
Rate vs. Buffer Size -
Greedy Information Gathering on the Line

Adi Rosén
CNRS - LRI

Bât. 490, Université Paris Sud
91405 Orsay, France

adiro@lri.fr

Gabriel Scalosub
Computer Science Department

Technion - Israel Institute of Technology
Haifa 32000, Israel

gabriels@cs.technion.ac.il

ABSTRACT
We consider packet networks with limited buffer space at the nodes,
and are interested in the question of maximizing the number of
packets that arrive to destination rather than being dropped due to
full buffers.

We initiate a more refined analysis of the throughput competi-
tive ratio of admission and scheduling policies in the Competitive
Network Throughput model [2], taking into account not only the
network size but also the buffer size and the injection rate of the
traffic.

We specifically consider the problem of information gathering
on the line, with limited buffer space, under adversarial traffic. We
examine how the buffer size and the injection rate of the traffic af-
fect the performance of the greedy protocol for this problem. We
establish upper bounds on the competitive ratio of the greedy pro-
tocol in terms of the network size, the buffer size, and the adver-
sary’s rate, and present lower bounds which are tight up to constant
factors. These results show, for example, that provisioning the
network with sufficiently large buffers may substantially improve
the performance of the greedy protocol in some cases, whereas for
some high-rate adversaries, using larger buffers does not have any
effect on the competitive ratio of the protocol.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Packet-Switching Network, Store and Forward
Networks; F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Non Numerical Algorithms and Problems—Routing and Lay-
out, Sequencing and Scheduling; G.2.2 [Discrete Mathematics]:
Graph Theory—Network Problems

General Terms
Algorithms, Performance, Theory

Keywords
Buffer Management, Competitive Network Throughput, Informa-
tion Gathering, Online Algorithms, Competitive Analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’07, June 9–11, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-667-7/07/0006 ...$5.00.

1. INTRODUCTION
Throughput analysis of packet networks under adversarial set-

tings has received increasing attention in recent years. A large
number of works have analyzed the competitive ratios of admis-
sion and scheduling policies, measuring the throughput of the sys-
tem, when traffic is given by an adversary and buffer space is lim-
ited. Such works have addressed single buffers, e.g., [1, 15, 4, 14],
switches, e.g., [8, 3, 6, 7, 16], or whole networks, e.g., [2, 12, 5,
9, 13]. The adversarial setting for this investigation is motivated
by both theoretical interest as well as by practical needs, especially
the increasing difficulty in obtaining tractable and accurate proba-
bilistic models for network traffic. The setting of whole networks,
which is especially relevant to the present work, has been stud-
ied in recent years in the framework of theCompetitive Network
Throughput (CNT) model, first introduced in [2]. This model aims
at evaluating the throughput of online local-control packet admis-
sion and scheduling policies in networks with adversarial traffic,
when buffer space at the routers is limited. In this model, packets
are injected to various nodes over time, each with some prescribed
destination and path to follow, and the goal is to maximize the over-
all number of packets delivered, rather than being dropped en-route
due to limited buffer space. First results for this model have been
obtained in [2], and were followed by additional results in, e.g., [5,
9, 12].

Most of the results mentioned above consider an arbitrary size
for the buffers and a non-restricted adversary which can inject any
sequence of packets into the network. They then give competi-
tive ratios for various policies which are usually independent of
the buffer size, and are a function of, e.g., the network size. This
approach is clearly of merit in order to obtain results that would
hold for all scenarios. However, some results, especially in the
context of the throughput of single switches, lead to the question
whether the size of the buffer influences the attainable competitive
ratios for the problem at hand. For example, Azar and Litichevskey
[6] consider the problem of scheduling a multi queue system, and
present an algorithm whose competitive ratio depends on the size of
the buffers, such that as the buffer size increases, the performance
guarantee of the algorithm improves accordingly. In the context of
the CNT model it is known that if the buffer size isB = 1 then
the greedy protocol (and in fact any online deterministic protocol)
on the line isΩ(n) competitive [2], while ifB > 1 better competi-
tive ratios (such asO(

√
n)) can be achieved by online local-control

protocols [2, 5].
In this paper we initiate a study in the framework of the CNT

model of the interplay between the competitive ratio of admission
and scheduling protocols, and the size of the buffers provided in the
network - on the one hand, and the injection rate of the traffic into
the network - on the other hand. We aim at studying the question

Range ofr Subrange ofr Result UB LB

r ≤ 1
r <

√

B−1
n

Optimal Theorem 2.6

r ≥
√

B−1
n

Θ
(

max
{

1, r
√

n
B

})

Theorem 2.7 Theorem 2.9

1 < r < min {B,
√

n} r ≤ n
B

Θ
(√

rn
B

)

Theorem 3.2 Theorem 3.8

n
B

< r < min {B,
√

n} Θ(r) Theorem 3.3 Theorem 3.6

r ≥ min {B,
√

n} Θ(
√

n) [5] Lemma 3.10

Table 1: Summary of results for B ≥ 2, depending on the rate of the adversary. For every range, the UB column refers to the proof
of the upper bound, and the LB column refers to the proof of the lower bound.

of whether providing the network with buffers whose sizes have
a certain relationship with the networks size and/or the injection
rate of the traffic, can influence the performance of the network,
measured by the competitive ratio of the deployed protocols.

As a first test case for this approach we study the topology of the
line, and the problem of information gathering (i.e., all packets are
destined to a single node in the network). This question received
considerable attention in the literature on its own, especially in the
context of sensor networks, and wireless ad-hoc networks, e.g., [18,
11, 17], as well as in the context of the CNT model [2, 9, 5]. We
give tight results, up to constant factors, for the competitive ratio of
the greedy policy for information gathering on the line, as a func-
tion of the size of the line,n, the size of the buffer at each node
B, and the injection rate of the adversary controlling the traffic,r.
Roughly speaking, this injection rate bounds the amount of pack-
ets the adversary is allowed to inject into the network at every time
step (For a formal definition of the adversary see Section 1.3).

Our results give insight into the question of whether provisioning
the network with large buffers improves the performance of the sys-
tem, measured by the throughput competitive ratio of the protocol.
We show, for example, that for relatively small rates, increasing
the buffer size available at the network’s nodes indeed enables the
greedy protocol to guarantee a better competitive ratio. However,
this improvement is limited, in the sense that increasing the buffer
size beyond a certain size, no longer helps in guaranteeing a better
competitive ratio. Another consequence of our results is that when
the adversary has rater ≤ 1, if buffers are sufficiently large, then
the greedy protocol achieves optimal throughput, while if the buffer
size is too small, then the greedy protocol cannot achieve optimal
throughput. See Section 1.2 for a detailed description of our results.

We view our results as a first step towards a more refined analysis
of throughput competitiveness, and towards providing guidelines
on how should buffers be deployed in the network in adversarial
settings. We believe that the results presented here give a better
understanding of the role of buffer size in guaranteeing that simple
protocols perform well under adversarial traffic. This may enable
the use of some limited knowledge on the traffic pattern, even in an
adversarial setting, which could be harnessed into providing better
performance guarantees.

1.1 Related Work
Problems of maximizing throughput given limited size buffers

and against adversarial traffic have been studied extensively in re-
cent years e.g., [1, 15, 4, 8, 3, 6, 14]. See [10] for a short survey.
These works consider the task of maximizing the number of pack-
ets transmitted from a single buffer, or from a switch, analyzing the
performance of the algorithms using competitive analysis.

In the context of whole networks, Aiello et al. [2] introduced
the Competitive Network Throughput (CNT) model to study the
performance of buffer management and scheduling policies which
are provided with limited buffer space and against adversarial traf-
fic. Aiello et al. show that some protocols (e.g., Nearest-to-Go
(NTG)) are competitive on all networks, and some other protocols
(e.g., Furthest-to-Go (FTG)) do not have bounded competitive ra-
tio on all networks. They further show that any greedy protocol
on the line isO(n) competitive, that NTG isO(n2/3) competitive,
and that no greedy policy can have a competitive ratio better than
Ω(

√
n). These results hold for any buffer sizeB > 1. On the

other hand they show that ifB = 1, any greedy policy has com-
petitive ratioΩ(n). Angelov et al. [5] show that for the problem
of information gathering on the line (where the destination of all
packets is the same node), the greedy policy isO(

√
n) competitive

for anyB > 1. Two works, one by Angelov et al. [5] and the other
by Azar and Zachut [9], give centralized online algorithms for the
throughput maximization problem on the line, with polylogarith-
mic competitive ratio.

The fact that there is a connection between the competitive ratio
of the system and the available buffer size is suggested in a work
by Azar and Litichevskey [6]. They examine the competitive ratio
of online algorithms for the problem of maximizing the through-
put of a system withm input ports with buffers of sizeB, and
a single output port, where at each time step only one buffer can
send a packet. They give an online algorithm with competitive ra-

tio e
e−1

(

1 + O(log m)
B

)

, which approachese
e−1

, as we provide the

input ports with larger buffers. For sufficiently large buffers, this
improved upon the best known previous result of1.89 [3].

The problem of information gathering was studied in the liter-
ature under different models. For example, Kothapalli and Schei-
deler in [18] study this problem for the case that an adversary con-
trols not only the injected traffic but also the activation and deacti-
vation of network links. They give results for the line and the cycle
showing tight bounds on the excess amount of buffer space that
the online algorithm needs (compared to the optimal adversary) in
order to deliver all injected packets.

1.2 Our Results
We give tight bounds on the competitive ratio of the greedy pro-

tocol for information gathering on the line. We give upper bounds
and lower bound on the competitive ratios, as a function of the
available buffer space in every node, the rate of the adversary, and
the size of the network. All our results are tight up to a constant
factor.

Table 1 summarizes the results for the case where the buffer size
is at least2 (Section 4 treats the special case whereB = 1). For

r=

√

B−1

n

r

B

√
n

1

n1 2

r=
n

B

r=B

Θ(n)

Θ(rn)

Θ(
√

n)

Θ
(√

rn
B

)

Θ(r)

Optimal

Θ
(

r
√

n
B

)

Figure 1: Graphic representation of results as a function of the buffer size B and the adversary’s rate r. The X-axis represents the buffer size, and
the Y-axis represents the adversary’s rate. The different regions are marked according to the competitive ratio of the greedy policy, depending upon
the pairing of buffer size and adversary rate values.

different ranges of the adversary’s rate,r (see Section 1.3 for a
formal definition of the rate), it presents the competitive ratio of
the greedy policy. For a graphic representation of our results, see
Figure 1.

Note specifically that these results imply that forr ≤ 1, if the
nodes are supplied with sufficiently large buffers, then the greedy
policy has optimal throughput. In addition, our results imply that
for r > 1, increasing the buffer can help guarantee a better com-
petitive ratio, up to a point where the competitive ratio no longer
depends upon the buffer size, and becomes dependant solely of the
adversary’s rate.

For the case whereB = 1, we show that if the adversary has rate
1/n < r < 1, then the competitive ratio of the greedy protocol is
Θ(rn). Forr ≤ 1/n the greedy policy is optimal, whereas by the
results in [2], forr ≥ 1 it is Θ(n) competitive.

1.3 The Model
We model the network as a digraphG = (V, E), |V | = n,

|E| = m. The nodes in the graph represent routers and the edges
represent unidirectional communication links. The system is syn-
chronous, and time proceeds in discrete time steps. All packets in
the network have equal size, and without loss of generality we as-
sume they are of unit size. Every link has unit capacity, and can
transmit at most one packet in each time step, along the direction
of the link. In the tail of every link there is a buffer of sizeB ≥ 1,
which can store at mostB packets. Packets are injected into the
network, each identified by its source node, its target node, and a
predesignated path which it is has to follow from source to destina-
tion. Every packet injected into the network is injected at its source
node, to be stored at the output port of the first link in its path. Each
time step comprises of two substeps: the forwarding-and-injection
substep followed by the switching substep. The forwarding-and-
injection substep works as follows: For each link, a packet may be
selected from the output buffer at the tail of the link, and this packet
is forwarded to the node at the head of the link. At the same time,
any number of packets can be injected into the node. In the switch-
ing sub-step packets that have arrived (or injected) to the node can
be placed in the buffer of the next (or first) edge of their path. If
there is not enough space in the buffer to store all packets some
packets must be dropped.

A greedy protocol is a protocol that never drops a packet unless
the buffer in which it has to be stored is full, and always forwards a
packet from a buffer unless the buffer is empty. Protocols satisfying
the latter property are sometimes referred to aswork conserving.

We focus our attention in this paper on the directed line topol-
ogy. Note that in this topology, any packet is characterized solely
by its source node, and target node. Furthermore, in this topology,
every node has a single outgoing link. We will therefore sometime
refer to a link’s output buffer, as the buffer at its tail node. We
further focus on the problem ofInformation Gathering on the line,
where the target node of all packets is the last node of the line. In
this case, every packet is characterized solely by its source node.
In this paper we consider greedy protocols for information gath-
ering. Note that for this problem on the line all greedy protocols
are equivalent, and we will therefore refer tothe greedy protocol in
this case. Since all greedy protocols are equivalent, unless stated
differently, we assume for ease of analysis, without loss of general-
ity, that when there is a packet arriving at a node from its preceding
node, then this will be the packet which is forwarded on the node’s
outgoing link in the next time step. We call this assumption the
en-route assumption. Also observe that at every time step there is
at least space for one new packet in any buffer, since a packet is
always sent from a full buffer. We can therefore assume without
loss of generality that all packets that are forwarded on a link are
stored in the buffer of the node at the head of the link, and never
dropped. It follows that we can assume without loss of generality
that any packet accepted and stored in any source node buffer, is
never dropped, i.e., packets are only dropped at injection.

We are interested in maximizing the throughput of the network,
i.e., maximizing the number of packets which are delivered to the
last node of the line.

We assume the injections are governed by an adversary. Given
any real numberr, anr-adversary can inject any sequence of pack-
ets as long as for every time interval of lengtht, at most⌈rt⌉ pack-
ets are injected into the network. Note that the adversary is allowed
to inject the packets to any nodes in the network, and may well
inject more than one packet simultaneously, even to the same node.

We use competitive analysis to measure the performance of the
greedy protocol. We say that a protocolA is c-competitive if, for
every input traffic sequenceσ of packets injected into the network,
it holds that,OPT(σ) ≤ c ·A(σ) + b, whereOPT(σ) is the num-

ber of packets an optimal offline algorithm delivers out ofσ, A(σ)
is the number of packetsA delivers out ofσ, andb is a constant
independent of the input traffic sequenceσ. For the analysis, we
assume without loss of generality that the optimal algorithm never
drops a packet that it accepted at injection.

Throughout the paper, unless otherwise stated, we assume that
the buffer sizeB is at least2. The special case ofB = 1 is treated
in Section 4.

Organization
The rest of the paper is organized as follows. We first assume that
B > 1. In Section 2 we consider the case ofr ≤ 1, and in Section 3
we consider the case ofr > 1. In Section 4 we treat the special
case ofB = 1, and we conclude the paper with conclusions and
open problems in Section 5. Some proofs are omitted due to space
limitations.

2. LOW RATE ADVERSARIES

2.1 Large Buffers
In this section we show that for any adversary of rater ≤ 1,

if B ≥ max
{

2, ⌈r2n⌉ + 1
}

then the greedy policy does not drop
packets, and is therefore optimal. To this end we analyze the system
as if it has unbounded buffers and no packet is dropped, and give
an upper bound ofmax

{

2, ⌈r2n⌉ + 1
}

on the size of the buffers.
As a first step, we prove the following lemma, which bounds the

overall number of packets in the network, under the greedy policy:

LEMMA 2.1. For any r-adversary r ≤ 1, under the greedy
policy, at any time t, the number of packets in the system is at most
⌈rn⌉.

To see this, since all greedy protocols are equivalent, it is suffi-
cient to show that the above lemma holds for any specific greedy
protocol. For analysis purposes it is convenient to consider the
Longest-in-System (LIS) protocol.

The following lemma, whose proof is omitted, enables us to give
a bound on the amount of time every packet stays in the network:

LEMMA 2.2. Under LIS, for any adversary of rate r ≤ 1, con-
sider any packet p injected to node i in time t. Then for every j ≥ i,
p arrives to node j by time t + j, and p is sent from node j by time
t + j + 1.

Applying the above lemma withj = n we obtain the following
corollary:

COROLLARY 2.3. Under LIS, for any adversary of rate r ≤ 1,
every packet is in the system for at most n time units.

The following lemma gives a bound on the overall number of
packets in the network at any given time under the LIS protocol.

LEMMA 2.4. Under LIS, for any adversary of rate r ≤ 1, and
at any time t, the number of packets in the system in time t is at
most ⌈rn⌉.

PROOF. Consider any timet. By Corollary 2.3, any packet in-
jected to the system before timet − n has already been delivered.
Hence the system holds only packets injected during the interval
(t−n, t]. By the definition of the adversary, the maximum number
of packets injected during such an interval is at most⌈rn⌉.

Combining the above lemma with the fact that all greedy policies
are equivalent, we conclude the proof of Lemma 2.1. Note that

Lemma 2.1 guarantees that for anyr-adversary such thatr ≤ 1,
if B ≥ ⌈rn⌉ then any greedy policy does not drop packets, and
hence any greedy policy is optimal. In what follows we show that
the same result holds even for buffers of smaller size.

LEMMA 2.5. For any adversary of rate r ≤ 1, and any greedy
policy, at any time t there are at most max

{

2, ⌈r2n⌉ + 1
}

packets
in every buffer.

PROOF. Let i be any node in the system. If at the beginning of
time stept there are more than 2 packets ati’s buffer, then at time
t− 1 the node was not empty (since at most 2 packets can arrive in
each time step). Lett′ be the latest time prior tot where the buffer
is empty. Without loss of generality assumet′ = 0. We distinguish
between two cases:

Case 1: t ≤ ⌈nr⌉:
In this case, at timet the number of packets in nodei is at most

t + ⌈tr⌉ − t = ⌈tr⌉ ≤ ⌈r2n⌉ + 1.

Case 2: t > ⌈nr⌉:
Let ε = ⌈tr⌉ − tr, and note that0 ≤ ε < 1. At time t the

number of packets in nodei is at most

⌈nr⌉ + ⌈tr⌉ − t = ⌈nr⌉ + t(r − 1) + ε
= ⌈nr⌉ − t(1 − r) + ε
< ⌈nr⌉ − ⌈nr⌉(1 − r) + ε
≤ ⌈nr⌉r + 1,

where the first term follows from Lemma 2.1, and the inequality
follows from the fact thatr ≤ 1. Since any integerm which sat-
isfiesm < ⌈rn⌉r also satisfiesm ≤ ⌈r2n⌉, it follows that the
number of packets in nodei is at most⌈r2n⌉ + 1.

The following theorem is an immediate consequence of the above
lemma:

THEOREM 2.6. For any r-adversary such that r ≤ 1, if B ≥
max

{

2, ⌈r2n⌉ + 1
}

then the greedy policy does not drop packets,
and thus is optimal.

2.2 Small Buffers
In this section we give tight bounds on the competitive ratio of

the greedy policy against anyr-adversary withr ≤ 1, in a net-
work which is supplied with relatively small buffers. Specifically,
we show that if2 ≤ B ≤ Θ(r2n), then the greedy policy has
competitive ratioΘ(r

√

n
B

).

2.2.1 Upper Bound

THEOREM 2.7. If 2 ≤ B ≤ n, and the packets are injected by

an r-adversary with
√

B−1
n

≤ r ≤ 1, then the greedy policy is

O(max
{

1, r
√

n
B

}

) competitive.

PROOF. For the purpose of the analysis we divide time into a
sequence of intervalsP0, K0, P1, K1, P2, K2, IntervalsP are
defined by the number of packets that the adversary accepts. In-
tervalsK will be fixed length intervals of lengthk. Formally, let
Pi = [si, ti + 1), andKi = [ti + 1, ui) where

1. s0 = 0 and fori > 1, si = ui−1,

2. ti is the earliest time aftersi where the adversary accepts
3 · ⌈rn⌉ packets during the interval[si, ti + 1), and

3. ui = ti + k, for k = Θ(n).

We start by showing that we can identifyΩ(min
{

rn,
√

nB
}

)

distinct packets residing in the buffers of the greedy policy during
Pi.

If the greedy policy accepts at least⌈rn⌉ of the new packets
injected by the adversary duringPi then we have at leastΩ(rn)
packets residing in the buffers of the greedy policy duringPi.

Assume now that the greedy policy does not accept at least⌈rn⌉
of the new packets injected by the adversary duringPi. It follows
that the greedy policy drops duringPi at least2 · ⌈rn⌉ packets.

We say that a nodej is bad in Pi if at least one packet was
dropped inj duringPi. Note that if a packet is dropped inj at time
t, then the buffer at that node is full at that time, and furthermore,
due to the en-route assumption, at leastB − 1 ≥ B

2
of the packets

residing in nodej at time t have been injected toj itself. Let x
denote the number of bad nodes inPi. If x ≥

√

n
B

, then we can

identify at leastxB
2

= Ω(
√

nB) distinct packets residing in the
buffers of the greedy policy duringPi. Assume now thatx <

√

n
B

.
Recall that the greedy policy has dropped at least2 · ⌈rn⌉ packets
duringPi, hence in at least one of the bad nodes the greedy policy
has dropped at least2·⌈rn⌉√

n

B

≥ 2r
√

nB packets. Observe that by the

assumption thatr ≥
√

B−1
n

we are guaranteed to have2r
√

nB ≥
2. We now use the following lemma, whose proof appears later in
the sequel.

LEMMA 2.8. Any bad node j such that at least q ≥ 2 packets
were dropped at j during Pi, forwards Ω(q · 1

r
) packets during Pi.

It follows that there is at least one bad node from which

Ω

(

2r
√

nB · 1

r

)

= Ω(
√

nB)

packets have been forwarded duringPi, which means that we can
identify Ω(

√
nB) distinct packets residing in the buffers of greedy

duringPi.

We can therefore conclude that there areΩ(min
{

rn,
√

nB
}

)

distinct packets residing in the buffers of the greedy policy during
Pi.

By the fact thatB ≤ n, we have

k = Θ(n) = Ω(n + min
{

rn,
√

nB
}

).

Since we have shown that at leastΩ(min
{

rn,
√

nB
}

) distinct

packets resided in the buffers under the greedy policy duringPi, it
follows that at least this number of packets were delivered by the
greedy protocol duringPi ∪ Ki.

As to the adversary, note that by the choice ofk - the length of in-
tervalKi - the overall number of packets accepted by the adversary
duringPi ∪ Ki is bounded by3 · ⌈rn⌉ + r · Θ(n) = O(rn).

Summing the above over alli, we obtain a lower bound of

Ω(min
{

jrn, j
√

nB
}

)

on the number of packets delivered by the greedy policy by the
end ofKj , where on the other hand the same summation yields
an upper bound ofO(jrn) on the number of packets accepted by
the adversary by the end of intervalKj , which clearly also bounds
the number of packets delivered by the adversary by the end of
Kj . It therefore follows that the ratio between the number of pack-
ets delivered by the adversary and the number of packets delivered
by the greedy policy isO(max

{

1, r
√

n
B

}

), which completes the
proof.

PROOF OF LEMMA 2.8. By the assumption, we know that at
least 2 packets were dropped at nodej. Consider any two consec-
utive events in which a packet was dropped at nodej, and assume
without loss of generality that the first drop was at time0, and the
second drop was at timet. Note that for every nodej′ and times,
a packet is dropped at the switching substep of times only when
there has been both an injection into nodej′ and a forwarding to
nodej′ in the forwarding-and-injection substep of times, and the
buffer of j′ is full at the beginning of the forwarding-and-injection
substep. Furthermore, since every two consecutive injections are
at least⌊1/r⌋ ≥ 1 time apart, we necessarily havet > 0. If the
buffer at nodej is full during the entire interval[0, t], then clearly
at leastt ≥ ⌊1/r⌋ = Ω(1/r) packets have been forwarded from
nodej under the greedy policy. Otherwise, let0 < s < t be the
last time prior tot in which the buffer at nodej was not full at the
end of time slots. By the maximality ofs, and the fact thatr ≤ 1,
it follows that at the end of times there wereB − 1 packets in
the buffer of nodej, and at the forwarding-and-injection substep of
time s + 1 one packet arrived to nodej on its incoming link, and
one packet was injected to nodej. By the fact that inter-injection
time is at leastΩ(1/r), it follows that the interval(s, t] is of length
at leastΩ(1/r), and since the buffer was always full during this
interval, it follows that one packet was forwarded from nodej in
every time step in this interval, i.e., at leastΩ(1/r) packets were
forwarded from nodej in the interval[0, t].

Since this holds for every two consecutive events of packets be-
ing dropped atj, and by the assumption onj there were at least
q ≥ 2 packets dropped atj during Pi, we conclude that at least
Ω(q · 1

r
) packets were forwarded from nodej duringPi.

2.2.2 Lower Bound
In this section we prove that the upper bound given in Theo-

rem 2.7 is tight up to a constant factor, for buffers smaller than
O(r2n). Note that for any constant0 < c < 1, and anyr-
adversary such thatr ≤ 1, if cr2n ≤ B ≤ ⌈r2n⌉ then Theorem 2.7
guarantees that the greedy policy isO(1)-competitive. Therefore
it is enough to prove our lower bound for buffers of size less than
1
16

r2n.

THEOREM 2.9. For any r ≤ 1, if 2 ≤ B < 1
16

r2n, then there
exists an r-adversary A such that the ratio between the throughput
of A and that of the greedy policy is Ω

(

r
√

n
B

)

.

PROOF. The adversary will inject packets in two epochs. We
will consider the line as divided into two blocks, where the sec-
ond block is divided into segments. In the first epoch the adversary
injects only to the first block, whereas in the second epoch the ad-
versary injects only to the second block. The goal of the injection
sequence in the first epoch is to generate a continuous sequence
of packets arriving at the second block. The second block is di-
vided into segments, where the injection during the second epoch
will cause the greedy policy to drop packets in every segment. As
the analysis will show, the overall number of packets accepted by
the greedy policy would be proportional to the injections made to
the first block, whereas the adversary can accept all the packets
injected.

Formally, letr′ = 1
⌈1/r⌉ . It follows that r/2 ≤ r′ ≤ r, and

1/r′ is integral. Letd = ⌊
√

nB⌋. Consider the line as composed
of two blocks of nodes, where the first block consists of the nodes
0, . . . , d

r′ − 1, and the second block consists of nodesd
r′ , . . . , n.

We divide the second block intok = ⌊n
d
⌋ − 1

r′ segments of length
d each,S0, . . . , Sk−1.

d
nodes

first block second block

node d
r′

S0 S1 S2 S3 Sk−1. . .

. .
.

time

d
r′ + (k−1)d

d
r′ + 3d

d
r′ + 2d

d
r′ + d

d
r′

1
r′ apart

r′d packets

Figure 2: Outline of the injection pattern for the adversary showing

the Ω
(

r
√

n
B

)

lower bound. The X-axis represents the line network,

and each circle represents the injection of a packet. Out of the r′d
packets injected to every segment in the second block, only B packets
would be absorbed by the greedy policy.

Note that by the assumption onB and the choice ofr′ andd, the
number of nodes in the first block is at most

d

r′
=

⌊
√

nB⌋
r′

≤
√

nB

r/2
< 2

√

r2n2/16

r
=

n

2
.

Since there remain at leastn
2

nodes in the second block, and the
length of every segment in the second block is

d = ⌊
√

nB⌋ ≤
√

nB <

√

r2n2

16
=

rn

4
≤ n

4
,

we are guaranteed to have at least two segments in the second
block.

The injection sequence of the adversary is divided into two epochs,
as follows:

Epoch 1: For everyi = 0, . . . , d − 1, inject a packet to nodei
r′

in time i
r′ .

Epoch 2: For every segmentj = 0, . . . , k − 1, inject ⌊r′d⌋
packet to the first node ofSj , one every1/r′ time units, starting
from time d

r′ + jd. Note that by the choice ofr, r′ andd we have
⌊r′d⌋ ≥ 2.

See Figure 2 for an outline of the injection sequence.
In addition, note that since the above injection sequence does not

inject more than one packet every1/r′ time units, the injection rate
is at mostr′ ≤ r, hence it corresponds to anr-adversary.

We now turn to analyze the performance of the greedy policy
given the above injection sequence. First note that the greedy pol-
icy accepts all the packets injected during epoch 1. To see this,
notice that the adversary injects at most one packet to every node.
It follows that there is at most one time unit where the node receives
two packets simultaneously - one from its preceding node, and one
injected by the adversary. Since by our assumptionB ≥ 2, the
greedy policy does not drop packets during epoch 1.

The following lemma, whose proof is omitted, shows that start-
ing from time d

r′ , there is a continuous sequence ofd packets arriv-
ing to the first node ofS0 from its preceding node.

LEMMA 2.10. For every i = 0, . . . , d−1, there is a continuous
sequence of i+1 packets leaving node i

r′ , starting from time i
r′ +1.

The following lemma, whose proof appears later in the sequel,
bounds the number of packets which leave any of the segments in
the second block, under the assumption that2 ≤ B < 1

16
r2n:

LEMMA 2.11. For every i = 0, . . . , k−1, there is a continuous
sequence of d+(i+1)B packets leaving Si, entering segment Si+1

as of time d
r′ + (i + 1)d.

Since the number of segments in the second block is

⌊n

d
⌋ − 1

r′
= ⌊ n

⌊
√

nB⌋
⌋ − 1

r′
= O

(
√

n

B

)

,

by Lemma 2.11, the number of packets delivered by the greedy
policy isO(d +

√

n
B

B) = O(
√

nB).
The adversary injects at least

d +

(

⌊n

d
⌋ − 1

r′

)

r′d = Θ(r′n)

packets. It can keep them all by not forwarding packets in the
first block, and spreading ther′d packets injected to segmentSi

throughout the segment while not sending packets between differ-
ent segments. Therefore after a flush-phase at the end of the in-
jection sequence, the adversary can deliver all the packets it has
accepted.

It follows that the ratio between the number of packets delivered
by the adversary and the number of packets delivered by the greedy
policy is at least

Θ(r′n)

O(
√

nB)
= Ω

(

r

√

n

B

)

,

which completes the proof of Theorem 2.9.

PROOF OFLEMMA 2.11. The proof is by induction oni. For
the base case, note that by Lemma 2.10, there is a continuous se-
quence ofd packets entering the first node ofS0, starting from
time d

r′ . It follows that duringd time units, there is a packet ar-
riving to the first node ofS0 from its preceding node. In addition,
during thesed time units, there are⌊r′d⌋ packets injected by the
adversary to the first node ofS0. Due to the en-route assumption,
none of these packets are forwarded from this node until the en-
tire sequence ofd packets arriving on the incoming link has ended.
Note that by our assumption that2 ≤ B < 1

16
r2n, we obtain that

r > 4
√

B
n

. It follows that

⌊r′d⌋ ≥ ⌊ r⌊
√

nB⌋
2

⌋
≥ ⌊2

√
B⌊

√
nB⌋√

n
⌋

≥ ⌊2
√

B(
√

nB−1)√
n

⌋

= ⌊2
(

B −
√

B
n

)

⌋ > B,

where the last inequality follows from the fact that in our case
2 ≤ B < 1

16
r2n ≤ n

16
. The node can store onlyB out of

these⌊r′d⌋ injected packets, which are then forwarded immedi-
ately after the sequence arriving on the incoming link has termi-
nated. This prolongs the sequence leaving the first node ofS0 by
additionalB packets, to a total ofd + B = d + (0 + 1)B packets,
which start leaving the first node ofS0 in time d

r′ + 1. Since the
length ofS0 is d nodes, this sequence enters segmentS1 as of time
d
r′ + d = d

r′ + (0 + 1)d. This completes the base case.
For the inductive step, assume the claim holds fori. It follows

that there is a continuous sequence ofd+(i+1)B packets leaving
Si, entering segmentSi+1 as of time d

r′ + (i + 1)d. Starting from

this time, during a period ofd time units, the adversary injectsr′d
packets to the first node ofSi+1. Similar to the base case, due
to the en-route assumption, none of these packets are forwarded
from this node until the entire sequence ofd + (i + 1)B packets
arriving on the incoming link has ended. Since the node can only
storeB out of the⌊r′d⌋ packets injected by the adversary, these
packets ’join’ the sequence arriving on the incoming link, thus the
continuous sequence of packets leaving the node comprises ofd +
(i + 1)B + B = d + (i + 2)B packets. By the fact that the length
of Si+1 is d, this sequence starts entering segmentSi+2 as of time
d
r′ + (i + 1)d + d = d

r′ + (i + 2)d, which completes the proof of
the lemma.

3. HIGH RATE ADVERSARIES
In this section we treat the case of adversaries of high rates, i.e.,

of ratesr > 1. We give tight bounds on the competitive ratios
obtained by the greedy policy in this case. These bounds are a
function of the network sizen, the buffer sizeB, and the injection
rater. Interestingly, different functions apply for different combi-
nations of these values.

3.1 Upper Bounds
Let M = max {n, B}. The following lemma shows an up-

per bound in terms ofM on the performance of the greedy policy,
against anyr-adversary withr > 1

LEMMA 3.1. For any r-adversary such that r > 1 the greedy

policy is O

(

√

rM
B

+ r

)

competitive.

PROOF. The following proof is an extension of the proof ap-
pearing in [5].

For the purpose of the analysis we divide time into a sequence of
intervalsP0, K0, P1, K1, P2, K2, IntervalsP are defined by
the number of packets that the adversary accepts. IntervalsK will
be fixed length intervals of lengthk. Formally, letPi = [si, ti +1),
andKi = [ti + 1, ui) where

1. s0 = 0 and fori > 1, si = ui−1,

2. ti is the earliest time aftersi where the adversary accepts
⌈rM⌉ packets during the interval[si, ti + 1), and

3. ui = ti + k, for k = Θ(
√

rMB + n).

In what follows, we compare the throughput of the adversary and
the throughput of the greedy algorithm in every intervalPi ∪ Ki.

We start by showing that we can identifyΩ(
√

rMB) distinct
packets residing in the buffers of the greedy policy duringPi.

Note first that if the greedy policy accepts at leastrM
2

of the
packets accepted by the adversary duringPi, then sincerM ≥√

rMB for r ≥ 1, we are guaranteed to haveΩ(
√

rMB) packets
residing in the buffers of the greedy policy duringPi.

Assume next that the greedy policy does not accept at leastrM
2

of the new packets accepted by the adversary. It follows that it
drops at leastrM

2
of the new packets accepted by the adversary

duringPi. For the purpose of the proof we define a dynamic weight
assignment to packets stored by the greedy protocol.

Initializing the weights: Every packet accepted by the greedy
policy has its weight initialized to zero in the moment of its injec-
tion, and all packets not yet delivered have their weight reset to zero
in the beginning of any intervalPi.

Increasing the weights: Any intervalPi is divided into periods
for every node separately. Thek’th period of a node is defined by

the time interval[xk, xk+B), wherexk is the earliest time a packet
is dropped from the node after the end of the previous period. In the
beginning of every period, we increase the weight of every packet
in the node’s buffer by2. There is no weight increase during the
intervalsKi.

Note that a packet is dropped at nodei at the beginning of a
period iff the buffer is full at this time, i.e., there areB packets in
the buffer. By increasing the weight of each of these packets by2,
the overall weight increase is2B, which is an upper bound on the
number of packets the adversary may accept into nodei, and the
greedy policy lose, during this period (of lengthB).

We now show that during intervalPi the greedy policy stored
in its buffers at leastΩ(

√
rMB) distinct packets. Let2c be the

maximum weight a packet has at the end of intervalPi, wherec is
some positive integer.

By the fact that for every nodej, the weight increase in every pe-
riod of nodej is an upper bound on the number of packets accepted
by the adversary and dropped by the greedy protocol during the pe-
riod at nodej, and since the number of packets that were dropped
by the greedy protocol but accepted by the adversary duringPi is
at leastrM

2
, we have that the total weight of the packets of greedy

is at leastrM
2

, and we can therefore identify at leastrM
2c

= Ω(rM
c

)
distinct packets residing in the buffers of greedy duringPi. It fol-
lows that ifc = 1, this is at leastΩ(rM) = Ω(

√
rMB), and we

are done.
Assume next thatc ≥ 2, and letp be any packet with weight

2c. Note thatp may have already been delivered by the algorithm.
The weight ofp can be divided into two categories, such that2c =
2w + 2v:

Weight given at p’s origin node: Denote it by2w. It follows
thatp spent at leastB(w − 1) time units at its origin node, since
it was there duringw periods, each lastingB time units. Since
the algorithm is greedy, in every such time unit, one packet was
sent from the origin node, i.e. at leastB(w − 1) packets were sent
during these time units. These are all different packets, whichp
will never ’beat’ to the end, due to our en-route assumption.

Weight given at p’s transit nodes: Denote it by2v. In every tran-
sit node wherep had its weight increased, there areB − 1 packets
left behind (because the weight is increased only in time of over-
flow, where the buffer is full). Sincep moves continuously, the sets
of packets in two distinct such transit nodes are disjoint, because
of the en-route assumption. Therefore, there are at leastv(B − 1)
different packets left ’behind’p.

The number of packets stored by greedy duringPi is at least

1 + B(w − 1) + v(B − 1) = cB − B − v + 1
≥ cB − B − c + 1
= (c − 1)(B − 1) = Ω(cB).

It follows that if the algorithm dropped at leastrM
2

of the packets
accepted by the adversary duringPi, it had stored in its buffers at
least

Ω

(

max

{

cB,
rM

c

})

= Ω(
√

rMB)

packets during intervalPi.
We can therefore conclude that in any case there were at least

Ω(
√

rMB) packets residing in the buffers under the greedy policy
duringPi.

When considering the adversary, note that by the choice ofk -
the length of intervalKi - the overall number of packets accepted
by the adversary during the intervalPi ∪ Ki is upper bounded by
⌈rM⌉ + r · Θ(

√
rMB + n) = O(rM + r

√
rMB).

Furthermore, since we have shown thatΩ(
√

rMB) distinct pack-
ets resided in the buffers under the greedy policy duringPi, and
sincek = Θ(

√
rMB + n), it follows that at leastΩ(

√
rMB)

packets were delivered duringPi ∪ Ki under the greedy policy.
By summing the above over alli, we obtain a lower bound of

Ω(j
√

rMB) on the number of packets delivered by the greedy
policy by the end ofKj , where on the other hand the same sum-
mation yields an upper bound ofO(j(rM + r

√
rMB)) on the

number of packets accepted by the adversary by the end of in-
terval Kj , which clearly also bounds the number of packets de-
livered by the adversary by the end ofKj . It therefore follows
that the ratio between the number of packets delivered by the ad-
versary and the number of packets delivered by the greedy policy

is
(

O(rM+r
√

rMB)

Ω(
√

rMB)

)

= O

(

√

rM
B

+ r

)

, which completes the

proof.

The above lemma implies two upper bounds on the performance
of the greedy policy, depending on the rate of the adversary. The
first applies to adversaries with rates bounded byn

B
:

THEOREM 3.2. For any r-adversary such that 1 < r ≤ n
B

, the
greedy policy is O(

√

rn
B

) competitive.

PROOF. Assumer > 1 also satisfies1 < r ≤ n
B

. In particular
in this case, we haveB < n, which impliesM = n. By the

assumption that1 < r ≤ n
B

, we haver ≤
√

rn
B

=
√

rM
B

. It
therefore follows by Lemma 3.1 that the competitive ratio is at most
O

(√

rn
B

)

.

The following theorem gives an upper bound for the remaining
range ofr.

THEOREM 3.3. For any r-adversary such that r > 1 and r >
n
B

, the greedy policy is O(r) competitive.

PROOF. Assumer > 1 also satisfiesr > n
B

. If B ≥ n then
rM
B

= r, hence by Lemma 3.1, the competitive ratio isO(
√

r +
r) = O(r). If on the other handB < n, then by the assumption
that r > n

B
, we haverM

B
= rn

B
< r2. It therefore follows by

Lemma 3.1 that the competitive ratio is at mostO(
√

r2 + r) =
O(r).

Angelov et al. [5] have shown that for allr, and regardless of the
buffer sizeB, the greedy policy isO(

√
n) competitive. Combining

their result with Theorems 3.2 and 3.3, we obtain the following two
corollaries:

COROLLARY 3.4. For any r-adversary such that 1 < r ≤ n
B

,
the greedy policy is min

{

O(
√

rn
B

), O(
√

n)
}

competitive.

COROLLARY 3.5. For any r-adversary such that r > 1 and
r > n

B
, the greedy policy is min {O(r), O(

√
n)} competitive.

3.2 Lower Bounds
In this section we present two lower bounds which combined

with the upper bounds presented in Section 3.1, enable us to charac-
terize the performance of the greedy policy, up to a constant factor,
for anyr-adversary such thatr > 1.

THEOREM 3.6. For any 4 < r <
√

n, and for any buffer size
B, there exists an r-adversary A such that the ratio between the
throughput of A and that of the greedy policy is Ω(r).

PROOF. We consider the line as divided into segments, and have
the adversary inject at most one packet in every time step to every
segment. Given any rate4 < r <

√
n, we show that the number

of segments is at mostr, hence the injection corresponds to anr-
adversary. As the analysis will show, the overall number of packets
accepted by the greedy policy would be proportional to the injec-
tions made to the last segment, whereas the adversary can accept
all the packets injected.

Formally, Let4 < r <
√

n, and letd = ⌈ n
r2 ⌉. Consider the line

as composed ofk = ⌊
√

n
d
⌋ segmentsS0, . . . , Sk−1, such that the

length of segmentSi is (i + 1)d.
Note that by the assumption onr we have2 ≤ d ≤ ⌈ n

16
⌉, and the

overall length of the segments is
∑k

i=1 id = k(k+1)d
2

≤ k2d ≤ n.
We now describe the sequence of injections generated by anr-

adversaryA. For everyi = 0, . . . , k−1, A injects(i+1)dB pack-
ets to the first node of segmentSi, starting at timeti =

∑i
j=0 jd.

See Figure 3 for an outline of the injection sequence.

..
.

..
.

S0 S1 S2

. . .

Si

. . .

(i + 1)dB packets

(i + 2)dB packets

time

Sk−1

Θ(
√

nd · B) packets

..
.

∑k−1
j=0 jd = Θ(n)

..
.

..
.

0
d

3d

6d

∑i

j=0 jd

∑i+1
j=0 jd

nodes
d(i+1)

Figure 3: Outline of the injection pattern for the adversary showing
the Ω(r) lower bound. The X-axis represents the line network, and
each circle represents the injection of a packet. In every segment Si

except for S0, out of the (i + 1)dB packets injected, only B packets
would be absorbed by the greedy policy.

First note that by the choice ofk, we havek ≤
√

n
d
≤ r. Since

the adversary injects at most one packet to every segment in every
time step, we are guaranteed that the above injection sequence cor-
responds to anr-adversary. Furthermore, sinced ≤ ⌈ n

16
⌉ we have

thatk ≥ 2.
The following lemma enables us to bound the number of packets

leaving every segmentSi under the greedy policy. The proof is by
induction on the segment number, and is omitted.

LEMMA 3.7. Under the greedy policy, for any i ≥ 1, the pack-
ets leaving segment Si form a continuous sequence of (i+1)dB+B
packets, which start arriving to Si+1 in time ti+1.

It follows that the greedy policy deliversO(kdB) = O(
√

dn ·
B) = O

(

nB
r

)

packets.
The number of packets injected to the network by the adversary

is nB, and the adversary may successfully deliver them all by stor-
ing the(i + 1)dB packets injected to segmentSi in the buffers of
that segment, and not forwarding any packet across different seg-
ments until the injection sequence has terminated.

It follows that the ratio between the number of packets delivered
by the adversary and the number of packets delivered by the greedy
policy isΩ(r). This concludes the proof of the theorem.

THEOREM 3.8. For any 16B
n

< r ≤ B there exists an r-
adversary A such that the ratio between the throughput of A and
that of the greedy policy is Ω

(√

rn
B

)

.

PROOF. We consider the line as divided into equal-length seg-
ments, each of a length to be determined later. Given any rate
16B

n
< r ≤ B, we describe an adversary that inject at most one

packet in every time step to every segment, and further show that
the adversary does not inject to more thanr segments in every time
unit. This ensures that the injection sequence indeed corresponds to
anr-adversary. The analysis will show that the overall number of
packets accepted by the greedy policy is proportional tor times the
segment length, whereas the adversary can accept all the packets
injected.

Formally, Let 16B
n

≤ r ≤ B, and letd = ⌊
√

nB
r
⌋. Con-

sider the line as composed ofk = ⌊n
d
⌋ = Θ(

√

rn
B

) segments
S0, . . . , Sk−1, each of lengthd. Note that by our assumption that
16B

n
< r, we are guaranteed to haved < n

4
, andk ≥ 4. We

describe the sequence of injections generated by anr-adversaryA:
For everyi = 0, . . . , k − 1, A injects⌊rd⌋ packets to the first

node of segmentSi, starting at timeid.
Note that the above adversary injects at most one packet into

every segment in every time step, and does not inject into more
thanr segments simultaneously. It follows that the above injection
sequence corresponds to anr-adversary. The following lemma en-
ables us to bound the number of packets leaving every segmentSi

under the greedy policy. The proof is by induction on the segment
number, and is omitted.

LEMMA 3.9. Under the greedy policy, the packets leaving seg-
ment Si form a continuous sequence of ⌊rd⌋ + iB packets, which
start arriving to Si+1 in time d(i + 1).

It follows that the greedy policy absorbs and deliversO(rd +

kB) = O(
√

rnB) packets.
The number of packets injected to the network by the adversary

is ⌊rd⌋ · ⌊n
d
⌋ = Θ(rn), and the adversary may successfully de-

liver them all by storing the⌊rd⌋ packets injected to segmentSi in
the buffers of that segment, and not forwarding any packet across
different segments until the injection sequence has terminated.

It follows that the ratio between the number of packets delivered
by the adversary and the number of packets absorbed by the greedy

policy isΩ
(

rn√
rnB

)

= Ω
(√

rn
B

)

. This completes the proof of the

theorem.

Aiello et al. present in [2] anΩ(
√

n) lower bound on the com-
petitive ratio of the greedy policy, which is independent ofB, by
presenting an adversary which can deliver all the packets it injects,
while any greedy policy cannot deliver more than anO(

√
n) frac-

tion of the packets injected. The following lemma shows a bound
on the rate of this adversary.

LEMMA 3.10. For any buffer size B, there exists an adversary
A with rate r = min {B,

√
n}, such that the ratio between the

throughput of A and that of the greedy policy is Ω(
√

n).

PROOF. The adversary used by Aiello et al. in the proof that the
greedy policy cannot have competitive ratio better thanΩ(

√
n), is

a special case of the adversary described in Section 3.2. The main
difference is that their adversary uses a ”stretch” factor ofd = 1,
instead of the factorc n

r2 used in Section 3.2.
Formally, the adversary considers the line as divided intok blocks,

S1, . . . , Sk, such that the length of blockSi is i, and it injectsiB

packets into the first node ofSi, starting from time

ti =
i

∑

j=1

j =
i(i + 1)

2
.

Note that the number of segmentsk must satisfy
∑k

i=1 i ≤ n. We
can therefore choosek = ⌊√n⌋.

Clearly this adversary has rate at most
√

n, since the number of
segments is at most

√
n, and it injects at most one packet to every

segment in every time unit.
We now show that the rate of this adversary is bounded byB.

Note that for everyi we have

ti+B − ti = (i+B)(i+B+1)
2

− i(i+1)
2

=
= 1

2
((i + B)(i + B + 1) − i(i + 1)) =

= 1
2

(

i2 + 2iB + B2 + i + B − i2 − i
)

=
= 1

2

(

B2 + (2i + 1)B
)

> iB.

It follows that by the time there are packets injected to segment
Si+B , there are no longer packets injected to any segmentSj , for
j ≤ i. Hence, the adversary has rate at mostB since the number of
segments to which it injects simultaneously is at mostB.

3.3 Tight Results for High Rates
In this section we conclude the results of the previous sections

and derive bounds, which are tight up to constant factors, on the
competitive ratio of the greedy policy for anyr-adversary such that
r > 1. We distinguish between several ranges forr. See Table 1
for a summary of the results.

For the range ofr ≥ min {B,
√

n}, the upper bound appearing
in [5] guarantees a competitive ratio ofO(

√
n). By Lemma 3.10,

for this range ofr, there exists anr-adversary which shows that the
greedy policy cannot have a competitive ratio better thanΩ(

√
n).

The remaining range to consider is when1 < r < min {B,
√

n}.
Assume first thatmax

{

1, n
B

}

< r < min {B,
√

n}. Theorem 3.3
gives an upper bound ofO(r). Theorem 3.6 gives a lower bound
of Ω(r) for the caser > 4 (if r ≤ 4 the upper bound guaranteed
by Theorem 3.3 isO(1)). Assume now that1 < r ≤ n

B
. Theorem

3.2 gives an upper bound ofO
(√

rn
B

)

. Theorem 3.8 gives a lower
bound ofΩ

(√

rn
B

)

, for r > 16B
n

(if r ≤ 16B
n

the upper bound
guaranteed by Theorem 3.2 isO(1)).

4. THE CASE OF B = 1

The case ofB = 1 is a special case for which the competitive
ratio of the greedy protocol is bad. For ratesr ≥ 1 it follows easily
from Theorems 4.2 and 5.1 in [2] that the competitive ratio of the
greedy protocol isΘ(n). Forr ≤ 1/n the greedy policy is optimal,
since every packet is delivered before the next one can be injected.
For1/n < r < 1 we have the following theorem:

LEMMA 4.1. The greedy policy has competitive ratio Θ(rn)
against any r-adversary such that 1/n < r < 1.

PROOFSKETCH. For the upper bound, note that since every packet
accepted by the greedy policy is delivered by at mostn time units
after its injection, the number of packets accepted by the adversary,
but dropped by greedy due to this packet, is at most⌈rn⌉. Hence
the competitive ratio of the greedy policy against anyr-adversary
with 1/n < r < 1 is O(rn). For the lower bound, an adversary
similar to the one used in [2] which injects a packet to the first node
in the system, and then another packet every⌈1/r⌉ time units (thus
corresponding to anr-adversary), to the node where the first packet
is currently stored, shows that the competitive ratio of the greedy
algorithm isΩ(rn).

5. CONCLUSIONS
In this paper we are interested in the question of how does the

size of the buffers deployed in the network, and the injection rate
of the traffic into the network, influence the attainable throughput-
competitive ratio of scheduling and admission protocols. We initi-
ate a study in the framework of the CNT model of a more refined
analysis of the competitive ratio of the throughput that takes into
account not only the size of the network but also the size of the
buffers and the rate of injection of the traffic. We study the special
case of the line network and the problem of information gathering
(all packet are destined to the same node), and give tight bounds
on the competitive ratio as a function of these parameters. Inter-
estingly, these bounds are different for different combinations of
buffer-size and adversary-rate. For example, we show that for very
small rates, insufficient buffer size may be the difference between
the greedy protocol achieving optimal throughput, and non-optimal
throughput. Furthermore, for larger rates, we show that increasing
the buffer size may help up to a certain point, whereas any further
increase no longer helps the greedy protocol to achieve a better
competitive ratio, and its performance depends solely on the rate of
the adversary.

We believe that the questions and analysis introduced in this pa-
per may lead to a better understanding of the interplay between the
buffer size and the adversary rate, and the competitive ratio attain-
able by local-control protocols. Our work raises several interesting
open problems. For example, can similar results be obtained for
more involved topologies, and other protocols. Another interesting
question is whether one can design protocols that would take ad-
vantage of the given buffer size in order to reduce the competitive
ratio when possible.

Acknowledgments
We thank Zvi Lotker for many useful discussions.

6. REFERENCES
[1] W. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosén.

Competitive Queue Policies for Differentiated Services.
Journal of Algorithms, 55(2):113–141, 2005.

[2] W. Aiello, R. Ostrovsky, E. Kushilevitz, and A. Rosén.
Dynamic Routing on Networks with Fixed-Sized Buffers. In
Proceedings of the 14th annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 771–780, 2003.

[3] S. Albers and M. Schmidt. On the Performance of Greedy
Algorithms in Packet Buffering.SIAM Journal on
Computing, 35(2):278–304, 2005.

[4] N. Andelman and Y. Mansour. Competitive Management of
Non-preemptive Queues with Multiple Values. In
Proceedings of the 17th International Symposium on
Distributed Computing (DISC), pages 166–180, 2003.

[5] S. Angelov, S. Khanna, and K. Kunal. The Network as a
Storage Device: Dynamic Routing with Bounded Buffers. In
Proceedings of the 8th International Workshop on
Approximation Algorithms for Combinatorial Optimization
Problems (APPROX), pages 1–13, 2005.

[6] Y. Azar and A. Litichevskey. Maximizing Throughput in
Multi-Queue Switches.Algorithmica, 45(1):69–90, 2006.

[7] Y. Azar and Y. Richter. An Improved Algorithm for CIOQ
Switches. InProceedings of the 12th Annual European
Symposium on Algorithms (ESA), pages 65–76, 2004.

[8] Y. Azar and Y. Richter. Management of Multi-Queue
Switches in QoS Networks.Algorithmica, 43(1-2):81–96,
2005.

[9] Y. Azar and R. Zachut. Packet Routing and Information
Gathering in Lines, Rings and Trees. InProceedings of the
13th Annual European Symposium on Algorithms (ESA),
pages 484–495, 2005.

[10] L. Epstein and R. V. Stee. Buffer Management Problems.
ACM SIGACT News, 35(3):58–66, September 2004.

[11] C. Florens, M. Franceschetti, and R. J. McEliece. Lower
Bounds on Data Collection Time in Sensory Networks.IEEE
Journal on Selected Areas in Communications,
22(6):1110–1120, 2004.

[12] E. Gordon and A. Rośen. Competitive Weighted Throughput
Analysis of Greedy Protocols on DAGs. InProceedings of
the 24th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 227–236, 2005.

[13] A. Kesselman, Z. Lotker, Y. Mansour, and B. Patt-Shamir.
Buffer Overflows of Merging Streams. InProceedings of the
11th Annual European Symposium on Algorithms (ESA),
pages 349–360, 2003.

[14] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir,
B. Schieber, and M. Sviridenko. Buffer Overflow
Management in QoS Switches.SIAM Journal on Computing,
33(3):563–583, 2004.

[15] A. Kesselman, Y. Mansour, and R. van Stee. Improved
Competitive Guarantees for QoS Buffering.Algorithmica,
43(1-2):63–80, 2005.

[16] A. Kesselman and A. Rosén. Scheduling policies for CIOQ
switches.Journal of Algorithms, 60(1):60–83, 2006.

[17] K. Kothapalli, M. Onus, A. Richa, and C. Scheideler.
Efficient Broadcasting and Gathering in Wireless Ad-Hoc
Networks. InProceedings of the 8th International
Symposium on Parallel Architectures, Algorithms, and
Networks (I-SPAN), pages 346–351, 2005.

[18] K. Kothapalli and C. Scheideler. Information Gathering in
Adversarial Systems: Lines and Cycles. InProceedings of
the 15th Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA), pages 333–342, 2003.

