• Case 1: q is assigned to some wave c by $A_{\rm MT}$.

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

Let *O* be an optimal schedule.

- Every packet $q \in O \setminus A_{MT}$ is mapped to a packet $p \in A_{MT}$.
- $O(\min \{\log \alpha, R\})$ packets are mapped to any $p \in A_{MT}$.

Consider a packet $q \in O \setminus A_{MT}$.

- Case 1: q is assigned to some wave c by $A_{\rm MT}$.
 - $\circ \ q$ is later de-assigned by some q' , de-assigned by some q''...

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

Let O be an optimal schedule.

- Every packet $q \in O \setminus A_{MT}$ is mapped to a packet $p \in A_{MT}$.
- $O(\min \{\log \alpha, R\})$ packets are mapped to any $p \in A_{MT}$.

Consider a packet $q \in O \setminus A_{MT}$.

- Case 1: q is assigned to some wave c by $A_{\rm MT}$.
 - $\circ \ q$ is later de-assigned by some q', de-assigned by some q''...
 - Let q_1, \ldots, q_k be the *preemption sequence* on c.

 $\implies k \le \log |q_1|/|q_k| + 1 \le \log M/m + 1 = \log \alpha + 1$

• Clearly $k \leq R$.

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• Hence, the length of any preemption sequence is $O(\min \{\log \alpha, R\}).$

• Clearly $k \leq R$.

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• Hence, the length of any preemption sequence is $O(\min \{\log \alpha, R\}).$

 q_k is sent by A_{MT} – accounts for $O(\min \{\log \alpha, R\})$ such packets

• Clearly $k \leq R$.

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• Hence, the length of any preemption sequence is $O(\min \{\log \alpha, R\}).$

 q_k is sent by A_{MT} – accounts for $O(\min \{\log \alpha, R\})$ such packets

• Case 2: q is never assigned by $A_{\rm MT}$.

• Clearly k < R.

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• Hence, the length of any preemption sequence is $O(\min \{\log \alpha, R\})$.

 q_k is sent by A_{MT} – accounts for $O(\min \{\log \alpha, R\})$ such packets

- Case 2: q is never assigned by $A_{\rm MT}$.
 - Consider the preemption sequence $q_1, \ldots, q_{k'}$ on wave c on which O schedules q.
 - Any q_i prevents an assignment of a packet p if:
 - $|p| > |q_i|/2$: at most 2 packets in O on this account, or
 - $d_p > d_{q_i}$: at most one packet from O on this account.

• Clearly $k \leq R$.

Introduction

Our Results and Previous Work

Throughput Maximizaion

• Preliminaries and Lower bound

Algorithm

Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• Hence, the length of any preemption sequence is $O(\min \{\log \alpha, R\})$.

 q_k is sent by A_{MT} – accounts for $O(\min \{\log \alpha, R\})$ such packets

- Case 2: q is never assigned by $A_{\rm MT}$.
 - Consider the preemption sequence $q_1, \ldots, q_{k'}$ on wave c on which O schedules q.
 - Any q_i prevents an assignment of a packet p if:
 - $|p| > |q_i|/2$: at most 2 packets in O on this account, or
 - $d_p > d_{q_i}$: at most one packet from O on this account.

 $q_{k'}$ is sent by A_{MT} – accounts for $O(\min \{\log \alpha, R\})$ such packets

A_{MT} - Tight Example

Ring topology

Conclusions and Future Work

- All packets have zero slack.
- Non-tagged packets are decoys.
- p'_i is just a little too long to preempt p_i .
- $A_{\rm MT}$ ends up scheduling only the last non-tagged packet.
- There exists a schedule which schedules all tagged packets.

 $\implies A_{\rm MT}$ is $\Omega(\log n)$ -competitive.
Experimental Results for $A_{\rm MT}$

Introduction

Our Results and Previous Work

Throughput Maximizaion

- Preliminaries and Lower bound
- Algorithm
- Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

- We compared $A_{\rm MT}$ with a natural greedy algorithm $A_{\rm URGENT}$, on randomly generated input.
- Principles of A_{URGENT} :
 - A packet is *urgent* at time t, if its residual-slack is 0.
 - Prefer the packet with least residual-slack (i.e., most 'urgent').
 - An urgent packet is never preempted.
 - Preempt only in favor of an urgent packet.

Experimental Results for $A_{\rm MT}$ (Cont.)

We evaluated the performance of both algorithms vis-à-vis the offline 2-approximation of [Adler et al. (1998)].

- For randomly generated input, $A_{\rm MT}$ performance is close to OFFLINE.
- $A_{\rm MT}$ outperforms the intuitive algorithm which prefers to schedule urgent packets first.

Introduction

bound Algorithm

Maximum Network Utilization - Algorithm (adapted from Garay *et al.*) Intuition: prefer packets with long paths. Our Results and Previous Work • Given some wave c and a newly arrived packet p, **Throughput Maximizaion** S_p^c - the set of packets currently assigned to c, Maximum Network Utilization

Arbitrary Weights

Ring topology

Introduction

Conclusions and Future Work

- intersecting p on c.
- Algorithm A_{MNU} :

Given packet p newly arrived,

- 1. If p has a free eligible wave c, assign p to c.
- 2. Otherwise, assign p instead of a set of packets S_n^c already assigned to some c eligible for p iff $|p| > \phi \max_{q \in S_n^c} |q|$ (ϕ - the golden ratio).

Theorem. $A_{\rm MNU}$ is $(2\phi + 1)$ -competitive.

Arbitrary Weights - Algorithm

Introduction

Our Results and Previous Work

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• Define for every set of packets Y, $\circ U(Y) = \sum_{p \in Y} |p|.$ $\circ w(Y) = \sum_{p \in Y} w_p.$

• Assume w.l.o.g. $\rho_{\min} = 1$.

- Run A_{MNU} . Let A be the set of packets scheduled.
- Let O_{MNU} (O_{AW}) be some optimal schedule to maximum network utilization (arbitrary weights).
- For c the constant approximation guarantee of $A_{\rm MNU}$,

$$w(A) \ge U(A) \ge \frac{1}{c}U(O_{\mathrm{MNU}}) \ge \frac{1}{c\beta}w(O_{\mathrm{AW}}).$$

Theorem. A_{MNU} is $O(\beta)$ -competitive.

Ring Topology

• Results extend to the ring topology.

Introduction

Our Results and Previous Work

Throughput Maximizaion

Arbitrary Weights

Ring topology

Maximum Network Utilization

Conclusions and Future Work

• Follows from an adequate concept of waves.

		Length of each wave	Number of waves
	Line	Finite	Unbounded
	Ring	Unbounded	Finite

Conclusions

Introduction

Our Results and Previous Work

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• We give algorithms for online bufferless time-constrained scheduling.

- Our results apply to both linear and ring networks.
- We give analytical results independent of traffic pattern.
- We give experimental results on randomly generated input.

Conclusions

Introduction

Our Results and Previous Work

Throughput Maximizaion

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

• We give algorithms for online bufferless time-constrained scheduling.

- Our results apply to both linear and ring networks.
- We give analytical results independent of traffic pattern.
- We give experimental results on randomly generated input.

Future Work

- Closing the gap between the LB and the UB for the problem of Throughput Maximization.
- Can rescheduling help?