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Abstract—In many applications the traffic traversing the net-
work has inter-packet dependencies due to application-level en-
coding schemes. For some applications, e.g., multimedia stream-
ing, dropping a single packet may render useless the delivery of
a whole sequence. In such environments, the algorithm used to
decide which packet to drop in case of buffer overflows must be
carefully designed, to avoid goodput degradation.

We present a model that captures such inter-packet dependen-
cies, and design algorithms for performing packet discards. Traf-
fic consists of an aggregation of multiple streams, each of which
consists of a sequence of inter-dependent packets. We provide two
guidelines for designing buffer management algorithms for this
problem, and demonstrate the effectiveness of these criteria. We
devise an algorithm according to these guidelines and evaluate
its performance analytically, using competitive analysis. We also
present a simulation study that shows that the performance of
our algorithm is within a small fraction of the performance of
the best offline algorithm.

I. INTRODUCTION

In the vast majority of networked applications, application-
layer data frames are split into several smaller sized packets,
which are sent across the network. The receiving side can
make use of the data only if it receives all (or at least
sufficiently many of) the packets of a frame. Most current
best-effort networks, such as the Internet, are oblivious to
such an inter-packet dependency structure, and usually make
discard decisions on a per-packet base. Higher-level mech-
anisms in the protocol stack usually handle retransmissions
of lost packets, in order to provide adequate performance for
the application. The exact dependency structure of the data
stream depends on the encoding used, and it may consist of
a 1-level dependency structure (i.e., frames are independent
of each other, and the only dependencies are among packets
corresponding to the same frame), and/or higher dependency
structure (e.g., the dependency structure occurring in MPEG
video encoding schemes, where successfully decoding a frame
might depend on successfully decoding other previous/later
frames). The problem of ensuring that all packets of a frame
arrive at the destination is especially crucial when one con-
siders real-time traffic, such as streaming multimedia traffic,
where retransmission of missing packets is not feasible due to
delay constraints posed by the application. The widespread
popularity of such services over the Internet (e.g., IPTV)

serves as a main motivation for providing better algorithmic
solutions to ameliorate network performance in such scenarios.

A common approach to deal with packet losses is to employ
proactive encoding schemes, which have long been known
to provide substantial improvement in performance. However,
this approach has its limitations in several networking en-
vironments. Specifically, some environments (e.g., wireless
networks) make the usage of such approaches prohibitively
costly, due to the increased traffic load. Also, in some scenarios
where traffic may traverse bottleneck links, the effect of coding
diminishes substantially, since the bottleneck fully determines
the loss characteristics incurred by the traffic. These scenarios
occur, e.g., at head-ends of content distribution networks,
wireless gateways, and input queues of network transcoders.
We therefore believe that the availability of good encoding
schemes does not replace the need to design and analyze al-
gorithms that aim to optimize the usage of available resources.

In this work we focus on a FIFO buffer architecture,
which has several appealing features: (a) it is simple, (b) it
maintains the arrival order of incoming traffic, hence avoiding
the need for mechanisms that deal with packet reordering, and
(c) it provides simple and reliable delay bounds. All of these
features make the FIFO architecture appealing, especially for
delay- and reordering-constrained streaming environments.

The main causes for packet loss in networks are buffer
overflows due to congestion. In cases where the underlying
traffic has inter-packet dependencies, indiscriminately drop-
ping packets upon overflow may result in very poor per-
formance. One should differentiate between the packet-level
throughput, i.e., the amount of data delivered in terms of
packets, and the effective goodput, i.e., the amount of data that
can be decoded effectively at the receiving end. As an extreme
example consider the case where one packet is dropped from
every frame, which results in zero goodput, although overall
packet-level throughput is high (this effect has been verified in
experimental studies, e.g., [1]). The method to decide which
packets to drop in case of overflow is critically important to
the performance of the system, bearing in mind that such a
decision might effect other packets which have already been
forwarded, or packets that have not yet arrived. Our goal is
to devise methods that maximize the goodput of successfully
delivered traffic, captured by the number of useful complete
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frames delivered.
In this work we consider the problem of buffer management

of multiple data streams in scenarios where traffic has inter-
packet dependencies. We provide guidelines for designing
algorithms that are guaranteed to provide high performance
in terms of goodput. Our approach and analysis provide
guarantees as to the performance of our proposed algorithms
for any traffic arrival pattern, and without any stochastic or
deterministic assumptions on the processes generating the
traffic. Different from works which focused on estimating the
system’s performance using either statistical or deterministic
models for traffic (e.g., [2], [3]), we study packet discard
policies in a more fine-grain sense – in fact, we study how
“micro” decisions affect system performance. In this sense,
our approach is orthogonal to works that aim at exploiting
statistical multiplexing or those that try to analyze the tradeoff
between available network resources (e.g., in terms of the
available buffer size) and system performance. We restrict our
attention to traffic with a 1-level dependency structure. A better
understanding of the algorithmic problems in this setting is
essential before tackling more complex dependency structures.
Our model is general enough to be applicable to various
traffic encoding schemes, and can potentially be combined
with buffer management schemes that deal with higher-level
dependencies. Our approach is especially suitable for best-
effort environments, where oversubscription of resources is
common, and the system goal is to optimize the use of
resources in an overloaded setting.

A. Our Contribution

Our work seeks to gain a better understanding of good
buffer management algorithms for traffic with inter-packet
dependencies. Our main contributions are as follows:

1) We provide two design guidelines for algorithms in such
an environment: (a) No-regret – Make every attempt to
deliver a frame that has a packet admitted to the buffer;
and (b) Ensure-progress – deliver a complete frame as
soon as possible.

2) We devise a buffer management algorithm, WEIGHTPRI-
ORITY, that follows these guidelines.

3) We analyze the performance of our algorithm, and show
that for any traffic the ratio between its performance and
that of an optimal algorithm is always bounded.

4) We prove lower bounds on the performance of any buffer
management algorithm.

5) We conduct a simulation study that further shows the
benefits of our design criteria, as opposed to algorithms
that fail to adhere to these criteria.

B. Previous Work

Various aspects of providing traffic with Quality-of-Service
(QoS) guarantees have been studied extensively in recent
years. The works most related to our problem of packet
forwarding with inter-packet dependencies are set in the con-
text of video traffic. Most of these works consider specific
encoding schemes (e.g., MPEG), and higher-level inter-frame

dependencies [4], [5]. Some attempts were made to answer
the question of which frame to drop, based on the specific
encoding scheme, so as to minimize the effect on the received
data stream (e.g., [6]). However, discard decisions at the
routers are made at the packet level, and their scope is limited
to packets stored in the buffer and newly arriving packets.

Ramanathan et al. [7] propose a scheme that takes packet
dependencies into account, namely, that in any case where too
many packets are dropped, one drops the entire frame. They
then evaluate their scheme assuming Markovian video sources.

Our model is close to that considered by Kesselman et
al. [8]. They consider the case where there is no stream-
structure underlying the arrival traffic (i.e., every frame is
independent of all other frames), as well as other restricted
arrival patterns that are not general enough to model arrival
patterns encountered in real-life networks. They provide lower
bounds and competitive algorithms for these settings. Our
model is more general than the model they consider, and
captures the structure of real-life data streams. Additional
works that consider competitive algorithms that provide QoS
have been studied (e.g., [9]), but none of them addresses inter-
packet dependencies.

There has been much work done on proactive encoding
schemes (commonly known as forward error correction, or
FEC) for packetized traffic of larger data frames. Most of
this work focuses on implementation and information-theoretic
aspects of such schemes (e.g., [10], [11]). Although our model
assumes no redundancy (i.e., upon losing a single packet of a
frame, the entire frame is rendered useless), we believe a better
understanding of this basic scenario is the starting point for
designing algorithms that additionally account for proactive
coding.

II. MODEL

The input to the system consists of M streams of unit-sized
packets, denoted by S1, . . . , SM . Each stream Sm is viewed
as a sequence of frames, fm

i , each consisting of a sequence of
exactly k packets, pm,i

1 , . . . , pm,i
k . A packet pm,i

j is referred to
as the j-packet of frame fm

i , and its arrival time is denoted by
a(pm,i

j ). When referring to packets, we will sometimes omit
the frame index i, and use the notation

{
pm

j

}
j

when referring
to the sequence of packets corresponding to stream Sm; this
notation is interpreted as follows: pm

j is the j-th packet of
stream Sm, and the (j mod k)-packet of frame fm

b j
k c

(i.e., the

b j
k c-th frame of stream Sm). The packets of a stream arrive

in order, i.e., a(pm
j ) ≤ a(pm

j+1) for all j. The above notation
implies the following structure on the arrival of packets in a
stream Sm consisting of rm frames:

pm
0 , . . . , pm

k−1︸ ︷︷ ︸
frame fm

0

, pm
k , . . . , pm

2k−1︸ ︷︷ ︸
frame fm

1

, . . . , pm
(rm−1)k, . . . , pm

rmk−1︸ ︷︷ ︸
frame fm

rm−1

.

The arrival of packets from different streams essentially im-
plies a finite arrival sequence σ of the aggregated streams,
which is the interleaving of the arrival sequences of the
individual streams. See Figure 1 for an example. It should be
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σ = p1,0
1 , p2,0

1 , p2,0
2 , p2,1

1 , p1,0
2 , p2,1

2 , p1,1
1 , p1,1

2

Fig. 1. Example of an interleaved arrival sequence (M = k = 2).

noted that we make no assumptions (either deterministic, or
stochastic) on the processes generating the arrival sequences.

The packets arrive at a FIFO buffer which has a capacity
of B ≥ k packets, and has an output link that can transmit
one packet per cycle. Initially, the buffer is empty. Each cycle
consists of two steps. The first step is the delivery step: if the
buffer is non-empty, the head-of-the-line packet is transmitted
on the link. In the second step, called the arrival step, an
arbitrary set of packets arrives at the system. At the discretion
of the buffer management algorithm, some packets may be
dropped, while other packets are stored in the buffer. The FIFO
order of buffered packets is always maintained. A feasible
system must satisfy the capacity constraint, according to
which the maximum number of packets in the buffer must not
exceed the given buffer size B. Note that a buffer management
algorithm may drop packets even if there is space available at
the buffer.

We say a frame is successfully delivered by an algorithm
ALG if ALG delivers all the packets belonging to the frame.
The MAX-FRAME-GOODPUT problem, denoted MFG, is to
devise a buffer management algorithm which maximizes the
number of successfully delivered frames, i.e., the goodput.
This work studies online algorithms for solving the MFG
problem, that, at any point in time, know of arrivals that have
occurred up to that time but have no information about future
arrivals. This should be contrasted with offline algorithms,
which are clairvoyant and know the entire input in advance.

We use competitive analysis [12] to evaluate the perfor-
mance of online algorithms. An algorithm ALG is said to be
c-competitive if for any traffic arrival sequences, the goodput
of any feasible schedule (and in particular, the optimal one)
is at most c times the goodput of ALG, for some c ≥ 1.

III. ANALYTICAL STUDY

In this section we study the performance of algorithms for
the MFG problem. We first show that the performance of
any algorithm can be made to degrade linearly in the number
of streams. This is shown by the following theorem (proof
omitted due to space constraints).

Theorem 1. Any deterministic algorithm for MFG with M
streams has competitive ratio Ω(kM

B ).

We now turn to discuss the design of buffer management
algorithms for the MFG problem, where traffic consists of
an interleaving of multiple streams. We begin by identifying
several design criteria, which follow from a close examination
of the traffic patterns forcing the performance degradation
of any algorithm, as given by Theorem 1. These traffic
patterns manage to force any algorithm to drop frames without
requiring the algorithm to do any type of preemption, and thus
test the algorithm’s ability to discern which packets to accept

to the buffer, and which to drop upon arrival. The intuition
that the main difficulty is admitting the “right” packets into
the buffer is also implicit in the work of [8] where the only
competitive algorithm they provide (for arbitrary frame length
k) never preempts admitted packets.

An additional observation can be made by noticing that
the traffic patterns used for proving Theorem 1 cause any
algorithm to focus on specific streams/frames, and drop frames
that would eventually turn out to be easier to manage (although
the algorithm cannot discern these frames when it is forced to
make a decision).

Combining these two observations leads to the following
design criteria for competitive algorithms for our problem:

1) No-regret policy: Once a frame has a packet admitted
to the buffer (not necessarily sent), make every attempt
possible to deliver the complete frame.

2) Ensure progress: Ensure the delivery of a complete frame
as early as possible.

The first of these criteria is the less intuitive of the two.
It essentially means that for any algorithm, when faced with
deciding between seemingly equivalent options, it should try
and make a decision that is as consistent as possible with ear-
lier such decisions (this can be viewed as a ‘non-zigzagging’
principle). In order to implement this criteria, we will use a
dynamic ranking scheme for traffic. The second criteria takes
form in the usage of preemption rules. The balancing between
the two criteria is done by a definition of the delicate interplay
between the ranking-scheme and the preemption rules.

The WEIGHTPRIORITY Algorithm: We now turn to de-
scribe our algorithm which follows the above design criteria.
In (the beginning of the arrival step of) any cycle t, and for
every frame fm

i we define its rank at t by

rt(fm
i ) = (wt(fm

i ), m)

where wt(fm
i ) denotes the number of packets of fm

i already
delivered. For every t, the above ranking implies a strict order
on all frames, where for every two frames fm

i and fm′
i′ , fm

i has
rank at least as high as fm′

i′ if and only if rt(fm
i ) ≥ rt(fm′

i′ )
lexicographically. For any time t, we will extend the definition
of rank also to packets, such that the rank of a packet at time
t is the rank of the frame to which this packet corresponds.

We say a frame fm
i is active at time t if (a) none of fm

i ’s
packets have been dropped yet, (b) wt(fm

i ) > 0, and (c) fm
i

has not yet been delivered in full. Note that by the definition
of the streams, at any time t at most one frame can be active
in every stream. Since the rank of a frame depends on its
weight (which may only change during a delivery step) and
its invariant stream index, the rank of a frame does not change
during the arrival step. However, a frame can stop being active
during the arrival step when some of its packets are dropped.

Assume we handle the arrivals in batches corresponding to
distinct frames, i.e., at any cycle t, the buffer receives all pack-
ets corresponding to fm

i that arrive at cycle t simultaneously.
Furthermore, assume the buffer handles batches corresponding
to different frames in decreasing order of their rank. Note that
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these assumptions are local, and are restricted to each single
cycle individually. They pose no restriction in the common
case where we have multiple incoming links, and a single
outgoing link where all links have the same capacity.

We now describe the operation of our algorithm WEIGHT-
PRIORITY (or WP, for short). Consider any cycle t and frame
fm

i that has packets arriving at t. Denote by At(fm
i ) this set of

packets, and denote by Lt(fm
i ) the set of packets residing in

the buffer at t, whose rank is strictly smaller than the rank of
fm

i . We consider this set as ordered by rank. The algorithm
works as follows: If At(fm

i ) can be accommodated in the
buffer, accept it. Otherwise, if preempting Lt(fm

i ) would leave
sufficient room to accept At(fm

i ), preempt the minimum size
prefix of Lt(fm

i ) that would enable accommodating At(fm
i ),

and accept At(fm
i ). Finally, drop any remaining packets in

Lt(fm
i ) of frames that have become inactive due to the

preemption triggered by At(fm
i ).

Upon overflow, algorithm WP prefers to keep packets of
higher-ranked frames. The following theorem provides an
absolute bound on the performance of WP in terms of its
competitive ratio.

Theorem 2. The competitive ratio of WEIGHTPRIORITY is
O((kMB + M)k+1).

Due to space constraints we only provide the idea under-
lying the proof; We would like to map frames delivered by
an optimal solution to frames delivered by WP. To this end,
we consider a partition of time into disjoint intervals, and
identify every such interval with the highest ranking packet
delivered during this interval. This implies a ranking over
the intervals. We then map every interval to a strictly-higher
ranking interval, culminating in an interval in which a frame is
successfully delivered. By showing that there exists a number
` that bounds both (a) the number of frames successfully
delivered by an optimal solution during any interval, and
(b) the number of intervals mapped to any single interval,
one obtains a k-height `-ary tree-like structure underlying the
mappings of intervals, which implies the required result.

IV. SIMULATION STUDY

In this section we provide selected results (due to space
constraints) obtained by a simulation study, where we compare
the performance of several buffer management and discard
policies for traffic with inter-packet dependencies. Specifically,
we examine the effect of various traffic characteristics on the
performance of our proposed algorithms. In our study, we
consider the performance of each algorithm in comparison
with the performance of the best known offline algorithm,
which serves as a benchmark. This algorithm which essentially
tries to pack complete frames onto the buffer greedily, is
guaranteed to provide a (k + 1)-approximation [8].

In addition to our algorithm WEIGHTPRIORITY we also
consider the performance of several other algorithms. The
first additional algorithm, referred to as FRAMEOBLIVIOUS,
disregards the frame structure altogether. Upon overflow it
simply refrains from accepting further packets, regardless of

the identity of the frames to which they correspond (this is a
standard drop-tail algorithm). This algorithm is appealing due
to the fact that it does not need to maintain any state informa-
tion, and does not perform any buffer scanning upon overflow.
The second additional algorithm we consider, referred to as
SEMIFRAMEOBLIVIOUS, is similar to FRAMEOBLIVIOUS,
except for the fact that it scans the buffer upon overflow,
and drops any packets residing in the buffer that correspond
to the packet dropped due to the overflow. This algorithm
also does not require any state information, however it does
perform a buffer scanning upon overflow. The third algorithm
we consider, referred to as STREAMOBLIVIOUS, drops an
overflowing packet, as well as all other packets of its frame.
This algorithm both scans the buffer upon overflow, and
maintain state information per stream, in order to drop also
future arriving packets of the dropped frame. We note that
these algorithms do not follow either of our design criteria.
We further consider one additional algorithm, which conforms
with our design criteria, referred to as STREAMPRIORITY
(SP). This algorithm is similar to our WP algorithm, except for
its choice of rank criteria. SP focuses on the mere criteria of
stream index, which defines a complete order over all frames
(using the same tie-breaking rule used by WP for frames
corresponding to the same stream). This algorithm maintains
a state information per stream, however, it does not resort to
maintaining counters or performing packet inspection in order
to determine the dynamic weight of the stream.

a) Traffic Generation and Setup: We study the perfor-
mance of all algorithms under high load for an aggregate
of multiple bursty streams. We now provide some further
information about the common elements of our simulation
study. Each stream is generated using a Markov modulated
Poisson process (MMPP) with two states, ON and OFF, with
symmetric transition rates. During the ON stage unit-size
packets are generated with a rate of λ, which results in an
average rate across both ON and OFF states of λ/2 (the
effective rate is half the ON rate since the transition rates are
chosen to be symmetric). Each stream consists of a sequence
of 200 frames. The exact number of packets in each stream
depends on the size of each frame, which using our previously
defined notation k for the frame length, is 200× k.

b) Simulation Results: Figures 2 and 3 depict the results
of our simulation study. In both figures we consider the
goodput ratio of each algorithm, i.e., the ratio between the
performance of the algorithm and the performance of the
benchmark offline algorithm. The results show the average of
a set of simulations for each choice of parameters. Through-
out our simulations the confidence intervals were negligible.
Figure 2 shows the effect of frame size on the performance of
each algorithm. The traffic is an aggregate of M = 50 streams,
each generated by an MMPP process as described above with
average per-stream rate is 0.025 (implying an aggregate total
average rate of 1.25). This models a high-load system, since
the service rate is 1. Figure 3 shows the effect of increasing
the number of streams, while keeping the per-stream rate fixed
on the performance of each algorithm. The average per-stream
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Fig. 2. Goodput ratio as a function of increasing frame size (M = 50, B =
12).

rate is 0.025, which implies that while the number of streams
is below 40, the average aggregate arrival rate is below the
service rate of 1.

Throughout our experiments, the algorithms satisfying our
design criteria are shown to have a stabilized throughput as
traffic conditions become harder (either in terms of load, or
in terms of decision-complexity, implied by the increase in
the number of packets per frame). The algorithms that do
not conform with our guidelines show a fast degradation in
performance as traffic conditions become harder. Specifically,
WP exhibits a performance which is within 96% of the
performance of the best known offline algorithm for the
problem, while SP stabilizes at the 80% mark. This latter
finding points to a possible tradeoff: while SP is “stream-
neutral”, in the sense that its ranking (and therefore drop
decisions) are independent of stream identity, its performance
in terms of goodput is inferior to that of WP, which prioritizes
over streams. This can be seen trading off fairness for goodput.

V. CONCLUSIONS AND FUTURE WORK

In this work we address the problem of managing buffer
overflows for traffic consisting of multiple streams with inter-
packet dependencies. We provide guidelines for the design
of algorithms for the problem, and analyze the performance
of one such algorithm, both from a worst-case competitive
approach, as well as by a simulation study. We provide
guarantees as to its performance under any traffic conditions by
proving it has a bounded competitive ratio. We also show that
the competitive ratio of any algorithm for our problem might
degrade linearly in the number of streams. Our simulation
study shows that algorithms that follow our proposed design
criteria exhibit a stable, close to optimal, performance under
variable traffic characteristics and load, while algorithms that
fail to adhere to our guidelines show a fast degradation in
performance as traffic characteristics become more intense.

Our work raises several interesting open questions includ-
ing: (a) What is the interplay between the buffer management
algorithm and coding, and how can prior information about
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Fig. 3. Goodput ratio as a function of increasing number of streams (k =
6, B = 12, average stream rate of 0.025).

the coding scheme (and its redundancy) be taken into account
by the algorithm in order to provide a better performance;
(b) How to settle the gap in the competitive ratio of algorithms
for the MFG problem; and (c) What is the tradeoff between
fairness and goodput.
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