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• Multimedia applications call for QoS guarantees.
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• Different applications have different importance (DiffServ).

=⇒ Packets have weights

• Optical networks - opto-electronic conversion is costly (e.g.
WDM).

=⇒ Bufferless scheduling

• Routing along linear networks serves as a building block in
other topologies.

=⇒ Linear Networks

• Traffic exceeds network capacities.
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Network Model
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Goal:

Find a maximum-weight subset of the packets S, and a
bufferless schedule of S, such that every packet p ∈ S
• leaves its source after its release time, and
• arrives at its destination by its deadline.
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Notation

• We consider several special weight functions

◦ Throughput Maximization: all packet weights are equal.

◦ Maximum Network Utilization: ∀p, wp = |p|.

• In what follows we use the following notation

M - maxp |p| ρmin - minp wp/|p|

m - minp |p| ρmax - maxp wp/|p|

α - M/m β - ρmax/ρmin

and R denotes the number of different packet lengths.
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Competitive Analysis

• We study the online version of the problem, i.e.:
At any time t, the algorithm makes decisions while only
knowing of packets which arrived by time t.

• We use competitive analysis to evaluate the performance
of our algorithms:

◦ Compare the performance of our algorithm with an
optimal (clairvoyant) schedule.

◦ Analysis applicable to every input sequence (e.g.,
independent of probabilistic assumptions).

• An algorithm A is δ-competitive if for every input σ,

A(σ) ≥
1

δ
OPT (σ).
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Our Results

• Algorithm AMT for Throughput Maximization
◦ O(min {log α, R})-competitive.
◦ Experimental results comparing it to other algorithms.
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Our Results

• Algorithm AMT for Throughput Maximization
◦ O(min {log α, R})-competitive.
◦ Experimental results comparing it to other algorithms.

• Algorithm AMNU for Maximum Network Utilization
◦ (2φ + 1)-competitive.

• Arbitrary Weights:
◦ AMNU is actually O(β)-competitive for arbitrary weights.

• Lower bound of 2 for Throughput Maximization.
• Lower bounds for Maximum Network Utilization and

arbitrary weights follow from [Baruah et al. (1992)].

• Our algorithms extend well to the ring topology.
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Previous Work

• Offline 2-approximation algorithm for Throughput
Maximization in linear networks.

[Adler et al. (1998)]

• Extension to arbitrary weights.
[Adler et al. (1999)]

• Offline constant-approximations for trees/mesh networks.
[Adler et al. (1999)]
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Previous Work

• Offline 2-approximation algorithm for Throughput
Maximization in linear networks.

[Adler et al. (1998)]

• Extension to arbitrary weights.
[Adler et al. (1999)]

• Offline constant-approximations for trees/mesh networks.
[Adler et al. (1999)]

But,

None of these provide an online Algorithm!

• Ω(log n) online LB for trees. [Adler et al. (1999)]
• Closely related to interval scheduling and call control

problems. [Garay et al. (1993)], [Lipton and Tomkins (1994)]
• Hard to approximate for general topologies. [Adler et al.

(1999)]
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Preliminaries and Lower bound

• Not allowing preemption might be costly
=⇒ Allow preemption

• The case where all packets have zero-slack can be solved
efficiently.

• What if we allow positive slack?
Theorem. No deterministic algorithm can achieve a competitive ratio
better than 2.
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Preliminaries and Lower bound

• Not allowing preemption might be costly
=⇒ Allow preemption

• The case where all packets have zero-slack can be solved
efficiently.

• What if we allow positive slack?
Theorem. No deterministic algorithm can achieve a competitive ratio
better than 2.

1 5

t = 4
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Algorithm AMT

• Intuition: prefer packets with short paths.
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Algorithm AMT

• Intuition: prefer packets with short paths.
• Overview:

◦ The algorithm will assign packets to waves.
◦ A packet’s assignment turns active in due time.
◦ De-assignment/preemption may occur at any time.
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Algorithm AMT

• Intuition: prefer packets with short paths.
• Overview:

◦ The algorithm will assign packets to waves.
◦ A packet’s assignment turns active in due time.
◦ De-assignment/preemption may occur at any time.

• Algorithm AMT:

Given packet p newly arrived,
1. If p has a free eligible wave c,

assign p to c.

2. Otherwise,
Schedule p instead of an assigned q if
◦ q is assigned to a wave eligible for p,
◦ p and q intersect,
◦ |p| ≤ |q|/2, and
◦ tp ≤ tq .
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Algorithm AMT

• Intuition: prefer packets with short paths.
• Overview:

◦ The algorithm will assign packets to waves.
◦ A packet’s assignment turns active in due time.
◦ De-assignment/preemption may occur at any time.

• Algorithm AMT:

Given packet p newly arrived,
1. If p has a free eligible wave c,

assign p to c.

2. Otherwise,
Schedule p instead of an assigned q if
◦ q is assigned to a wave eligible for p,
◦ p and q intersect,
◦ |p| ≤ |q|/2, and
◦ tp ≤ tq .

Theorem. AMT is O(min {log α, R})-competitive.
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AMT - Analysis

Let O be an optimal schedule.
• Every packet q ∈ O \ AMT is mapped to a packet p ∈ AMT.
• O(min {log α, R}) packets are mapped to any p ∈ AMT.
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• O(min {log α, R}) packets are mapped to any p ∈ AMT.

Consider a packet q ∈ O \ AMT.
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AMT - Analysis

Let O be an optimal schedule.
• Every packet q ∈ O \ AMT is mapped to a packet p ∈ AMT.
• O(min {log α, R}) packets are mapped to any p ∈ AMT.

Consider a packet q ∈ O \ AMT.

• Case 1: q is assigned to some wave c by AMT.
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• Every packet q ∈ O \ AMT is mapped to a packet p ∈ AMT.
• O(min {log α, R}) packets are mapped to any p ∈ AMT.

Consider a packet q ∈ O \ AMT.

• Case 1: q is assigned to some wave c by AMT.

◦ q is later de-assigned by some q′, de-assigned by some
q′′...
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AMT - Analysis

Let O be an optimal schedule.
• Every packet q ∈ O \ AMT is mapped to a packet p ∈ AMT.
• O(min {log α, R}) packets are mapped to any p ∈ AMT.

Consider a packet q ∈ O \ AMT.

• Case 1: q is assigned to some wave c by AMT.

◦ q is later de-assigned by some q′, de-assigned by some
q′′...

◦ Let q1, . . . , qk be the preemption sequence on c.

...

qk

q1

◦ Notice that |qk| ≤ 2−(k−1)|q1|.

=⇒ k ≤ log |q1|/|qk| + 1 ≤ log M/m + 1 = log α + 1
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AMT - Analysis (Cont.)

◦ Clearly k ≤ R.

◦ Hence, the length of any preemption sequence is
O(min {log α, R}).
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AMT - Analysis (Cont.)

◦ Clearly k ≤ R.

◦ Hence, the length of any preemption sequence is
O(min {log α, R}).

qk is sent by AMT – accounts for O(min {log α, R}) such packets
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AMT - Analysis (Cont.)

◦ Clearly k ≤ R.

◦ Hence, the length of any preemption sequence is
O(min {log α, R}).

qk is sent by AMT – accounts for O(min {log α, R}) such packets

• Case 2: q is never assigned by AMT.



Introduction

Our Results and Previous Work

Throughput Maximizaion

•Preliminaries and Lower

bound
•Algorithm

•Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

March 25th, 2005 Online Time-Constrained Scheduling in Linear Networks - p. 12/19

AMT - Analysis (Cont.)

◦ Clearly k ≤ R.

◦ Hence, the length of any preemption sequence is
O(min {log α, R}).

qk is sent by AMT – accounts for O(min {log α, R}) such packets

• Case 2: q is never assigned by AMT.

◦ Consider the preemption sequence q1, . . . , qk′ on wave c
on which O schedules q.

◦ Any qi prevents an assignment of a packet p if:

◦ |p| > |qi|/2: at most 2 packets in O on this account, or

◦ dp > dqi
: at most one packet from O on this account.



Introduction

Our Results and Previous Work

Throughput Maximizaion

•Preliminaries and Lower

bound
•Algorithm

•Experimental Results

Maximum Network Utilization

Arbitrary Weights

Ring topology

Conclusions and Future Work

March 25th, 2005 Online Time-Constrained Scheduling in Linear Networks - p. 12/19

AMT - Analysis (Cont.)

◦ Clearly k ≤ R.

◦ Hence, the length of any preemption sequence is
O(min {log α, R}).

qk is sent by AMT – accounts for O(min {log α, R}) such packets

• Case 2: q is never assigned by AMT.

◦ Consider the preemption sequence q1, . . . , qk′ on wave c
on which O schedules q.

◦ Any qi prevents an assignment of a packet p if:

◦ |p| > |qi|/2: at most 2 packets in O on this account, or

◦ dp > dqi
: at most one packet from O on this account.

qk′ is sent by AMT – accounts for O(min {log α, R}) such packets
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AMT - Tight Example

p1

p′
3

p′
2

p′
1

p4

p3

p2

• All packets have zero slack.
• Non-tagged packets are decoys.
• p′i is just a little too long to preempt pi.
• AMT ends up scheduling only the last non-tagged packet.
• There exists a schedule which schedules all tagged

packets.

=⇒ AMT is Ω(log n)-competitive.
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Experimental Results for AMT

• We compared AMT with a natural greedy algorithm
AURGENT, on randomly generated input.

• Principles of AURGENT:

◦ A packet is urgent at time t, if its residual-slack is 0.

◦ Prefer the packet with least residual-slack (i.e., most
’urgent’).

◦ An urgent packet is never preempted.

◦ Preempt only in favor of an urgent packet.
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Experimental Results for AMT (Cont.)

We evaluated the performance of both algorithms vis-à-vis
the offline 2-approximation of [Adler et al. (1998)].
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• For randomly generated input, AMT performance is close
to OFFLINE.

• AMT outperforms the intuitive algorithm which prefers to
schedule urgent packets first.
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Maximum Network Utilization - Algorithm
(adapted from Garay et al.)

• Intuition: prefer packets with long paths.
• Given some wave c and a newly arrived packet p,

Sc
p - the set of packets currently assigned to c,

intersecting p on c.
• Algorithm AMNU:

Given packet p newly arrived,
1. If p has a free eligible wave c,

assign p to c.
2. Otherwise, assign p instead of a set of packets

Sc
p already assigned to some c eligible for p iff
|p| > φmaxq∈Sc

p
|q| (φ - the golden ratio).

Theorem. AMNU is (2φ + 1)-competitive.
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Arbitrary Weights - Algorithm

• Assume w.l.o.g. ρmin = 1.
• Define for every set of packets Y ,

◦ U(Y ) =
∑

p∈Y |p|.
◦ w(Y ) =

∑
p∈Y wp.

• Run AMNU. Let A be the set of packets scheduled.
• Let OMNU (OAW) be some optimal schedule to maximum

network utilization (arbitrary weights).
• For c the constant approximation guarantee of AMNU,

w(A) ≥ U(A) ≥
1

c
U(OMNU) ≥

1

cβ
w(OAW).

Theorem. AMNU is O(β)-competitive.
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Ring Topology

• Results extend to the ring topology.
• Follows from an adequate concept of waves.

Length of each wave Number of waves

Line Finite Unbounded

Ring Unbounded Finite

1

0

3

t=4

t=3

ring-wave 1 t=0
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Conclusions and Future Work

Conclusions

• We give algorithms for online bufferless time-constrained
scheduling.

• Our results apply to both linear and ring networks.
• We give analytical results independent of traffic pattern.
• We give experimental results on randomly generated input.
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Conclusions and Future Work

Conclusions

• We give algorithms for online bufferless time-constrained
scheduling.

• Our results apply to both linear and ring networks.
• We give analytical results independent of traffic pattern.
• We give experimental results on randomly generated input.

Future Work

• Closing the gap between the LB and the UB for the
problem of Throughput Maximization.

• Can rescheduling help?
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