Rate vs. Buffer Size -
Greedy Information Gathering on the Line

Adi Rosén
CNRS - LRI
Bat. 490, Université Paris Sud
91405 Orsay, France

adiro@Iri.fr

ABSTRACT

We consider packet networks with limited buffer space at the nodes,

and are interested in the question of maximizing the number of
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1. INTRODUCTION

Throughput analysis of packet networks under adversarial set-
tings has received increasing attention in recent years. A large

packets that arrive to destination rather than being dropped due tonumber of works have analyzed the competitive ratios of admis-

full buffers.

We initiate a more refined analysis of the throughput competi-
tive ratio of admission and scheduling policies in the Competitive
Network Throughput model [2], taking into account not only the
network size but also the buffer size and the injection rate of the
traffic.

We specifically consider the problem of information gathering
on the line, with limited buffer space, under adversarial traffic. We
examine how the buffer size and the injection rate of the traffic af-
fect the performance of the greedy protocol for this problem. We

establish upper bounds on the competitive ratio of the greedy pro-

sion and scheduling policies, measuring the throughput of the sys-
tem, when traffic is given by an adversary and buffer space is lim-
ited. Such works have addressed single buffers, e.g., [1, 18]4, 1
switches, e.g., [8, 3, 6, 7, 16], or whole networks, e.g., [2, 12, 5
9, 13]. The adversarial setting for this investigation is motivated
by both theoretical interest as well as by practical needs, especially
the increasing difficulty in obtaining tractable and accurate proba-
bilistic models for network traffic. The setting of whole networks,
which is especially relevant to the present work, has been stud-
ied in recent years in the framework of t®mpetitive Network
Throughput (CNT) model, first introduced in [2]. This model aims

tocol in terms of the network size, the buffer size, and the adver- at evaluating the throughput of online local-control packet admis-
sary’s rate, and present lower bounds which are tight up to constantsion and scheduling policies in networks with adversarial traffic,
factors. These results show, for example, that provisioning the when buffer space at the routers is limited. In this model, packets
network with sufficiently large buffers may substantially improve are injected to various nodes over time, each with some prescribed
the performance of the greedy protocol in some cases, whereas fordestination and path to follow, and the goal is to maximize the over-
some high-rate adversaries, using larger buffers does not hgve an all number of packets delivered, rather than being dropped en-route

effect on the competitive ratio of the protocol.
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due to limited buffer space. First results for this model have been
obtained in [2], and were followed by additional results in, e.g., [5,
9,12].

Most of the results mentioned above consider an arbitrary size
for the buffers and a non-restricted adversary which can inject any
sequence of packets into the network. They then give competi-
tive ratios for various policies which are usually independent of
the buffer size, and are a function of, e.g., the network size. This
approach is clearly of merit in order to obtain results that would
hold for all scenarios. However, some results, especially in the
context of the throughput of single switches, lead to the question
whether the size of the buffer influences the attainable competitive
ratios for the problem at hand. For example, Azar and Litichevskey
[6] consider the problem of scheduling a multi queue system, and
present an algorithm whose competitive ratio depends on the size of
the buffers, such that as the buffer size increases, the perfoemanc
guarantee of the algorithm improves accordingly. In the context of
the CNT model it is known that if the buffer size 8 = 1 then
the greedy protocol (and in fact any online deterministic protocol)
on the line is2(n) competitive [2], while if B > 1 better competi-
tive ratios (such a®(1/n)) can be achieved by online local-control
protocols [2, 5].

In this paper we initiate a study in the framework of the CNT
model of the interplay between the competitive ratio of admission
and scheduling protocols, and the size of the buffers provided in the
network - on the one hand, and the injection rate of the traffic into
the network - on the other hand. We aim at studying the question



| Range ofr [ Subrange of [ Result [ UB [ LB |

B-—1 :
r<1 T <4/ Z= Optimal Theorem 2.6
r> \/% © (max {1,7\/%}) | Theorem 2.7| Theorem 2.9
| < r < min{B, Vn} r< o (/%) Theorem 3.2| Theorem 3.8
& <r<min{B,/n} o(r) Theorem 3.3| Theorem 3.6
r > min{B,/n} O(y/n) [5] Lemma 3.10

Table 1: Summary of resultsfor B > 2, depending on the rate of the adversary. For every range, the UB column refersto the proof
of the upper bound, and the LB column refersto the proof of the lower bound.

of whether providing the network with buffers whose sizes have In the context of whole networks, Aiello et al. [2] introduced
a certain relationship with the networks size and/or the injection the Competitive Network Throughput (CNT) model to study the
rate of the traffic, can influence the performance of the network, performance of buffer management and scheduling policies which
measured by the competitive ratio of the deployed protocols. are provided with limited buffer space and against adversarial traf-
As a first test case for this approach we study the topology of the fic. Aiello et al. show that some protocols (e.g., Nearest-to-Go
line, and the problem of information gathering (i.e., all packets are (NTG)) are competitive on all networks, and some other protocols
destined to a single node in the network). This question received (e.g., Furthest-to-Go (FTG)) do not have bounded competitive ra-
considerable attention in the literature on its own, especially in the tio on all networks. They further show that any greedy protocol
context of sensor networks, and wireless ad-hoc networks, £883.,[  on the line isO(n) competitive, that NTG i@(n2/3) competitive,
11, 17], as well as in the context of the CNT model [2, 9, 5]. We and that no greedy policy can have a competitive ratio better than
give tight results, up to constant factors, for the competitive ratio of Q(1/n). These results hold for any buffer siz¢ > 1. On the
the greedy policy for information gathering on the line, as a func- other hand they show that 8 = 1, any greedy policy has com-
tion of the size of the linep, the size of the buffer at each node petitive ratioQ2(n). Angelov et al. [5] show that for the problem
B, and the injection rate of the adversary controlling the traffic, of information gathering on the line (where the destination of all
Roughly speaking, this injection rate bounds the amount of pack- packets is the same node), the greedy poliey(§/n) competitive
ets the adversary is allowed to inject into the network at every time for any B > 1. Two works, one by Angelov et al. [5] and the other
step (For a formal definition of the adversary see Section 1.3). by Azar and Zachut [9], give centralized online algorithms for the
Our results give insight into the question of whether provisioning throughput maximization problem on the line, with polylogarith-
the network with large buffers improves the performance of the sys- mic competitive ratio.
tem, measured by the throughput competitive ratio of the protocol.  The fact that there is a connection between the competitive ratio
We show, for example, that for relatively small rates, increasing of the system and the available buffer size is suggested in a work
the buffer size available at the network’s nodes indeed enables theby Azar and Litichevskey [6]. They examine the competitive ratio
greedy protocol to guarantee a better competitive ratio. However, of online algorithms for the problem of maximizing the through-
this improvement is limited, in the sense that increasing the buffer put of a system withn input ports with buffers of sizeB, and
size beyond a certain size, no longer helps in guaranteeing a bettea single output port, where at each time step only one buffer can
competitive ratio. Another consequence of our results is that when send a packet. They give an online algorithm with competitive ra-
the adversary has rate< 1, if buffers are sufficiently large, then g < (1+ O<lcj>3g ™)) which approaches<;, as we provide the
Size 1 06 Small then he greedy protocol cannot achieve optimal P POTTS Wih arger buffers. For suficiently large buffers, thi
throughput SeelSection 1.2 for a detailed description of our results improved upon the best known previous result & [3]
L . . -~ The problem of information gathering was studied in the liter-
We view our results as a first step towards a more refined analysis

of throughput competitiveness, and towards providing guidelines ature under different models. For example, Kothapalli and Schei-
on how should buffers be deployed in the network in adversarial deler in [18] study this problem for the case that an adversary con-

seftings. We believe that the results presented here give a bettertrols not only the injected traffic but also the activation and deacti-

. S . . vation of network links. They give results for the line and the cycle
understanding of the role of buffer size in guaranteeing that simple . .
. ) : showing tight bounds on the excess amount of buffer space that
protocols perform well under adversarial traffic. This may enable

the use of some limited knowledge on the traffic pattern, even in an the online algorithm needs (compared to the optimal adversary) in

adversarial setting, which could be harnessed into providing betterOrder to deliver all injected packets.
performance guarantees.

1.2 Our Results

We give tight bounds on the competitive ratio of the greedy pro-

1.1 Related Work tocol for information gathering on the line. We give upper bounds

Problems of maximizing throughput given limited size buffers and lower bound on the competitive ratios, as a function of the
and against adversarial traffic have been studied extensively in re-available buffer space in every node, the rate of the adversary, and
cent years e.g., [1, 15, 4, 8, 3, 6, 14]. See [10] for a shoxtesur the size of the network. All our results are tight up to a constant
These works consider the task of maximizing the number of pack- factor.
ets transmitted from a single buffer, or from a switch, analyzingthe  Table 1 summarizes the results for the case where the buffer size
performance of the algorithms using competitive analysis. is at least2 (Section 4 treats the special case whBre= 1). For
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Figure 1: Graphic representation of results asa function of the buffer size B and the adversary’srate r. The X-axis represents the buffer size, and
the Y-axisrepresentsthe adversary’srate. The different regions are marked according to the competitiveratio of the greedy policy, depending upon
the pairing of buffer size and adversary rate values.

different ranges of the adversary’s rate(see Section 1.3 for a A greedy protocol is a protocol that never drops a packet unless
formal definition of the rate), it presents the competitive ratio of the buffer in which it has to be stored is full, and always forwards a
the greedy policy. For a graphic representation of our results, seepacket from a buffer unless the buffer is empty. Protocols satisfying
Figure 1. the latter property are sometimes referred tavak conserving.

Note specifically that these results imply that fox 1, if the We focus our attention in this paper on the directed line topol-
nodes are supplied with sufficiently large buffers, then the greedy ogy. Note that in this topology, any packet is characterized solely
policy has optimal throughput. In addition, our results imply that by its source node, and target node. Furthermore, in this topology,
for » > 1, increasing the buffer can help guarantee a better com- every node has a single outgoing link. We will therefore sometime
petitive ratio, up to a point where the competitive ratio no longer refer to a link's output buffer, as the buffer at its tail node. We
depends upon the buffer size, and becomes dependant solely of théurther focus on the problem éfformation Gathering on the line,
adversary'’s rate. where the target node of all packets is the last node of the line. In

For the case wherB = 1, we show that if the adversary has rate this case, every packet is characterized solely by its source node.
1/n < r < 1, then the competitive ratio of the greedy protocol is In this paper we consider greedy protocols for information gath-
O(rn). Forr < 1/n the greedy policy is optimal, whereas by the ering. Note that for this problem on the line all greedy protocols
results in [2], forr > 1 itis ©(n) competitive. are equivalent, and we will therefore referthe greedy protocol in

this case. Since all greedy protocols are equivalent, unless stated
differently, we assume for ease of analysis, without loss of general-
1.3 TheModd ity, that when there is a packet arriving at a node from its preceding

We model the network as a digragh = (V, E), [V| = n, node, then this will be the packet which is forwarded on the node’s
|E| = m. The nodes in the graph represent routers and the edgesoutgoing link in the next time step. We call this assumption the
represent unidirectional communication links. The system is syn- en-route assumption. Also observe that at every time step there is
chronous, and time proceeds in discrete time steps. All packets inat least space for one new packet in any buffer, since a packet is
the network have equal size, and without loss of generality we as- always sent from a full buffer. We can therefore assume without
sume they are of unit size. Every link has unit capacity, and can 10ss of generality that all packets that are forwarded on a link are
transmit at most one packet in each time step, along the directionstored in the buffer of the node at the head of the link, and never
of the link. In the tail of every link there is a buffer of siZz¢ > 1, dropped. It follows that we can assume without loss of generality
which can store at modB packets. Packets are injected into the that any packet accepted and stored in any source node buffer, is
network, each identified by its source node, its target node, and anever dropped, i.e., packets are only dropped at injection.
predesignated path which it is has to follow from source to destina- ~ We are interested in maximizing the throughput of the network,
tion. Every packet injected into the network is injected at its source 1-€., maximizing the number of packets which are delivered to the
node, to be stored at the output port of the first link in its path. Each last node of the line.
time step comprises of two substeps: the forwarding-and-injection ~ We assume the injections are governed by an adversary. Given
substep followed by the switching substep. The forwarding-and- any real number, anr-adversary can inject any sequence of pack-
injection substep works as follows: For each link, a packet may be €ts as long as for every time interval of lengtfat most[rt] pack-
selected from the output buffer at the tail of the link, and this packet ets are injected into the network. Note that the adversary is allowed
is forwarded to the node at the head of the link. At the same time, t0 inject the packets to any nodes in the network, and may well
any number of packets can be injected into the node. In the switch- inject more than one packet simultaneously, even to the same node.
ing sub-step packets that have arrived (or injected) to the node can We use competitive analysis to measure the performance of the
be placed in the buffer of the next (or first) edge of their path. If greedy protocol. We say that a protocblis c-competitive if, for
there is not enough space in the buffer to store all packets someevery input traffic sequeneeof packets injected into the network,
packets must be dropped. it holds that,OPT(O') <c- A(O’) + b, WhereOPT(U) is the num-



ber of packets an optimal offline algorithm delivers outofA (o)

is the number of packetd delivers out ofo, andb is a constant
independent of the input traffic sequence For the analysis, we
assume without loss of generality that the optimal algorithm never
drops a packet that it accepted at injection.

Lemma 2.1 guarantees that for amadversary such that < 1,

if B > [rn] then any greedy policy does not drop packets, and
hence any greedy policy is optimal. In what follows we show that
the same result holds even for buffers of smaller size.

Throughout the paper, unless otherwise stated, we assume that LEMMA 2.5. For any adversary of rate » < 1, and any greedy

the buffer sizeB is at leasR. The special case d8 = 1 is treated
in Section 4.

Organization

The rest of the paper is organized as follows. We first assume that
B > 1. In Section 2 we consider the caserof 1, and in Section 3

we consider the case of > 1. In Section 4 we treat the special
case ofB = 1, and we conclude the paper with conclusions and

policy, at any time ¢ there are at most max {2, [72n] + 1} packets
in every buffer.

PROOF Let1 be any node in the system. If at the beginning of
time stept there are more than 2 packets’atbuffer, then at time
t — 1 the node was not empty (since at most 2 packets can arrive in
each time step). Léft be the latest time prior towhere the buffer
is empty. Without loss of generality assuitie= 0. We distinguish
between two cases:

open problems in Section 5. Some proofs are omitted due to space cage1: ¢ < [nr]:

limitations.

2. LOW RATE ADVERSARIES
2.1 LargeBuffers

In this section we show that for any adversary of rateC 1,
if B> max {2, [r*n] + 1} then the greedy policy does not drop

packets, and is therefore optimal. To this end we analyze the system

as if it has unbounded buffers and no packet is dropped, and give
an upper bound ahax {2, [r*n] + 1} on the size of the buffers.

As a first step, we prove the following lemma, which bounds the
overall number of packets in the network, under the greedy policy:

LEMMA 2.1. For any r-adversary r» < 1, under the greedy
policy, at any time ¢, the number of packetsin the systemis at most

[rn].

To see this, since all greedy protocols are equivalent, it is suffi-
cient to show that the above lemma holds for any specific greedy
protocol. For analysis purposes it is convenient to consider the
Longest-in-System (LIS) protocol.

The following lemma, whose proof is omitted, enables us to give
a bound on the amount of time every packet stays in the network:

LEMMA 2.2. Under LIS for any adversary of rater < 1, con-
sider any packet p injected to node: intimet. Then for every j > ¢,
p arrivesto node j by time ¢ + j, and p is sent from node ;5 by time
t+j+1.

Applying the above lemma with = n we obtain the following
corollary:

COROLLARY 2.3. Under LIS for any adversary of rater < 1,
every packet isin the system for at most n time units.

The following lemma gives a bound on the overall number of
packets in the network at any given time under the LIS protocol.

LEMMA 2.4. Under LIS for any adversary of rater < 1, and
at any time ¢, the number of packets in the systemin time ¢ is at
most [rn].

PROOF Consider any time. By Corollary 2.3, any packet in-
jected to the system before time- n has already been delivered.
Hence the system holds only packets injected during the interval
(t — n, t]. By the definition of the adversary, the maximum number
of packets injected during such an interval is at nmjest]. [

Combining the above lemma with the fact that all greedy policies
are equivalent, we conclude the proof of Lemma 2.1. Note that

In this case, at timéthe number of packets in nodés at most
t+ [tr] —t = [tr] < [r°n] + 1.

Case2: t > [nr]:
Lete = [tr] — tr, and note thad < ¢ < 1. Attime¢ the
number of packets in nodds at most

[nr]+ [tr] —t [nr]+t(r—1)+¢
[nr] —t(1l—r)+¢
[nr] — [nr](1—7)+¢
[nr]r+1,

INNA

where the first term follows from Lemma 2.1, and the inequality
follows from the fact that < 1. Since any integem which sat-
isfiesm < [rn]r also satisfiesn < [r?n], it follows that the
number of packets in nodds at most[r?n] + 1. O

The following theorem is an immediate consequence of the above
lemma:

THEOREM 2.6. For any r-adversary such that » < 1, if B >
max {2, [r>n] + 1} then the greedy policy does not drop packets,
and thusis optimal.

2.2 Small Buffers

In this section we give tight bounds on the competitive ratio of
the greedy policy against amyadversary withr < 1, in a net-
work which is supplied with relatively small buffers. Specifically,
we show that if2 < B < O(r?n), then the greedy policy has
competitive ratiad (/% ).

2.2.1 Upper Bound

THEOREM 2.7. If 2 < B < n, and the packets are injected by
an r-adversary with / 2= < 7 < 1, then the greedy policy is
O(max {1,7,/%}) competitive.

PROOF For the purpose of the analysis we divide time into a
sequence of intervalBy, Ko, P1, K1, P2, K», .. .. IntervalsP are
defined by the number of packets that the adversary accepts. In-

tervals K will be fixed length intervals of lengtk. Formally, let
P; = [si,t; + 1), andK; = [t; + 1, u;) where

1. sp =0andfori > 1, s; = uij—1,

. t; is the earliest time afte; where the adversary accepts
3 - [rn] packets during the interv@;, t; + 1), and

3.u; =t +k,fork = @(n)



We start by showing that we can identif}(min {rn, vVnB ¢)

distinct packets residing in the buffers of the greedy policy during
P
If the greedy policy accepts at leagtn] of the new packets
injected by the adversary during then we have at lea$¥(rn)
packets residing in the buffers of the greedy policy duiitag

Assume now that the greedy policy does not accept at [east
of the new packets injected by the adversary duiihglt follows
that the greedy policy drops durirfg at leas® - [rn] packets.

We say that a nodg is bad in P; if at least one packet was
dropped iry during ;. Note that if a packet is dropped jrat time
t, then the buffer at that node is full at that time, and furthermore,
due to the en-route assumption, at leBst 1 > % of the packets
residing in nodej at timet have been injected tg itself. Letx
denote the number of bad nodesfn If = > /%, then we can
identify at leastz2 = Q(v/nB) distinct packets residing in the
buffers of the greedy policy during;. Assume now that < /%.
Recall that the greedy policy has dropped at I@asfrn] packets
during P;, hence in at least one of the bad nodes the greedy policy
has dropped at Iea%j/’t%” > 2rv/nB packets. Observe that by the

B

assumption that > 4/ % we are guaranteed to havevnB >

2. We now use the following lemma, whose proof appears later in
the sequel.

LEMMA 2.8. Any bad node j such that at least ¢ > 2 packets
were dropped at j during P;, forwards (g - 1) packets during P;.

It follows that there is at least one bad node from which
Q (2rvnB - %) =Q(vnB)

packets have been forwarded duriRg which means that we can
identify Q(v/nB) distinct packets residing in the buffers of greedy
during P;.

We can therefore conclude that there &gnin {rn, \/nB})

distinct packets residing in the buffers of the greedy policy during
P;.
By the fact thatB < n, we have

k=

O(n) = Q(n + min {rn, \/@})

Since we have shown that at led@3(min {rm \/nB}) distinct

packets resided in the buffers under the greedy policy dufing
follows that at least this number of packets were delivered by the
greedy protocol during; U K.

As to the adversary, note that by the choicé ethe length of in-
terval K; - the overall number of packets accepted by the adversary
during P; U K; is bounded b3 - [rn] +r - ©(n) = O(rn).

Summing the above over dllwe obtain a lower bound of

Q(min {jm,jx/nTB})

on the number of packets delivered by the greedy policy by the
end of K;, where on the other hand the same summation yields
an upper bound oD (jrn) on the number of packets accepted by
the adversary by the end of intenvl;, which clearly also bounds

PROOF OFLEMMA 2.8. By the assumption, we know that at
least 2 packets were dropped at ngd€Consider any two consec-
utive events in which a packet was dropped at njydend assume
without loss of generality that the first drop was at tifpeand the
second drop was at time Note that for every nodg¢’ and times,

a packet is dropped at the switching substep of tinoaly when
there has been both an injection into ngdend a forwarding to
nodej’ in the forwarding-and-injection substep of timeand the
buffer of j is full at the beginning of the forwarding-and-injection
substep. Furthermore, since every two consecutive injections are
at least|1/r] > 1 time apart, we necessarily have> 0. If the
buffer at nodej is full during the entire interval0, ¢], then clearly
atleastt > |1/r] = Q(1/r) packets have been forwarded from
node; under the greedy policy. Otherwise, et< s < ¢ be the
last time prior tot in which the buffer at nodg was not full at the
end of time slots. By the maximality ofs, and the fact that < 1,

it follows that at the end of time there wereB — 1 packets in
the buffer of nodg, and at the forwarding-and-injection substep of
time s + 1 one packet arrived to nodeon its incoming link, and
one packet was injected to nogle By the fact that inter-injection
time is at leasf2(1/r), it follows that the interval(s, ¢] is of length

at leastQ2(1/r), and since the buffer was always full during this
interval, it follows that one packet was forwarded from ngde
every time step in this interval, i.e., at led3(1/r) packets were
forwarded from nodg in the interval0, ¢].

Since this holds for every two consecutive events of packets be-
ing dropped ay, and by the assumption gnhthere were at least
q > 2 packets dropped gt during P;, we conclude that at least
Q(q - 1) packets were forwarded from nogleluring P;.  [J

2.2.2 Lower Bound

In this section we prove that the upper bound given in Theo-
rem 2.7 is tight up to a constant factor, for buffers smaller than
O(r?*n). Note that for any constart < ¢ < 1, and anyr-
adversary such that< 1, if cr®n < B < [r?n] then Theorem 2.7
guarantees that the greedy policy(g1)-competitive. Therefore
it is enough to prove our lower bound for buffers of size less than
%7"217,.

THEOREM 2.9. For any r < 1,if2 < B < {5r’n, then there
exists an r-adversary A such that the ratio between the throughput
of A and that of the greedy policy is (/% ).

PROOF The adversary will inject packets in two epochs. We
will consider the line as divided into two blocks, where the sec-
ond block is divided into segments. In the first epoch the adversary
injects only to the first block, whereas in the second epoch the ad-
versary injects only to the second block. The goal of the injection
sequence in the first epoch is to generate a continuous sequence
of packets arriving at the second block. The second block is di-
vided into segments, where the injection during the second epoch
will cause the greedy policy to drop packets in every segment. As
the analysis will show, the overall number of packets accepted by
the greedy policy would be proportional to the injections made to
the first block, whereas the adversary can accept all the packets
injected.

Formally, letr’

It follows thatr/2 < ' < r, and

_1
[1/r1:

the number of packets delivered by the adversary by the end of 1/r' is integral. Letd = |v/nB]|. Consider the line as composed

K. It therefore follows that the ratio between the number of pack-

of two blocks of nodes, where the first block consists of the nodes

ets delivered by the adversary and the number of packets delivered), . .., % — 1, and the second block consists of nodés. . . , n.

by the greedy policy i©)(max {1,7,/% }), which completes the
proof. [

We divide the second block into= |2 | — 2

- segments of length
deach,Sy,...,Sk_1.



time

The following lemma, whose proof appears later in the sequel,
bounds the number of packets which leave any of the segments in
the second block, under the assumption that B < —r n:

4+ (k=1)d

---0000

r'd packets

LEMMA 2.11. Foreveryi =0, ..., k—1, thereisa continuous
sequence of d+ (i + 1) B packetsleaving S;, entering segment .S; 1
asoftime % + (i + 1)d.

2 43d

---0000

Z+2d

---0000

:l,‘i’([

---0000

Since the number of segments in the second block is

“Ua
---0000

b el

1 apart ° | |
o Vs Vs

5, is ‘ Ysk 3 by Lemma 2.11, the number of packets delivered by the greedy

second block policy is O(d + 4/ %B) = O(\/ TZB)
The adversary injects at least

+ (i%i - Tl) rd = 6(r'n)

packets. It can keep them all by not forwarding packets in the
first block, and spreading théd packets injected to segmesi
throughout the segment while not sending packets between differ-
ent segments. Therefore after a flush-phase at the end of the in-
jection sequence, the adversary can deliver all the packets it has
accepted.

It follows that the ratio between the number of packets delivered
by the adversary and the number of packets delivered by the greedy
policy is at least

L <=

first block

s

d
ode:

7]

node4

Figure 2: Outline of the injection pattern for the adversary showing
the Q (r\/%) lower bound. The X-axis represents the line network,
and each circle represents the injection of a packet. Out of the r'd
packets injected to every segment in the second block, only B packets
would be absorbed by the greedy policy.

Note that by the assumption dhand the choice of andd, the
number of nodes in the first block is at most

d [Vn J i/ r?n?2/16  n ,
W r 7“/2 r 5 M =0 (7“ E)
: . . O(vnB) B)’
Since there remain at leagt nodes in the second block, and the .
length of every segment in the second block is which completes the proof of Theorem 2.9.]
2 o on PROOF OFLEMMA 2.11. The proof is by induction oh For
d=|vnB] <VvnB < =—< -, the base case, note that by Lemma 2.10, there is a continuous se-
16 4 4 . . -
quence ofd packets entering the first node 6%, starting from
we are guaranteed to have at least two segments in the secondime <. It follows that duringd time units, there is a packet ar-
block. fiving to the first node ofS, from its preceding node. In addition,
The injection sequence of the adversary is divided into two epochsguring thesel time units, there arér’d) packets injected by the
as follows: _ . , adversary to the first node 6. Due to the en-route assumption,
Epoch 1: For everyi = 0,...,d — 1, inject a packet to node¢; none of these packets are forwarded from this node until the en-
intime . tire sequence of packets arriving on the incoming link has ended.
Epoch 2: For every segmenf = 0,...,k — 1, inject |r'd] Note that by our assumption that< B < --r*n, we obtain that

packet to the first node of;, one everyl /r’ time units, starting
from time . + jd. Note that by the choice of ' andd we have

|r'd] > 2. 17 d] LTI_WJJ

r>4,/8 —. It follows that

See Figure 2 for an outline of the injection sequence. =z J%iﬁi
In addition, note that since the above injection sequence does not 2 L2TL”J
inject more than one packet evergr’ time units, the injection rate > |2 \/E(\/}Bfl)J
- n

is at most~’ < r, hence it corresponds to aradversary.
We now turn to analyze the performance of the greedy policy |2 (B - \/%)J > B,
given the above injection sequence. First note that the greedy pol-
icy accepts all the packets injected during epoch 1. To see this, where the last inequality follows from the fact that in our case
notice that the adversary injects at most one packet to every node2 < B < %TQn < 1. The node can store onlg out of
It follows that there is at most one time unit where the node receives these|r’d| injected packets, which are then forwarded immedi-

two packets simultaneously - one from its preceding node, and oneately after the sequence arriving on the incoming link has termi-

injected by the adversary. Since by our assumpfibr> 2, the nated. This prolongs the sequence leaving the first nod# dfy
greedy policy does not drop packets during epoch 1. additional B packets, to atotalaf + B = d + (0 + 1) B packets,
The followmg lemma, whose proof is omitted, shows that start- which start leaving the first node 6% in time % + 1. Since the
ing from time < <, there is a continuous sequencelqfackets arriv- length of Sy is d nodes, this sequence enters segnﬁems of time
ing to the first node of, from its preceding node. % +d= % + (0 + 1)d. This completes the base case.
For the inductive step, assume the claim holdsifoit follows
LEMMA 2.10. Foreveryi =0,...,d—1, thereisa continuous that there is a continuous sequence af (i + 1) B packets leaving

sequence of 4+ 1 packetsleaving node }, starting fromtimeri,Jrl. Si, entering segmerfi; ., as of time% + (i 4+ 1)d. Starting from



this time, during a period of time units, the adversary injectsd
packets to the first node &;y,. Similar to the base case, due

the time intervalx, zx + B), wherez;, is the earliest time a packet
is dropped from the node after the end of the previous period. In the

to the en-route assumption, none of these packets are forwardedbeginning of every period, we increase the weight of every packet

from this node until the entire sequencedf- (i + 1) B packets
arriving on the incoming link has ended. Since the node can only
store B out of the |r'd| packets injected by the adversary, these
packets ’join’ the sequence arriving on the incoming link, thus the
continuous sequence of packets leaving the node compriges of
(i+1)B+ B = d+ (i + 2) B packets. By the fact that the length
of S;+1 is d, this sequence starts entering segnint as of time
4+ (i+1)d+d =% + (i + 2)d, which completes the proof of
the lemma.

3. HIGH RATE ADVERSARIES

In this section we treat the case of adversaries of high rates, i.e.,
of ratesr > 1. We give tight bounds on the competitive ratios

in the node’s buffer by2. There is no weight increase during the
intervalsK;.

Note that a packet is dropped at nodat the beginning of a
period iff the buffer is full at this time, i.e., there af¢ packets in
the buffer. By increasing the weight of each of these packets by
the overall weight increase &3, which is an upper bound on the
number of packets the adversary may accept into ripded the
greedy policy lose, during this period (of lengh).

We now show that during intervaP; the greedy policy stored
in its buffers at leasf2(v/rM B) distinct packets. Le2c be the
maximum weight a packet has at the end of inte®alwherec is
some positive integer.

By the fact that for every nodg the weight increase in every pe-
riod of nodej is an upper bound on the number of packets accepted

obtained by the greedy policy in this case. These bounds are aby the adversary and dropped by the greedy protocol during the pe-

function of the network size, the buffer sizeB, and the injection
rater. Interestingly, different functions apply for different combi-
nations of these values.

3.1 Upper Bounds

Let M = max{n, B}. The following lemma shows an up-
per bound in terms oM on the performance of the greedy policy,
against any--adversary withr > 1

LeEmMA 3.1. For any r-adversary such that » > 1 the greedy
policyisO ( 4 r) competitive.

PrROOF The following proof is an extension of the proof ap-
pearing in [5].

For the purpose of the analysis we divide time into a sequence of
intervals Py, Ko, P1, K1, P2, Ko, . ... IntervalsP are defined by
the number of packets that the adversary accepts. Intefvaildl
be fixed length intervals of length Formally, letP; = [s;, ¢;+1),
andK; = [t; + 1, u;) where

1. sp =0andfori > 1, s; = ui—1,

2. t; is the earliest time aftes; where the adversary accepts
[r M) packets during the interv@d,, ¢; + 1), and

3. ui:ti—&—k,fork:@(\/m—&-n).

In what follows, we compare the throughput of the adversary and
the throughput of the greedy algorithm in every interZalJ K;.

We start by showing that we can identify(+/rM B) distinct
packets residing in the buffers of the greedy policy durfg

Note first that if the greedy policy accepts at Ieé‘# of the
packets accepted by the adversary durifgthen sincerM >
VrMB for r > 1, we are guaranteed to hat¥+/r M B) packets
residing in the buffers of the greedy policy durify.

Assume next that the greedy policy does not accept at Ré”ést
of the new packets accepted by the adversary. It follows that it
drops at Ieasf“,zﬂ of the new packets accepted by the adversary
during P;. For the purpose of the proof we define a dynamic weight
assignment to packets stored by the greedy protocol.

Initializing the weights: Every packet accepted by the greedy
policy has its weight initialized to zero in the moment of its injec-
tion, and all packets not yet delivered have their weight reset to zero
in the beginning of any intervap;.

Increasing the weights: Any interval P; is divided into periods
for every node separately. Théh period of a node is defined by

riod at nodej, and since the number of packets that were dropped
by the greedy protocol but accepted by the adversary during

at IeastTTM, we have that the total weight of the packets of greedy
is at least"2”, and we can therefore identify at ledigf = Q(=)
distinct packets residing in the buffers of greedy during It fol-

lows that ifc = 1, this is at leasf2(rM) = Q(v/rM B), and we

are done.

Assume next that > 2, and letp be any packet with weight
2¢. Note thatp may have already been delivered by the algorithm.
The weight ofp can be divided into two categories, such that=
2w + 2v:

Weight given at p’s origin node: Denote it by2w. It follows
thatp spent at leasB(w — 1) time units at its origin node, since
it was there duringw periods, each lastingg time units. Since
the algorithm is greedy, in every such time unit, one packet was
sent from the origin node, i.e. at leaBtw — 1) packets were sent
during these time units. These are all different packets, which
will never 'beat’ to the end, due to our en-route assumption.

Weight given at p’stransit nodes: Denote it by2v. In every tran-
sit node where had its weight increased, there de— 1 packets
left behind (because the weight is increased only in time of over-
flow, where the buffer is full). Since moves continuously, the sets
of packets in two distinct such transit nodes are disjoint, because
of the en-route assumption. Therefore, there are at iddst— 1)
different packets left 'behindp.

The number of packets stored by greedy durigs at least

1+B(w—1)+v(B-1) cB—B—-v+1
cB—B—-c+1
(c—1)(B—-1)=Q(cB).

v 1l

It follows that if the algorithm dropped at Ieaé% of the packets
accepted by the adversary durify, it had stored in its buffers at

least
Q (max {CB7

packets during intervap;.

We can therefore conclude that in any case there were at least
Q(vrM B) packets residing in the buffers under the greedy policy
during P;.

When considering the adversary, note that by the choide -of
the length of intervalK; - the overall number of packets accepted
by the adversary during the intervB] U K is upper bounded by
[rM]+r-©(rMB+n)=O0(rM +rvVrMB).

%}) — Q(V/rMB)



Furthermore, since we have shown tét/r M B) distinct pack-
ets resided in the buffers under the greedy policy dudgand
sincek = O(vVrMB + n), it follows that at leas(v/rM B)
packets were delivered durirfg U K; under the greedy policy.

By summing the above over all] we obtain a lower bound of
Q(jvrMB) on the number of packets delivered by the greedy
policy by the end ofK(;, where on the other hand the same sum-
mation yields an upper bound @&¥(j(rM + rv/rMB)) on the
number of packets accepted by the adversary by the end of in-
terval K;, which clearly also bounds the number of packets de-
livered by the adversary by the end &f;. It therefore follows

that the ratio between the number of packets delivered by the ad-

versary and the number of packets delivered by the greedy policy
is (% VI;”)’B)> =0 ( oMoy 7"), which completes the
proof. [

The above lemma implies two upper bounds on the performance
of the greedy policy, depending on the rate of the adversary. The
first applies to adversaries with rates boundedzoy

THEOREM 3.2. For any r-adversary suchthat 1 < r < %, the
greedy policy isO(,/ %) competitive.

PROOF. Assumer > 1 also satisfied < r < Z. In particular
in this case, we hav®8 < n, which impliesM = n. By the

assumption that < r < %, we haver < /72 = /=M |t
therefore follows by Lemma 3.1 that the competitive ratio is at most

(%) O

The following theorem gives an upper bound for the remaining
range ofr.

THEOREM 3.3. For any r-adversary suchthat» > 1 and r >
% the greedy policy is O(r) competitive.

n

- It B > nthen
=2t = r, hence by Lemma 3.1, the competitive ratial$/r +
r) = O(r). If on the other hand < n, then by the assumption
thatr > %, we have™}f = 2 < r?. It therefore follows by
Lemma 3.1 that the competitive ratio is at mastv/r2 + r)
O(r). O

PrROOF Assumer > 1 also satisfies >
rM __

Angelov et al. [5] have shown that for al] and regardless of the
buffer sizeB, the greedy policy i® (/n) competitive. Combining
their result with Theorems 3.2 and 3.3, we obtain the following two
corollaries:

COROLLARY 3.4. For any r-adversary such that 1 < » < %,
the greedy policy ismin {O(y/%), O(v/n) } competitive.

COROLLARY 3.5. For any r-adversary such that » > 1 and
r > %, thegreedy policy ismin {O(r), O(y/n)} competitive.

3.2 Lower Bounds
In this section we present two lower bounds which combined

PROOF We consider the line as divided into segments, and have
the adversary inject at most one packet in every time step to every
segment. Given any rate < r < /n, we show that the number
of segments is at most hence the injection corresponds toran
adversary. As the analysis will show, the overall number of packets
accepted by the greedy policy would be proportional to the injec-
tions made to the last segment, whereas the adversary can accept
all the packets injected.

Formally, Let4 < r < \/n, and letd = [%;]. Consider the line
as composed df = L\/gj segmentsSy, ..., Sk_1, such that the
length of segmen$; is (i + 1)d.

Note that by the assumption enwe have2 < d < [, and the
overall length of the segments¥s¥_, id = ¥4 < 129 < .

We now describe the sequence of injections generated by an
adversaryd. Foreveryi = 0,...,k—1, Ainjects(i+1)dB pack-
ets to the first node of segmesit, starting at time; = 37" _ jd.

See Figure 3 for an outline of the injection sequence.
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Figure 3: Outline of the injection pattern for the adversary showing
the Q(r) lower bound. The X-axis represents the line network, and
each circle represents the injection of a packet. In every segment S;
except for Sp, out of the (¢ + 1)dB packets injected, only B packets
would be absorbed by the greedy policy.

First note that by the choice &f we havek < \/g < r. Since
the adversary injects at most one packet to every segment in every
time step, we are guaranteed that the above injection sequence cor-
responds to an-adversary. Furthermore, sinde< [ 1% | we have
thatk > 2.

The following lemma enables us to bound the number of packets
leaving every segmertt; under the greedy policy. The proof is by
induction on the segment number, and is omitted.

LEMMA 3.7. Under the greedy palicy, for any i > 1, the pack-
etsleaving segment S; forma continuous sequenceof (i+1)d B+ B
packets, which start arriving to S, 1 intime¢,41.

It follows that the greedy policy deliver®@(kdB) = O(Vdn -
B) = O (2E) packets.
The number of packets injected to the network by the adversary

with the upper bounds presented in Section 3.1, enable us to characis n3, and the adversary may successfully deliver them all by stor-

terize the performance of the greedy policy, up to a constant factor,
for anyr-adversary such that> 1.

THEOREM 3.6. For any 4 < r < +/n, and for any buffer size
B, there exists an r-adversary A such that the ratio between the
throughput of A and that of the greedy policy is Q(r).

ing the (i + 1)dB packets injected to segmefit in the buffers of
that segment, and not forwarding any packet across different seg
ments until the injection sequence has terminated.

It follows that the ratio between the number of packets delivered
by the adversary and the number of packets delivered by the greedy
policy isQ(r). This concludes the proof of the theoreni]



THEOREM 3.8. For any 2 < r < B there exists an r-
adversary A such that the ratio between the throughput of A and

that of the greedy policy isQ (/7).

PrROOF We consider the line as divided into equal-length seg-
rlrl%nts, each of a length to be determined later.
the adversary does not inject to more thaaegments in every time
unit. This ensures that the injection sequence indeed corresponds
anr-adversary. The analysis will show that the overall number of
packets accepted by the greedy policy is proportionaltimes the

_ °r. Given any rate Note that the number of segmerttsnust satisfyy
< r < B, we describe an adversary that inject at most one . therefore choose— Nal

packet in every time step to every segment, and further show that

packets into the first node &f;, starting from time

i

ti=> j=

Jj=1

i(i+1)
5

¥ i< n We

k3

Clearly this adversary has rate at m@ét, since the number of
segments is at mosfn, and it injects at most one packet to every
Qegment in every time unit.

We now show that the rate of this adversary is boundedby
Note that for every we have

segment length, whereas the adversary can accept all the packets

injected.
Formally, Let1¢2 < r < B, and letd = [/2£]. Con-

sider the line as composed &f = % | O(y/%) segments
So, ...,Sk—1, each of lengthi. Note that by our assumption that
% < 7, we are guaranteed to hade< 7, andk > 4. We
describe the sequence of injections generated byaaversaryA:
For every: = 0,...,k — 1, A injects|rd] packets to the first

node of segmeng;, starting at timed.

n —

(+B)(i+B+1) _ i(i+1) _

2 2
%((i+B)(i+B+1)7i(i+1)) =
?(i2+2¢3+32+¢+37¢24) =
3 (B*+(2i4+1)B) > iB.

It follows that by the time there are packets injected to segment
Si+ B, there are no longer packets injected to any segrientor

j <. Hence, the adversary has rate at ni®stince the number of
segments to which it injects simultaneously is at m@st []

tivB — s

Note that the above adversary injects at most one packet into3 3 Tight Results for High Rates

every segment in every time step, and does not inject into more

thanr segments simultaneously. It follows that the above injection
sequence corresponds toaadversary. The following lemma en-
ables us to bound the number of packets leaving every segfhent

under the greedy policy. The proof is by induction on the segment

number, and is omitted.

LEMMA 3.9. Under the greedy policy, the packets leaving seg-
ment .S; form a continuous sequence of |rd| + ¢ B packets, which
start arrivingto S; 11 intimed(: + 1).

It follows that the greedy policy absorbs and delivérg-d +
kB) = O(v/rnB) packets.

In this section we conclude the results of the previous sections
and derive bounds, which are tight up to constant factors, on the
competitive ratio of the greedy policy for amyadversary such that
r > 1. We distinguish between several ranges/foiSee Table 1
for a summary of the results.

For the range of > min {B, \/n}, the upper bound appearing
in [5] guarantees a competitive ratio 6f/n). By Lemma 3.10,
for this range of-, there exists an-adversary which shows that the
greedy policy cannot have a competitive ratio better fiagy'n).

The remaining range to consider iswher r» < min {B, \/n}.
Assume first thamax {1, % } < r < min {B, y/n}. Theorem 3.3
gives an upper bound @(r). Theorem 3.6 gives a lower bound

The number of packets injected to the network by the adversary Of $2(r) for the case- > 4 (if r < 4 the upper bOUTLd guaranteed
is [rd] - 2] = ©(rn), and the adversary may successfully de- by Theorem 3.3 i£)(1)). Assume now that < r < B~ Theorem
liver them all by storing thérd | packets injected to segmesit in 3.2 gives an upper bound 6f (/7% ). Theorem 3.8 gives a lower
the buffers of that segment, and not forwarding any packet acrossbound ofQ (/7% ), for r > 182 (if < 188 the upper bound

different segments until the injection sequence has terminated.
It follows that the ratio between the number of packets delivered

guaranteed by Theorem 3.23(¥1)).

by the adversary and the number of packets absorbed by the greedyl. THE CASE OF B=1

policy is2 (ﬁ%
theorem. O

) =Q (‘ /%). This completes the proof of the

Aiello et al. present in [2] af2(/n) lower bound on the com-
petitive ratio of the greedy policy, which is independenti®fby

The case ofB = 1 is a special case for which the competitive
ratio of the greedy protocol is bad. For rate% 1 it follows easily
from Theorems 4.2 and 5.1 in [2] that the competitive ratio of the
greedy protocol i®(n). Forr < 1/n the greedy policy is optimal,
since every packet is delivered before the next one can be injected.

presenting an adversary which can deliver all the packets it injects, For1/n < r < 1 we have the following theorem:

while any greedy policy cannot deliver more than@y/n) frac-
tion of the packets injected. The following lemma shows a bound
on the rate of this adversary.

LEMMA 3.10. For any buffer size B, there exists an adversary
A with rate r = min {B, y/n}, such that the ratio between the
throughput of A and that of the greedy policy isQ(y/n).

PROOF The adversary used by Aiello et al. in the proof that the
greedy policy cannot have competitive ratio better thdrg/n), is
a special case of the adversary described in Section 3.2. The ma
difference is that their adversary uses a "stretch” factaf ef 1,
instead of the factor-7 used in Section 3.2.

Formally, the adversary considers the line as divided/rtitocks,
S1,..., Sk, such that the length of block; is ¢, and it injectsiB

LEMMA 4.1. The greedy policy has competitive ratio ©(rn)
against any r-adversary suchthat 1/n < r < 1.

PROOFSKETCH. Forthe upper bound, note that since every packet
accepted by the greedy policy is delivered by at mostne units
after its injection, the number of packets accepted by the adversary,
but dropped by greedy due to this packet, is at njesf]. Hence
the competitive ratio of the greedy policy against angdversary
with 1/n < r < 1is O(rn). For the lower bound, an adversary
. similar to the one used in [2] which injects a packet to the first node
Nn the system, and then another packet eyiery] time units (thus
corresponding to arradversary), to the node where the first packet
is currently stored, shows that the competitive ratio of the greedy
algorithm isQ(rn). [



5. CONCLUSIONS [5] S. Angelov, S. Khanna, and K. Kunal. The Network as a

In this paper we are interested in the question of how does the Storage Device: Dynamic Routing with Bounded Buffers. In
size of the buffers deployed in the network, and the injection rate Proceedings of the 8th International Workshopon
of the traffic into the network, influence the attainable throughput- Approximation Algorithms for Combinatorial Optimization
competitive ratio of scheduling and admission protocols. We initi- Problems (APPROX), pages 1-13, 2005.
ate a study in the framework of the CNT model of a more refined [6] Y. Azar and A. Litichevskey. Maximizing Throughput in
analysis of the competitive ratio of the throughput that takes into Multi-Queue SwitchesAlgorithmica, 45(1):69-90, 2006.
account not only the size of the network but also the size of the [7] Y. Azar and Y. Richter. An Improved Algorithm for CIOQ
buffers and the rate of injection of the traffic. We study the special Switches. InProceedings of the 12th Annual European
case of the line network and the problem of information gathering Symposium on Algorithms (ESA), pages 65—76, 2004.
(all packet are destined to the same node), and give tight bounds [8] Y. Azar and Y. Richter. Management of Multi-Queue
on the competitive ratio as a function of these parameters. Inter- Switches in QoS Network#lgorithmica, 43(1-2):81-96,
estingly, these bounds are different for different combinations of 2005.
buffer-size and adversary-rate. For example, we show that fgrve  [9] Y. Azar and R. Zachut. Packet Routing and Information
small rates, insufficient buffer size may be the difference between Gathering in Lines, Rings and Trees.Rroceedings of the
the greedy protocol achieving optimal throughput, and non-optimal 13th Annual European Symposium on Algorithms (ESA),
throughput. Furthermore, for larger rates, we show that increasing pages 484-495, 2005.

the buffer size may help up to a certain point, whereas any further [10] L. Epstein and R. V. Stee. Buffer Management Problems.
increase no longer helps the greedy protocol to achieve a better ACM SIGACT News, 35(3):58-66, September 2004.
competitive ratio, and its performance depends solely on the rate Of[ll] C. Florens, M. Franceschetti, and R. J. McEliece. Lower
the adversary. _ o o Bounds on Data Collection Time in Sensory NetwollEEE
We believe that the questions and analysis introduced in this pa- Journal on Selected Areas in Communications,
per may lead to a better understanding of the interplay between the 22(6):1110-1120, 2004.
buffer size and the adversary rate, and the competitive ratio attain- [12]
able by local-control protocols. Our work raises several interesting
open problems. For example, can similar results be obtained for
more involved topologies, and other protocols. Another interesting
question is whether one can design protocols that would take ad-
vantage of the given buffer size in order to reduce the competitive
ratio when possible.
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